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Abstract

Hierarchical linear models are a generalization of Bayesian linear re-

gression. They di�er from Bayesian regression in that they determine the

width of the prior distribution for the regression coeÆcients automatically

from the data. They are particularly appropriate when we want to an-

swer questions about the typical weights in a regression instead of just

the typical examples. This paper provides a tutorial on hierarchical linear

models, then demonstrates their application to some biochemical data.

1 Introduction

Consider an experiment in which we fertilize half of each of three �elds, then
measure the height of several plants grown in each half-�eld. To analyze our
measurements from this experiment, we might run a linear regression in which
we try to predict the heights of the plants from which �eld they were in and
whether they were fertilized.

In this regression, the three regressors for the e�ects of the di�erent �elds
are a priori interchangeable: we wouldn't be able to tell if someone swapped the
measurements from two of the �elds. In addition, we expect that any new �eld
we measured would be interchangeable with the old ones. In other words, we
believe that there is some distribution of �elds, and that each �eld we measure
is a new sample from that distribution.

Hierarchical linear models are a generalization of linear regression which
makes this view explicit. They assume that the true weights are independent
samples from some underlying distribution, and they try to estimate this dis-
tribution explicitly.

There are several reasons we might want to �t a hierarchical model instead
of a standard regression. First, the number of regressors might depend on how
many samples we collect. Hierarchical models provide a convenient way to say
that each new regressor will be similar to some of the old ones. Second, we
might not have a good idea how large the true weights are, but we might expect
that they are all about the same size. Conventional regression can't express this
belief, but a hierarchical model can. Finally, we might want to answer questions
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Figure 1: Two possible distributions for the measured outputs of cells. In one
panel cell readings are nearly independent, while in the other cells in the same
well are correlated. The marginal distribution of cell readings is the same in
both panels, so if we fail to take account of the correlations within wells we may
make incorrect inferences.

about the distribution of groups of regression coeÆcients. Conventional regres-
sion doesn't estimate this distribution, and so can only answer such questions
indirectly.

The �rst description of Bayesian hierarchical models was [1], but that pa-
per uses a biased estimator for variances. A better treatment of variances and
regularization is in [2]. A good but dense overview is [3]. Hierarchical mod-
els are related to complexity control methods for neural nets, particularly the
Automatic Relevance Determination model.

2 A biochemical problem

When a pharmaceutical company discovers a new compound that might a�ect
synthesis of an important protein, it conducts an experiment like the following
one to assess the compound's value.1 A researcher grows cultures of cells on
a glass plate. The cultures are separated by raised barriers into regions called
wells. The researcher prepares solutions of the target compound at various
concentrations and applies one solution to each culture. After a speci�ed delay,
she exposes the cells to a dye that binds the protein of interest and examines
several randomly selected cells from each well under a microscope. She records
how well the dye bound to each cell, then repeats the experiment with new
plates and di�erent concentrations of the solution.

In the simplest case there are just two doses of interest, zero and high or
control and treatment, and we want to answer the question of whether there is a
di�erence between treated and untreated cells. One way to answer this question
is to separate the treatment and control groups, compute the mean and variance
of the dye levels for each group, and compare the means under a normal model.

1We have changed the description of our data slightly because of disclosure requirements.
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wells plates
1 2 3 4 1 2

cell 1 1 1
cell 2 1 1
cell 3 1 1
cell 4 1 1
cell 5 1 � � � 1 � � �
cell 6 1 1
cell 7 1 1
cell 8 1 1

Figure 2: Part of the design matrix for an ANOVA.

There is a problem with this procedure, though: our data are not independent.
Cells in the same well or wells on the same plate will be correlated because
there are unmeasured in
uences that are constant within a well or plate. For
example, an error in titrating the solution for a well a�ects all cells within that
well, while a change in the amount of time the plate is incubated before dyeing
a�ects all wells on that plate.

Figure 1 shows an example of this problem. The two panels show two pos-
sible distributions for the dye levels of 200 cells in 4 wells exposed to the same
concentration of the drug. In the top panel there is signi�cant correlation be-
tween cells in the same well, while in the bottom panel each cell's reading is
approximately independent. The best estimate of the mean dye level � is �̂, the
average of all 200 observations. If we ignore correlations within wells, we can
estimate Var(�̂) with the sample variance divided by the number of samples.
Since the observed variance is about 1 in either panel, the estimated standard
error is about 0:071.

In the bottom panel this estimate is almost right since the cells are nearly
independent. (The actual standard error is 0.086.) But in the top panel we are
ignoring a signi�cant source of variance: while we can estimate the well means
accurately with 50 samples apiece, there are only 4 samples we can use to infer
the distribution of well means. Since well-level variation contributes signi�cantly
to the overall variance, our uncertainty in the well distribution dominates our
overall uncertainty. So, the actual standard error of �̂ in the top panel is 0.357.

3 Analysis of variance

The classical technique of analysis of variance, or ANOVA, solves part of the
problem of accounting for correlations within groups of cells. An ANOVA is just
a linear regression with a real output and binary inputs. In our case the output
is the dye level and the inputs describe which well each cell is in, whether it is
a treatment or a control, and so forth.
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In more detail, we can construct a matrix X called the design matrix. Each
row of X represents a cell. Each column of X represents a binary feature of the
cells. For example, one column might be 1 if cell i is in well j and 0 otherwise,
while another might be 1 if cell i is on plate k. Figure 2 shows part of our design
matrix.

Write y for the output vector, so that yi is the dyed-ness of cell i. We can
solve y � Xw in the least squares sense for the weight vector w. Each element
of w tells us how much one feature a�ects the output on average, controlling
for all other features. For example, wj might tell us how much more brightly
dyed the cells in well j are than we would have expected from knowing what
plate they're on, whether they're controls, and so forth. From the outcome of
the regression, hypothesis tests can answer questions like \are treated cells more
brightly dyed on average than controls?"

4 The problem with ANOVA

Often in an analysis of variance we want to ask a question about a group of
weights. For example, we might want to know the fraction of total variability
due to variation between wells.

This sort of question only makes sense if the weights form a natural group.
The property that lets us group weights is called exchangeability. Two weights
w1 and w2 are exchangeable if for any numbers x and y we have no prior
preference for w1 = x, w2 = y over w1 = y, w2 = x. See [5, ch. 5] for a readable
explanation of exchangeable parameters in hierarchical models. Weights we
decide to group together are called random e�ects; weights we treat separately
are called �xed e�ects.

The problem with analysis of variance is that it is designed for �xed e�ects
only: it treats each weight identically and does not take into account any possible
grouping. It is possible to hack ANOVA to answer questions about groups of
weights, but as we will see there are logical problems with asking about group
properties of �xed e�ects, so the answers that ANOVA gives us do not always
make sense.

The obvious way to estimate the variance of a group of weights with ANOVA
is to estimate each weight, then add up the squares of the estimates and divide
by the number of weights. Unfortunately, this approach doesn't account for the
uncertainty in our estimate of w. This uncertainty causes an upward bias in
the sum of squared weights. Worse, this bias may not go to zero as our sample
size increases: if the number of weights grows with the number of samples, as
it does in our cell data, there will be a minimum amount of uncertainty that is
always present in our estimate of w.

We can try to correct for our uncertainty in w by calculating our expected
bias and subtracting it o�. This is the estimator which is usually recommended
for random e�ects in a classical ANOVA. Unfortunately, it can predict a negative
variance, even in large samples. To �x this problem, we need to turn to a
Bayesian analysis.
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5 Bayesian hierarchical linear models

Classical regression �ts the model y � N(Xw; �2I), which states that the out-
puts are normally distributed with equal variances �2 and with the mean of yi
equal to Xi �w. Here Xi is the ith row of the design matrix X . This model does
not let us express any prior information we may have about w. Bayesian regres-
sion allows us to provide a prior distribution for w; here we will assume that
this prior is normal with diagonal covariance, wi � N(0; �2i ) for some constant
vector �.

Bayesian hierarchical linear models take one step further: instead of requir-
ing that we know the variances �2i ahead of time, they estimate some or all
of these variances from the data. They are called \hierarchical" because they
conceptually separate inference into two levels: inferring the weights w from X

and y, and inferring the variances �2i from w. Of course, these levels cannot be
completely separated, since � in
uences the inference of w as well as vice versa.

Since there are as many �is as wis, we need constraints to make � well
determined. If we can divide the weights into exchangeable groups, the natural
constraints are that �i = �j if wi and wj are in the same group. With these
constraints each group of weights follows a normal distribution with zero mean
and unknown variance. In other words, all weights in a group are likely to be
about the same size, but we don't know what size.

We can now state more simply the di�erence between �xed and random
e�ects: �xed e�ects have fully-speci�ed prior distributions, while priors for ran-
dom e�ects contain parameters to be estimated. With this de�nition, it is clear
why we can't ask what the data tell us about the variance of a new �xed e�ect:
the variance of a new �xed e�ect is a property of the prior, and the prior is fully
speci�ed before seeing any data.

It may seem like cheating not to specify our prior for w until after we see
the data, but it is not. A hierarchical model speci�es a distribution for y just as
a traditional linear model does. The di�erence is that in the traditional model
w and � are the parameters we need to estimate from the data, while in the
hierarchical model the parameters are � and �. w is not a parameter in the
sense of a root cause which is not in
uenced by other variables; it is a hidden
variable, a random quantity which we do not observe but which in
uences the
observed data and is in
uenced by the parameters.

In a hierarchical model we can generate a sample from the joint prior distri-
bution of w and y given X , �, and � by �rst picking each wi as N(0; �2i ), then
picking y as N(Xw; �2I). If A is the diagonal matrix with Aii = �2i , then the
marginal distribution of the observed data y after integrating out the hidden
variable w is N(0; �2I +XAXT).2

2The conclusion that E(y) = 0 looks like a problematic limitation. There are two answers
to this objection. First, E(y) is only zero if we have no knowledge of w. Once we have seen
some data, we no longer believe E(w) = 0, so we no longer believe E(y) = 0. Second, even
before seeing any data, we can �x some of the �is at large or in�nite values to reduce or
eliminate the shrinkage on y. This trick is often useful in combination with a rede�nition of
X (e.g., to include a new parameter for the mean of a group of weights).
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A fully Bayesian treatment would specify prior distributions for � and �.
To keep our notation simple we will assume that these priors have negligible
weight.3

6 Algorithms

As mentioned above, a hierarchical model has two kinds of unknowns: the
weights w and the variances �2 and �2i . If we knew � ahead of time we could �nd
the posterior distribution for w and � by Bayesian regression. With � unknown,
though, estimation becomes more complicated. The problem is that the natural
parameter of a zero-mean Gaussian distribution is the inverse covariance matrix,
also called the precision. The estimation equations have a simple form when
expressed in terms of the natural parameter, but in our case the precision is
(XAXT + �2I)�1, which is an essentially nonlinear function of �2i and �2. So,
we need an iterative algorithm to solve for � and �.

We can divide algorithms for hierarchical models into two classes: determin-
istic methods such as EM, and Monte Carlo methods such as Gibbs sampling.
Monte Carlo methods are generally slower, but they permit us to compute the
full joint posterior distribution for w, �, and �. Deterministic methods can be
faster, but they generally use point estimates for � and �.

In large samples, the variances �2i and �2 will usually be well determined.
So, it will not be crucial to �nd their exact posterior distribution, and a point
estimate such as the one computed by EM will be suÆcient. The weight vector
w, on the other hand, may not be well determined even in large samples: for
example, if there are only a few cells per well, the well means will always be
poorly determined no matter how many cells we measure. The joint posterior
distribution of w and the variances has a skewed peak, so the values of w, �,
and � that jointly maximize the likelihood will be biased estimates, even in the
limit of in�nite sample size. This is why it is essential that EM provides a full
posterior for w and not just a point estimate.

In smaller samples the posterior distribution for � and � will have signi�cant
spread. In this case we have two options: we can continue to use iterative
methods along with the formulas given in [3] for error bars on the variances,
or we can switch to Monte Carlo methods. For small enough samples it will
probably be necessary to switch, but for our experiments the EM algorithm was
suÆcient.

3If the assumption of negligible priors is a problem, it is simple to implement a conjugate
prior for these parameters: in each M step of the EM algorithm as described below in Sec-
tion 7, instead of setting a variance to the corrected sum of squares divided by the number of
contributions, we can set it to the corrected sum of squares plus a constant, divided by the
number of contributions plus another constant. The two constants together de�ne the prior,
and they can be chosen separately for each variance parameter.
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7 Expectation-maximization

This section describes the EM algorithm. For a di�erent iterative algorithm
see [3]; for the Gibbs sampling algorithm see [5].

The EM algorithm is a recipe for estimating the parameters of a distribution
when some data are hidden. It alternates between two steps: for �xed param-
eters, compute the expected log likelihood of the observed data by integrating
out the hidden data. Then �nd the new parameter values which maximize the
expected log likelihood, and repeat. The two steps are called E and M for ex-
pectation and maximization. EM is useful because it is often easier to compute
the expected log likelihood than the expected likelihood. (The latter is what we
would need in order to maximize the likelihood directly.) A theorem guarantees
that each cycle of EM improves the expected likelihood unless the parameters
are already at a stationary point [6].

In our case the input matrixX and output vector y are observed, the weights
w are hidden, and � and � are the parameters we need to estimate. Recall that
A is the matrix with �2i on the diagonal. The joint log likelihood of y and w is

�2 lnP (y; wjX; �;A) = constant +

N ln�2 + ��2ky �Xwk2 + ln detA+ wTA�1w

For the E step we need the posterior distribution of w for �xed A and �. Since
the log likelihood is quadratic in w, the posterior distribution of w is Gaussian.
Collecting the terms containing w and completing the square shows that the
precision is B = A�1 + ��2XTX and the mean is � = ��2B�1XTy. So,
to �nd the expected log likelihood we just need to take the expectation of a
quadratic function of a Gaussian random variable. The result is, up to additive
and multiplicative constants,

N ln�2 + ��2(ky �X�k2 +E(kX(w � �)k2))

+ ln detA+E(wwT) ÆA�1

Here we have written X Æ Y to mean the \dot product" of the two equal-size
matrices X and Y , that is, the sum of the products of corresponding elements.4

To obtain this expression we rewrote wTA�1w as wwT Æ A�1 and split Eky �
Xwk2 into mean2 + variance or ky �X�k2 +E(kX(w � �)k2).

We can now split E(wwT) into mean2 + variance or ��T + B�1. Also,
the expression E(kX(w � �)k2) is the sum of the variances of the elements of
Xw. Since the variance of w is B�1, the variance of Xw is XB�1XT. So,
the sum of the variances of the elements of Xw is the trace of XB�1XT, or
XB�1XT Æ I = B�1 ÆXTX . So, we can write the expected log likelihood as

N ln�2 + ��2(ky �X�k2 +B�1 ÆXTX)
4Some authors write trace(XY ) instead of X ÆY . We use the latter notation to emphasize

that X Æ Y is linear in X or Y . A useful identity is

XTAX Æ B = A ÆXBXT

for any X;A;B. If w is a vector, we have the special case wTAw = wwT
Æ A.
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+ ln detA+B�1 ÆA�1 + ��T ÆA�1

At this point we are done with the E step. To perform the M step we need to
maximize the above expression over � and �. A possible point of confusion is
that � and � appear in the de�nition of B; but, since B is a parameter of the
distribution of w, the EM algorithm speci�es that we should hold B �xed (using
the values of � and � from the previous M step) while performing the current
M step.

Since we are holding B �xed, the log likelihood splits into two pieces, one
containing only � and one containing only �. So to perform the M step we can
solve for � and � separately. Di�erentiating with respect to ��2 and setting to
zero gives

N�2 = ky �X�k2 +B�1 ÆXTX

In other words, to estimate �2 we take the sum of squared residual errors, add
a little bit to compensate for the fact that we optimized w, and divide by the
number of observations.

To solve for � we need some extra notation. Write b for the diagonal of the
matrix B�1 + ��T, so that bi = E(w2

i ). Write �2k for the variance of the kth
group of weights, so that �i = �k if weight i is in group k. Finally, write Nk

for the number of weights in group k. Now, ln detA =
P

i ln�
2

i ; so, collecting
terms containing �k gives

Nk ln �
2

k +
X
i2k

bi�
�2

k

where the sum runs over all indices i belonging to weights from group k. Taking
the derivative with respect to ��2k and setting to zero yields

Nk�
2

k =
X
i2k

bi

In other words, to estimate the variance of group k, we sum up the expected
squared weights in group k and divide by the size of the group.

The above equations for � and � form the M step of the EM algorithm.

8 EM details

In many cases the precision B is a sparse matrix. (This will often happen if
the design matrix X contains several large groups of non-overlapping indicator
features, as is true in the cell experiment described below.) Unfortunately,
B�1 will not normally be sparse, so we would like to avoid representing B�1

explicitly.
To avoid working directly with B�1, we need to reorder computations in

two places. The �rst place is in the expression B�1 Æ XTX ; the second is
when we are computing the diagonal of B�1 so that we can �nd the vector b of
expected squared weights. In both cases we can save work by replacing B with
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a factorization. In our experiments we used the Cholesky factorization UTU

where U is upper triangular. (Both U and U�1 were sparse. We did not need
to preorder B before factoring it, although for other problems with di�erent
patterns of sparsity in the design matrix X , a preordering or even a di�erent
factorization might work better.)

To compute B�1 Æ XTX we can rewrite it as XB�1XT Æ I . Since B�1 =
U�1U�T, this is the sum of the diagonal elements of XU�1U�TXT or the sum
of the squared lengths of the rows of XU�1. To compute the i; ith element of
B�1, we took the squared length of the ith row of U�1.

We used the biased estimator described in Section 4 as a starting point for
EM.

9 An example

An interesting and informative special case of the EM algorithm for Bayesian
hierarchical linear models is when we are estimating the mean and variance of a
normally distributed sample yi of sizeN . In this case there is only one regression
parameter, the mean �, so we will �x its prior variance at in�nity. There remains
one variance parameter to estimate, namely �2, the residual variance. Solving
for the �xed point of the EM iteration from Section 7 shows that the posterior
precision of � is B = N=�2, and

N�2 =
X
i

(yi � �)2 +B�1N

(N � 1)�2 =
X
i

(yi � �)2

which is the classical unbiased estimator of the residual variance.

10 Experiments

We analyzed 12,657 cells distributed over 96 wells on 2 plates. Each well was
exposed to one of 12 concentrations of the drug; there were between 77 and 163
cells measured per well, with an average of about 132.

We want to know how many cells we will need to measure in future exper-
iments to say con�dently whether the drug is present. (The number of cells
needed will depend on the minimum concentration we will be required to de-
tect.) To answer this question we need to estimate several quantities. First, we
need the dose-response curve, that is, the expected change in dye level at each
concentration of the drug. This curve tells us how big a response to expect and
therefore how precisely we need to measure it in order to separate it from zero.
Second, we need the well-to-well variability. This variance tells us how many
di�erent wells we need to sample from to cancel out well-level noise. Finally,
we need the residual variance to tell us how many cells we need to measure to
achieve a given level of accuracy.
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Figure 3: Dose-response curve. Horizontal axis shows our 12 drug concentrations
from smallest to largest. Vertical axis shows expected change in dye level.

To estimate these quantities we set up a hierarchical linear model. The
model's design matrix has 110 = 96 + 12 + 2 columns, containing indicator
variables for each well, concentration, and plate. It is rank-de�cient (14 null
eigenvalues) since the 12 concentrations and 2 plates span a subspace of the
well e�ects. We �xed the prior variances for the plate e�ects at in�nity; we then
assigned the 96 well e�ects to one exchangeable group and the 12 concentration
e�ects to another. This setup causes the plate e�ects to capture the overall
mean, forcing the well and concentration e�ects to sum to zero.

The concentration e�ects are not truly exchangeable, since we expect higher
concentrations of the drug to cause a greater response. We modeled them as
a group anyway since we wanted to convey the prior information that they
were likely to be of similar sizes. In order for the concentration e�ects to be
exchangeable, the drug doses would need to be chosen independently rather
than spaced out, and we would need to hide the smallest-to-largest ordering
of the concentrations. We believe that the e�ect of these two violations of
exchangeability is minor.

10.1 EM results

Fitting our hierarchical model by EM gives a well-to-well standard deviation of
� = 0:0273 and a residual standard deviation of � = 0:302. The dose-response
curve is shown in Figure 3.5

The EM algorithm converged in 36 iterations (about 34s of CPU time in
MATLAB on a Pentium II at 233 MHz). A classical ANOVA takes a little over
0:2s in the same environment.

To check our model we plotted both the well e�ects and the residual errors
versus concentration (not shown). The well e�ects show no evidence of cor-
relation with concentration. There is evidence that the residuals tend to be

5The numerical values of the concentrations are not evenly spaced; instead, they were
chosen by biologists to cover a wide range of e�ects.

10



2     5 6 7 8 9 10  12
0

50

100

150

200

250

Effect
C

el
ls

 n
ee

de
d

n=2 
n=4 
n=10

Figure 4: Cells needed to detect di�erences from lowest concentration. Hori-
zontal tics are estimated responses 2 through 12 from Figure 3.

slightly larger at higher concentrations, but not enough larger to cause us to
worry about the validity of our conclusions.

10.2 Calculations

Now that we have the �tted model, we can calculate the answer to our question
about how to design future experiments to detect the drug.

We will accept 5% false positives and 5% false negatives in our future ex-
periments. Each experiment will measure n=2 treatment and n=2 control wells,
with N=n cells per well. We will say that the experiment detects the drug
if the measured di�erence between treatment and control wells exceeds some
threshold.

Call the expected di�erence between treatment and control � and the ob-
served average di�erence D. The variance of D is S2 = 4(�2=N + �2=n). To
see why, write yi for the output of the ith cell in the new experiment, �i for
yi � E(yijwell, treatment), wj for the e�ect of the jth well in the new experi-
ment, and (i) for the index of the well containing the ith cell. Now we can write
D as

2

N

 X
treatment

yi �
X

control

yi

!

=
2

N

X
treatment

(�i + w(i) +�)�
2

N

X
control

(�i + w(i))

=
2

N

X
treatment

�i �
2

N

X
control

�i +
2

n

X
treatment wells

wj

�
2

n

X
control wells

wj +�

The �rst four terms are independent, while the last is deterministic. The vari-

11



−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

Hierarchical Model
C

la
ss

ic
al

 A
N

O
V

A

Figure 5: Well e�ects from the hierarchical model vs. those from the classical
ANOVA. Solid line is y = x.

ance of each of the �rst two terms is 2�2=N , while the variance of each of the
next two is 2�2=n. Adding these variances together gives the desired result.

To avoid false positives, the threshold must be bigger than 1:96S. To avoid
false negatives, � must be an additional 1:96S beyond that. So, we need � �
7:84

p
�2=N + �2=n. Fixing � and n and solving for N gives the detection

curves shown in Figure 4. The horizontal axis shows how big an e�ect we are
trying to detect; the vertical axis is the number of cells we need to measure;
and the three curves correspond to splitting the cells into 2, 4, or 10 wells.

11 Comparison with ANOVA

For comparison, we ran a classical ANOVA as described in Sections 3 and 4.
The classical ANOVA doesn't handle our singular design matrix very well, so
we tried two di�erent �xes, both of which gave essentially the same result. The
�rst �x is to place a weak prior on the well e�ects; this prior approximately
picks, from the in�nitely many w vectors which maximize the likelihood, the
one with the smallest weights on the well features. (The concentration and
plate e�ects will move to accommodate this requirement.) Then we can use a
still weaker prior on the concentration e�ects to pick out the w vector with the
smallest weights on the concentration features. (The plate e�ects will move to
accommodate this requirement, while the well e�ects will approximately stay
put because their prior is stronger.) This �x is inelegant since it is sensitive to
the relative strengths of the weak priors.

The second �x is to add a strong prior that the well e�ects will sum to
nearly zero within each concentration and within each plate. To construct such
a prior, let H be the matrix whose columns are the 14 constraints on w. For
example, one column of H will have 1s in the rows corresponding to the wells
exposed to dose number 7 and 0s elsewhere. Then the appropriate prior is that
w is normally distributed with mean zero and precision kHHT for some large k.
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This prior is improper, but the data will provide information in every direction
that the prior doesn't. This �x is inelegant since we have to select the scales of
the columns of H arbitrarily.

Another possible �x (which we didn't try) would be to rede�ne X so that
it has 14 fewer columns. This �x is also inelegant, since it requires us to make
arbitrary choices about which linear combinations of features to keep.

Both of the above variants of classical ANOVA return essentially the same
answer, although they di�er in the tradeo� between concentration e�ects and
the constant term. Their estimate of � is nearly the same as the EM algorithm's,
as is their estimate of the concentration e�ects after correcting for the constant
term.

More importantly, the classical ANOVA di�ers from EM on the estimates
of the well e�ects and their variance. The ANOVA's well e�ects are larger than
those calculated by EM, as shown in Figure 5. This happens because the EM
algorithm puts a prior on the well e�ects to compensate for the lack of data
in estimating them. And, the classical ANOVA's estimate of � is too small: it
puts � at 0:0252. This value is about 8% smaller than the one computed by
EM.

12 Discussion

We have described the theory and computation necessary to �t a Bayesian hier-
archical linear model, and we have demonstrated the application of this model to
real-world biochemical data. Hierarchical models have several advantages which
ordinary Bayesian linear regression lacks, including the ability to ask questions
about groups of weights, the ability to specify that several weights are likely to
be similar in size without limiting that size, and the ability to model experi-
ments where the number of regressors grows with the number of samples. We
took advantage of all three of these properties while analyzing our biochemical
data.
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