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Abstract

This paper describes a Bayesian approach to the problem of au-
tonomous manipulation in the presence of state uncertainty. We
model uncertainty with a probability distribution on the state space.
Each plan (sequence of actions) defines a mapping on the state space
and hence a posterior probability distribution. We search for a plan
to optimize expected performance.

We apply the Bayesian framework to a grasping problem. As-
suming a planar polygon whose initial orientation is described by a
uniform distribution and a frictionless parallel-jaw gripper, we auto-
matically plan a sequence of open-loop squeezing operations to reduce
orientational uncertainty and grasp the object. Although many differ-
ent performance measures are possible depending on the application,
we illustrate the approach by searching for plans that optimize the
robot’s expected throughput.

We motivate the analysis of a frictionless parallel-jaw gripper with
a mechanical arrangement that reduces friction along one gripper axis.

1. Introduction

Uncertainty is a central problem in the analysis and synthesis of
manipulator programs. In particular, we are often uncertain about
the initial state of the system we want to manipulate. One approach
is to treat actions as mappings between sets of states and search for
a plan that succeeds for every element in the initial set. There are
two problems with this approach. First, planning is dominated by the
worst-case outcomes — there is no way to construct a plan to optimize
average-case performance. Second, planning does not fail gracefully
~ if we cannot find a guaranteed plan, there is no way to rank the
alternatives.

In this paper we model uncertainty with a probability distribution
on the state space and define a cost function on actions. We search
for plans that optimize the expected outcome. We call this a Bayesian
approach since the idea that we can specify a prior probability and use
it to find the posterior probability is a fundamental tenet of Bayesian
statistics (Berger, 1985).

We apply this approach to the problem of grasping a polygonal
object with a frictionless parallel-jaw gripper. When the object is
squeezed, it will rotate until at least one edge is aligned with the
gripper’s jaws. The object’s orientation is kinematically constrained
by the sequence of squeezing actions — sensing is performed at the
end of the sequence to verify the final orientation. We search for
plans that will orient and grasp the object.

Figure 1 shows an example plan. Assuming that object orientation
is initially described by a uniform distribution and assuming that the
two jaws make simultaneous contact, we can construct the posterior
probability distribution after each step in the plan. In the example, the
first step reduces the number of possible orientations to 6, the second
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reduces the number to 4, and the third step reduces the number of
possibilities to 2. Due to gripper symmetry, there is no sequence that
can orient an object beyond its 180° symmetry.
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Figure 1: Evolution of the probability distribution for a
5-sided object. In this case, three squeezing steps transform
a uniform distribution to a distribution with value 0.5 at each
of two orientations. Symmetry in the gripper makes further
improvement impossible.

The example illustrates two advantages of the Bayesian approach:

» We can consider average-case performance of plans. For exam-
ple, in a manufacturing environment, the squeezing plan might
be followed by a filter that accepts one orientation and rejects
all others. If one time unit is required for each squeezing step
and for the filtering step, then the expected time for the two-step
plan is 6.2 time units while the expected time for the three-step
plan is 8.0 time units. Hence we prefer the two-step plan even
though it has lower probability of success.

Although no plan is guaranteed to orient the part uniquely, we
can compare a two-step plan that succeeds with probability .48
with a three-step plan that succeeds with probability .50. The
extra step in the three-step plan increases the probability of suc-
cess. Since the increase is small, we may not be willing to
“spend” this extra step.



In this paper we consider uncertainty in state and assume that
commanded actions are deterministic. The Bayesian approach can
also also be used to model control uncertainty (Goldberg, 1989). The
paper is organized as follows. In the next section we review related
work. Next we specify our Bayesian planning framework. We then
apply this framework to a class of parallel-jaw grasping problems and
give numerical examples. Finally we conclude with a discussion and
suggestions for future work.

2. Related Work

This section reviews work on manipulation planning with uncertainty
and on grasping. Most of the previous work models uncertainty as a
set of possible states, which we refer to as possibilistic models.

2.1. Possibilistic models of uncertainty

The mechanical designer’s approach to uncertainty is to specify worst-
case "tolerance" margins for each component and then guarantee per-
formance of the assembly when these tolerances are maintained (Re-
quicha, 1983). Taylor (1976) and Brooks (1982) used tolerances in
the analysis and synthesis of manipulator programs. Lozano-Perez
et al. (1984) describes a similar approach to fine motion planning,
which was further refined by Mason (1984), Erdmann (1984), Buck-
ley (1987), and Donald (1987). See Latombe (1989) for a review.
Brost (1988) applied a possibilistic model to parallel-jaw grasping,
Erdmann and Mason (1986) to tray-tilting plans, and Peshkin and
Sanderson (1988) to a conveyor belt orienting system. Taylor er al.
(1987) and Mason et al. (1988) extended the grasping and tray-tilting
work to incorporate sensing.

For the most part, planners based on possibilistic models have
adopted a “guaranteed” approach to planning: they search for plans
that are guaranteed to achieve a specified goal for any of the possible
initial states. One difficulty with the guaranteed approach is that “it
is not always possible to find plans that are guaranteed to succeed. In
the presence of model error, such plans may not even exist” (Donald,
1987, page 2). In response, Donald formalized error detection and
recovery (EDR) plans that are guaranteed either to succeed or to fail
recognizably. That is, we can accept plans that are not guaranteed
to succeed as long as we are guaranteed to recognize when they fail.
Donald has suggested that EDR plans might be compared based on
their probability of failure.

2.2. Probabilistic models of uncertainty

Probabilistic techniques are commonly used in industrial automa-
tion. The vibratory bin feeder presents randomly oriented parts to
a mechanical filter that admits only parts with a desired orientation.
Boothroyd et al. (1972) developed a probabilistic model of this pro-
cess, where the probability of each orientation is related to the surface
area underneath that orientation. Erdmann (1989) explored random-
ized manipulation strategies and described many other cases where
injecting randomness can improve average-case performance.

Strategies that optimize an expected performance criterion are en-
countered in both decision theory (DeGroot, 1970; Berger, 1985) and
stochastic optimal control theory (Stengel, 1986; Bertsekas, 1987).
In decision theory the optimal strategy is a function of sensory data.
Stochastic optimal control theory generally treats state uncertainty as
additive noise, often Gaussian, as in the well-studied class of L-Q-G
problems (Linear system, Quadratic loss function, Gaussian noise).
We borrow notation from both disciplines.

Probabilistic models have been used to combine information from
multiple sensors. Smith and Cheeseman (1986) applied estima-
tion theory to combine multiple observations for robot navigation.
Durrant-Whyte (1988) argued that Bayesian probability theory offers
a unified approach to combining and transforming uncertain geomet-
ric models. Hager (1988) considered computational issues in sensor
fusion and developed a finite-element implementation of Bayes’ the-
orem. See also (Cheeseman, 1985; Cameron and Durrant-Whyte,
1989; Hager and Mintz, 1989; Hutchinson and Kak, 1989).

23. Other Models of Uncertainty

In highly unstructured environments such as Mars or the average
household, where interactions are non-repetitive, planning can be
avoided (Lumelsky, 1987) or preceded by active exploratory pro-
cedures such as contour following (Allen, 1987; Stansfield, 1987;
Koutsou, 1988; Bajcsy et al., 1989). There is also an extensive body
of research on high-level planning with uncertainty described in the
artificial intelligence literature; Genesereth and Nilsson (1987) gives
further references.

24. Grasping

Hanafusa and Asada (1977) used three frictionless fingers to grasp
shapes in the plane, using the system potential to locate stable and
convergent grasps. Mason (1986a) explored parallel-jaw grasping of
shapes in the plane, and the underlying mechanics of pushing. Brost
(1988) developed a systematic approach to plan parallel-jaw grasping
operations; starting with an interval of possible object orientations,
Brost’s operations simultaneously grasp the object and eliminate the
uncertainty in a single grasp. Such a grasp does not always exist.
Taylor et al. (1987) and Mason et al. (1988) extended Brost’s system
to multi-step plans, and also incorporated sensing of jaw separation.
See Pertin-Troccaz (1989) for a recent review of research on grasping.

3. Bayesian Framework

In this section we formalize the problem of choosing the best plan
as a statistical optimization problem. We shall restrict ourselves to
cases where the state and action spaces are finite. The six-tuple
< 0.f1,A,G,C,0* > defines an instance of a planning problem.

e O, a set of states (configurations).
e fi : © — [0,1], a prior probability distribution on ©.
e A, a set of actions (commands).

¢ G:0 x A~ 0, a transfer function that maps a state and an
action onto a next state.

e C: A — N, a cost function for actions.

e ¢, a desired final state.

For a known initial state, 6, each action a € .A defines a posterior
state, 62 = G(f1,a). A plan is a sequence of actions, (a).as. ....a,)
followed by a verification step. We will use the symbol a to denote
either a single action or a plan. An n-step plan defines a composite
function that maps 6; to 6,,;. We define the cost of a plan, C(a), as
the sum cost of its actions plus the verification step. We represent
uncertainty in the initial state with a prior probability distribution
on the state space, fi(f1). A plan defines a posterior probability
distribution, f(fala) = 3= (4, 10,=G(6,,a; F1(O1)-
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The verification stage at the end of the plan causes it to iterate until
a desired state is achieved. We define the expected cost of a plan
as the cost of the plan times the expected number of iterations. The
expected number of iterations for a plan that succeeds with probability
p is 1/p. If the desired state is 6, we can define the probability that
a plan is successful as p = f,(¢*|a). Then the expected cost of the
plan is C(a)/p. A Bayes’ plan is one with minimal expected cost
(note that there may be more than one Bayes’ plan).

4. Application to Parallel-Jaw Grasping

SLIDING JAW SLIDING JAW
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Figure 2: A “frictionless” parallel-jaw gripper. A linear
bearing reduces friction between the jaws (drawing by Ben
Brown).

4.1. Assumptions

In the remainder of the paper we apply the Bayesian framework to
the problem of grasping with a parallel-jaw gripper, which we think
of as a two-dimensional problem. We assume that:

1. The gripper has two linear jaws arranged in parallel.
2. Objects to be grasped are known rigid planar polygons.

3. The object’s initial position is unconstrained as long as it lies
somewhere between the two jaws. The object remains between
the jaws throughout grasping; hence any polygon is equivalent
to its convex hull.

4. All motion occurs in the plane and is slow enough that inertial
forces are negligable. The scope of this quasi-static model is
discussed in (Mason, 1986b) and (Peshkin, 1986).

5. The direction of squeezing is always perpendicular to the jaws.
6. There is zero friction between object and the jaws.

7. Both jaws make contact simultaneously (pure squeezing). Once
contact is made between a jaw and the object, the two surfaces
remain in contact throughout the grasp. A grasp continues until
further motion would deform the object.

The first four assumptions were used by Brost (1988), Taylor et
al. (1987), and Mason et al. (1988). The latter three assumptions
simplify the analysis and improve the combinatorics of the search.
By restricting gripper motion to be perpendicular to the gripper jaws,
we obtain a one-dimensional space of actions to search. By using
a frictionless gripper (see Figure 2) we eliminate “wedging” of the
object, leaving a finite set of stable object orientations. By assuming

simultaneous contact by the jaws (pure squeezing) we eliminate the
difficult analysis of pushing motions, and obtain predictions that are
independent of the support friction.

We next specify the six-tuple < ©.f;..A.G.C,8" > that defines
an instance of a parallel-jaw grasping problem.
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Figure 3: The diameter function for the five-sided object
shown at the right in its zero orientation. During a squeeze,
the object rotates so as to reduce the diameter, terminating
when the diameter reaches a local minimum. The probability
distribution afier the first squeezing step is shown as a dotted
histogram.

4.2, The Transfer Function G

In this paper we assume that the jaws make simultaneous contact and
neither jaw loses contact-—pure squeezing. The effect of a squeeze
is predicted using the diameter function, which gives the minimum
jaw separation as a function of the orientation of the object relative
to the jaws. For polygonal objects the diameter function is piecewise
sinusoidal (see Figure 4.1). During a squeeze, the object passively
rotates to reduce the diameter, terminating when the diameter reaches
a local minimum. If we assume a linear spring force between the
jaws, the square of the diameter defines a potential function where
local minima are “stable” in the sense that small deviations produce
restoring forces. The diameter function has a period of n, so that it
is impossible to remove a 180 degree ambiguity in object orientation
through squeezing alone. See Appendix A for details on the diameter
function.

A different ambiguity arises when the object’s orientation is close to
a local maximum in the diameter function. With a frictional gripper,
the object would be wedged. Even with a frictionless gripper, an
unstable equilibrium exists at the local maximum. Assuming that
the prior probability density of orientations is continuous, the initial
squeeze will encounter an unstable equilibrium with probability zero.
Thereafter we avoid ambiguous actions.

Note that the analysis of grasp mechanics using the diameter func-
tion is not limited to polygonal objects. Any two-dimensional object
can be analyzed if we can compute its diameter function.

4.3. The State Space © and Prior Probability f,

The space of object orientations is the uncountable set of all pla-
nar angles, i.e. the balf-open interval from zero to 27. After the
first squeeze step the object rotates into one of its stable orientations
(where at least one edge of the object is aligned with the gripper, see
above). The state space for the planning problem is this finite set of
object orientations.

We consider the initial orientation of the object to be a random vari-
able on the space of rotations. After the first squeezing action, the
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probability density for the initial orientation yields a discrete probabil-
ity distribution on the set of stable orientations based on the integral
between local maxima in the diameter function. In the absence of
information that favors any subset of initial object orientations, we
might assume that the initial orientation of the object is uniformly
distributed, f1(f) = 11; This is equivalent to assuming a random
gripper orientation for the first squeezing step.

4.4. The Action Space, A

A squeezing action orients the open gripper around the object and
then closes the jaws until further motion would deform the object.
The action space is the set of all gripper orientations, i.e. the half-
open interval of angles from zero to 27. Fortunately, this continuum
can be partitioned into a finite number of equivalent intervals. For
an n-sided polygonal object, there are at most n? unique actions.
Suppose we have just squeezed the object. There are at most 2n
different possible orientations, corresponding to the local minima of
the diameter function. Now, consider the effect of a second squeeze,
and how it varies with hand rotation. All that matters is which local
minima fall into which intervals between local maxima. As the hand
rotates, the effect of a squeeze changes only when a local minimum
crosses a local maximum. There are at most n? of these changes.
Each step in the squeezing plan is an action from this set.

4.5. Cost Function C and Desired Final State *

We simply assume that each squeezing step takes one time unit as
does the verification step.

Once we determine the object’s orientation relative to the gripper,
we can always achieve a desired final orientation by rotating the
gripper. So in this case we choose the desired final state for cach
plan to be one of the states that has maximal probability.

5. Finding a Bayes’ Plan

We use breadth-first search to look for an optimal plan. The space
of plans defines a tree where each node is a probability distribution
over the state space (also called a hyperstate (Astrom, 1987)). The
root is the probability distribution resulting from the first (random)
squeeze. The second level of nodes corresponds to the outcome of
the two-step strategies. We stop searching when we encounter a node
that assigns probability .5 to any orientation, since this is the best we
can do. If, for example, such a node occurred at depth 3, its expected
cost would be (3+1)/.5 = 8 time units, where the additional time unit
is for the verification step. We would then examine each of the nodes
at depth 2 and find the node that assigns maximal probability to any
orientation. The path leading to this node corresponds to the best
two-step plan. For any plan, the verification step is used to verify
that the object is in one of the maximally-probable orientations.

We tested the planning algorithm on several familiar shapes as well
as on 2000 randomly generated polygons (We generate 10 random
points in the unit square and find their convex hull. The average num-
ber of sides was 5.9.) For each polygon we terminated the breadth-
first after generating 1000 nodes. Only 1% of the polygons in the
test set required this many nodes. In these cases we ran a second
search using a best-first heuristic that hillclimbed on the node with
the maximal probability. In each case the best-first search found a
strategy using fewer than 236 nodes. Shorter, less certain plans gave
lower expected time than the most certain plans in about one third
of the cases (737/2000). Table 1 shows the results for some familiar
shapes.
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object shape # sides || 1-step | 2-step | 3-step | 4-step
triangle 3 10.8 8.7 8.0 -
rectangle 4 6.3 6.0 - -
ic-chip * 5 5.0 6.0 - -
house * 5 8.0 9.2 94| 10.0
example (Fig.1) * 5 74 6.2 8.0 -
allen-wrench * 6 9.1 74 8.0 -
tuning fork * 6 4.9 6.0 - -
key * 11 9.1 6.2 8.2 -
hand 13 8.2 8.1 8.0 -
Table 1:  Expected time for squeezing plans. Values are

in time units where each squeezing step takes one unit. The
last entry to the right in each row corresponds to the plan that
minimizes orientational uncertainty. A (*) indicates objects
where shorter, less certain plans have higher throughput.

6. Discussion

6.1. How Good is the Probability Model?

Of course the analysis depends on our model of probability. The need
for probabilistic assumptions is at the core of a centuries-old contro-
versy between Bayesian and frequentist statisticians (Berger, 1985).
There is a similar issue in the average-case vs. worst-case analysis
of algorithms (Karp, 1986). We must be careful to avoid claiming
quantitative results based on ad-hoc assumptions. In this paper we
address a specific problem in robot grasping and use geometry as a
basis for our model of actions. The assumption of uniform prior dis-
tribution of orientations can be justified by injecting a random twist
of the gripper prior to the first squeezing operation. This is analogous
to the random pivot selection used to justify the average-case analy-
sis of the Quicksort algorithm (Knuth, 1973, volume 3). Of course,
in some applications objects will have biased orientations. We can
take this into account in the prior distribution. If necessary the prior
distribution can be obtained empirically.

6.2. Sensing/Acting

The goal of planning in the presence of uncertainty is to constrain
the final state. This can be accomplished either by sensing, acting
(Erdmann and Mason, 1986), or a combination of both. A sequence
of squeezing actions is a sensorless plan where state is constrained
by actions alone.

Probability theory offers a unified framework for comparing the
effect of sensing with the effect of actions. Both sensing and actions
have the effect of transforming a probability distribution over the
state space. Perhaps we can quantify the contributions of sensing
and acting in terms of their effect on the probability distribution, for
example with an “information” measure such as entropy.

Our Bayesian framework can be extended to incorporate sensing,
such as a simple sensor that returns jaw diameter, as in Taylor et
al. (1987). The resulting plans would have branches, with different
sensor values determining the actual path taken. The prior probability
distribution can be used to estimate the likelihood of taking each path,
so that we can compute an expected plan length. Also, we can borrow
from the theory of Bayesian estimation to cope with noisy sensors,

If sensors are used then we can also use this framework to treat
the problem of finding an optimal strategy for disambiguating among
multiple objects, a form of recognition. In this case we add another



dimension to the state space as in Donald’s extended configuration
space (Donald, 1987). The probability distribution at each node is
then defined over this new state space and our cost function can reflect
a desire to identify which object we are gripping from among a set
of objects.

6.3. Computational Complexity

Statistical optimization often requires substantial computation. An
exhaustive search with branching factor O(n?) is clearly intractable,
although for the polygons we tested with fewer than 10 sides, the
planner ran in a matter of seconds. A result by Natarajan (1989) can
be used to show that a squeezing strategy can be found in polynomial
time. We are working on a backchaining method that finds a strategy
in time O(r%). For a manufacturing setting, we can perform the
optimization off-line and amortize computation time over hundreds
of execution cycles.

6.4. Other Extensions

We could extend the Bayesian framework to handle noisy actions. In
this paper we assume that both jaws make contact simultaneously so
that the the transfer function is deterministic. However when there
is uncertainty in the control (how the command is physically carried
out) or in the mechanics (how the object reacts) the transfer function
is no longer deterministic. We can treat this form of uncertainty by
modelling the transfer function with a conditional probability distri-
bution (Goldberg, 1989). In the grasping application we could relax
the assumption of pure squeezing by modelling the pushing phase,
either with a worst-case analysis as in (Mason, 1986a) and (Brost,
1988) or using a model of conditional probability.

We could also extend the Bayesian framework to include a utility
or payoff function on the state space. This would allow us to rank
outcomes rather than making a sharp distinction between the desired
final state and all others. For example, we could include a measure
of grasp quality in our expected performance criterion.

A The Diameter Function

Let a two-dimensional object be described with a continuous curve in
the plane, . The distance between two parallel lines of support varies
with the orientation of the lines. We define the diameter function,
d(#), to be the distance between parallel lines of support at angle 4.
The maximum of this function is known as the diameter of the set of
points in (' (Preparata and Shamos, 1985).

o The diameter function is continuous: .Ad — 0 as .\¢ — 0.

¢ The diameter function for C is equal to the diameter function for
the convex hull of .

o The diameter function has period .

For an n-sided convex polygon, the diameter function can be repre-
sented as a list of piecewise sinusoids. Transitions between sinusoids
can only occur when an edge is aligned with #, so there are at most
2n transition angles.

Preparata and Shamos (1985) describe a linear-time algorithm for
computing the diameter of a convex polygon with n sides; it proceeds
by enumerating the set of all pairs of verlices that admit parallel
supporting lines. There are at most 3n such pairs. Each pair defines
a chord of length /; and angle ;. The longest chord gives the diameter
of the polygon.

To find the diameter function, sort this list of chords by increasing
angle 6;. If two chords have the same angle, discard the shorter chord.
Also sort the list of polygon edges by angle and discard duplicates
(corresponding to parallel edges). Every adjacent pair of edge angles
in this sorted list corresponds to a sinusoid in the diameter function,
d;(6) = I;| sin(¥; — 8)|, where [; and 6; are taken from the longest chord
in the interval orthogonal to the interval between edges. Finding the
longest chord in each interval requires a single sweep through the
sorted list of chords.

Finding the convex hull and sorting dominates the running time, so
we can compute the diameter function in time O(nlogn). A simple
reduction from SET DISJOINTNESS can be used to show that this
running time is optimal.
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