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Dynamic and Loaded Impedance Components
in the Maintenance of Human Arm Posture

John M. Dolan, Member, IEEE, Mark B. Friedman, and Mark L. Nagurka, Member, IEEE

Abstract— The postural stiffness of the human arm has pre-
viously been estimated by displacing the hand from a series of
equilibrium positions and correlating the resuitant displacements
and restoring forces. We extend this experimental methodology
to include measurement of dynamic components of impedance.
The stiffness-damping-mass characteristics are represented- nu-
merically as matrices and graphically as ellipses characterized by
size, shape, and orientation. The latter depict the predominant
nonrotational component of the impedance force fields. The
results suggest 1) joint damping is related to both joint stiffness
and joint inertia, and 2 ) two-joint impedances, i.e., impedances
associated with muscles connected across both the elbow and
shoulder joints, play a relatively smaller role in damping than
in stiffness. The ability to modulate stiffness in the face of initial
static bias forces, i.e., “loading,” is also examined. We observe
regular shifts in the human arm endpoint’s “spring center”
corresponding to the bias force directions and magnitudes.

1. INTRODUCTION

NVESTIGATIONS of human motor control have led to a

wide variety of viewpoints concerning the strategy of the
central nervous system (CNS) in controlling limb movements.
Researchers have suggested control of muscle variables such
as force, length, velocity, stiffness, and damping. The difficulty
of positing a single strategy, in light of the vast complexity of
the CNS and the great variety of tasks of which it is capable,
has been well recognized [1]. Several researchers [2]-{6] have
proposed the control of mechanical impedance as an important
means of human motor control. Stiffness, damping, and mass
are three basic components of mechanical impedance, relating
force to position, velocity, and acceleration, respectively.

Theories and experiments regarding human limb impedance
control have progressed historically from consideration of
single muscles to the investigation of multi-jointed limbs.
Feldman [2] showed that the (scalar) stiffness of an individual
muscle about a fixed equilibrium length increases with neural
activity. The coactivation of antagonist muscle pairs about
a single joint allows the joint’s equilibrium angle and its
stiffness, or more generally its impedance, to be adjusted
independently [S]. Muscle coactivation in a multijointed limb
allows independent control of the mult-dimensional position
and impedance of the limb endpoint. In the human arm, this
control results from degrees of freedom provided by a combi-
nation of singly and doubly joint-connected antagonist muscle
pairs at the shoulder and elbow [7]. Singly joint-connected
muscle pairs connect a given joint to its adjoining limb link,
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Fig. 1. Simple two-joint muscle model in the horizontal plane. SS are the
singly connected shoulder muscles, SE the singly connected elbow muscles,
and DJ the doubly connected muscles between the shoulder and elbow.

whereas doubly joint-connected muscle pairs connect across
two joints. Fig. 1 [5], [8] shows a simple human arm model
combining singly and doubly joint-connected muscle pairs.

Several prior experiments related to multijoint impedance
have been conducted. To investigate the way in which the
CNS controls stiffness to achieve posture, Mussa-Ivaldi et
al. [9] displaced the human arm endpoint from a series of
positions in a horizontal plane and measured the corresponding
restoring forces before the onset of any voluntary reaction.
They concluded that the stiffness characteristic of the arm
endpoint is “spring-like,” in that it is symmetrical for small
displacements about an equilibrium position. They charac-
terized the stiffness of several human subjects at various
positions using ellipses representing the loci of the restoring-
force vectors. The orientation with respect to a frame fixed in
the human shoulder and the shape, or aspect ratio, of these
ellipses remained relatively constant among subjects, whereas
their sizes varied.

In another multi-joint experiment, Flash [10] tested the
equilibrium trajectory hypothesis (ETH) in an investigation of
reaching motions. The ETH theorizes that the CNS temporally
shifts the commanded limb equilibrium position in such a
way that the muscular viscoelastic forces cause the limb to
execute a desired trajectory. Flash used the following dynamic
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model of the human arm, relating joint torques 7 to joint
displacements ©:

7 =1(8)0 +C(0,0) 6))

where I(0©) is the human arm’s inertia matrix, and C(8, ©)
is a vector of centrifugal and Coriolis terms. The elbow and
shoulder joint positions and their rates were measured during a
movement and substituted in (1), resulting in the joint torques
necessary to drive the arm. Under the assumption of the ETH,
these torques were equated to a function of the joint velocities
and of the instantaneous difference between the actual and
equilibrium joint positions:

T=K(1)[4(t) - ©(1)] - B(H)O(t) (@)

The unknowns in this function were the (voluntary) joint
stiffness and damping matrices, K (¢) and B(t), and the joint
equilibrium positions ¢(¢). With no available experimental
data on voluntary stiffness and damping, Flash assumed that
postural damping scales with postural stiffness, which had
been measured by Mussa-Ivaldi et al. [9], and that volun-
tary damping and stiffness scale with postural damping and
stiffness, respectively. Flash observed that the calculated joint
equilibria lay along nearly straight lines connecting the initial
and target points, and concluded that the ETH is plausible.
Previous experimental measurements concentrated on the
static component of impedance, i.e., stiffness, in the postural
case. The studies reported here and by Dolan [11] in expanded
form extend the measurement of human arm impedance to its
dynamic components, damping and mass. In addition, whereas
previous measurements of multi-joint stiffness have been made
for the unloaded case [9], in which no significant forces act
on the arm other than those which perturb it, the current work
extends these measurements to the loaded case, in which the
adaptation of the arm to environmental forces is considered.

II. MATERIALS AND METHODS

Test Apparatus: A 2-DOF SCARA-configuration direct-
drive robotic manipulator was constructed [12] and used to
perturb the human arm endpoint in the horizontal plane.
The manipulator arm was kinematically anthropomorphic,
with upper arm and forearm link lengths of 0.30 m and
0.35 m, respectively. DC servo motors at each joint were
current-controlled by an IBM PC AT. A Cartesian-error-based
inverse-dynamics control approach was used to make the
perturbation forces in various directions as uniform as possible.
Position information was acquired from an 8000-count encoder
on each joint, giving a spatial resolution of smaller than 0.25
mm throughout the manipulator workspace. An endpoint two-
axis force sensor was designed for compactness, fitting within
a comfortably graspable 54-mm-diameter handle. Each axis
formed by a pair of strain gages in a parallelogram linkage,
sensed forces of up to 44.5 N (10 lb) with a resolution of
0.011 N. The sensor had a mean dynamic high-frequency
noise component of 0.05 N.

In the experimental setup, shown in Fig. 2, subjects were
seated in front of the manipulator with their arms supported
in the horizontal plane by a sling hanging from the ceiling
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Fig. 2. Experimental Setup. The subject’s arm remains in the horizontal
plane. Desired positions are displayed to the subject by a light source at A,
which projects the shadow of point B onto the top of the handle C.

about 3 m above the arm. Subjects grasped the force-sensor
handle of the manipulator while receiving perturbations at five
test positions. Following Mussa-Ivaldi et al. [9], who had
measured the stiffness component under similar conditions,
these positions are hereafter referred to as 1) reference, 2)
distal, 3) proximal, 4) right, and 5) left. They were located at
the following positions (mm) in a Cartesian frame centered at
the subject’s shoulder joint: 1) (0,380), 2) (0,520), 3) (0,240),
4) (295,380), 5) (—295,380). Visual targets for the positions
were provided by a ceiling-mounted shadow-casting device.
Data collection occurred on a software-interrupt basis at a
sampling rate of 200 Hz.

Experimental Procedures: Both postural “unloaded” and
“loaded” measurements of human arm impedance were con-
ducted. In the postural unloaded experiment, subjects centered
the force-handle on a 1-cm-diameter circular shadow marking
a given position, and attempted to maintain posture in the
face of a series of perturbations. Negligible forces acted on
the arm in the plane prior to the onset of a perturbation. In
order to limit conscious, voluntary response to perturbations,
subjects were asked to not consciously attempt to re-center
the handle on the shadow until the manipulator had stopped
pushing against the arm. Several underdamped, rapidly rising
(t- = 0.2 s ) position perturbations were successively applied.
Perturbations typically lasted 1.5-2.0 s. The interval between
re-centering and the next perturbation was between 3 and 5
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s, so that the perturbation onset was not easily predictable by
the subjects. The imposed trajectories caused arm endpoint
oscillations with maximum velocities and accelerations of
approximately 0.8 m/s and 1.5 m/s?, respectively. A typical
set of position and force traces for a single perturbation is
shown in Fig. 3. In order to avoid artifacts arising from
varying manipulator configurations, different test positions
were achieved by repositioning the subject’s shoulder, rather
than the manipulator. At a given test position, perturbations
were issued in eight Cartesian directions obtained by aligning
the first direction with the z-axis of the subject’s shoulder
frame and spacing each of the remaining seven at 45 deg. Eight
perturbations thus described a full set by sampling impedance
in a circle about the equilibrium point. Two full perturbation
sets were issued at each test position. The commanded size
of the perturbations was 5 mm, and excursions from the
equilibrium point ranged as high as 10 mm during the dynamic
phase of the motion. In order to limit an experimental subject’s
anticipation of an imminent perturbation, the experimenter
typed on the keyboard continuously, using one key to initiate
and another to terminate the perturbation. The experiment
was administered to ten male subjects and one female subject
between the ages of 22 and 45, with an average age of 29.5
years, and a standard deviation of 8.1 years.

In the postural loaded experiments, a bias force between
0.7 N and 1.0 N was slowly applied (over 2-3 s) to the arm
endpoint prior to the onset of each perturbation. Once the bias
force had been maintained to within a specified threshold for
one second, a perturbation like that described in the postural
unloaded experiment was applied. At each position, six sets
of 16 perturbations were applied. The first and last sets used a
bias force of zero and thus measured the postural unloaded
impedance, which served as a basis for comparison. Sets
two through five applied bias forces in the four directions
corresponding to the major and minor axes of the subject’s
postural unloaded stiffness ellipse at the current position. The
loaded experiment was administered to three subjects at the
proximal, reference, and distal positions.

Data Analysis and Processing: The joint-based dynamics
of the human arm were propagated out to the human arm
endpoint in the horizontal plane (see the Appendix), yielding
the 2-D Cartesian equation

F=MX+BX +K(X - Xo) 3)

where F is the force applied to the arm endpoint, X is the
resulting displacement, and M, B, and K are the Cartesian
impedance matrices of mass, damping, and stiffness matrices at
equilibrium position X¢. The identification problem involved
determination of M, B, K, and X, by fitting displacement X
and its derivatives to the force F'.

The data stored were the encoder trajectories for both
manipulator joints and the force sensor voltage histories for
both axes. These data were processed in two steps: 1) conver-
sion to appropriate units, and 2) filtering. In the conversion
step, encoder trajectories were translated into the Cartesian
motions (m) of the manipulator/human arm endpoint in the
subject’s shoulder frame. Force sensor voltages were converted
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Fig. 3. Typical force and position trajectories for a single disturbance.

into manipulator endpoint forces (V) and resolved into the
subject’s shoulder frame, yielding F' in (3).

The force data resulted from an analog sensor, and were
not filtered. The displacement signals stemmed from encoders
with a resolution of 8000 ticks per revolution, resulting in a
worst-case Cartesian resolution of 0.25 mm at the manipulator
endpoint. The noise resulting from this uncertainty was non-
Gaussian and had biasing effects on the identification results.
Therefore, the z- and y-displacements of the endpoint were
filtered forward and backward, to prevent phase shifts, using
a second-order digital Butterworth lowpass filter with a cutoff
frequency of between 7 and 10 Hz, and yielding X in
(3). Estimates of the displacement-signal derivatives were
obtained in three different ways: low-pass filtering followed by
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Non-colinear restoring forces

Unit circle

Fig. 4. Ellipse representation of impedance. The perimeter of the ellipse
represents the locus of restoring force vectors for a unit displacement at various
orientations. The displacement and restoring force are colinear only along the
major and minor axes.

differencing [13], optimal frequency-domain filtering [14], and
state-variable filtering [15]. Each of these led to a somewhat
different estimate for the identified matrices in (3). The state-
variable method yielded the most accurate results [11].

Data Representation: The identified matrices represent the
relationship between a-force vector and a displacement vector,
or one of its time derivatives, and are thus descriptive of force
fields. Each two-dimensional impedance matrix may be written
generally as

7 = [zll 212:| (4)

221 %22

and may be decomposed into symmetric, Z,, and antisymmet-
ric, Z,, parts:

(53)
(5b)

Z, = %(z +27)
Zo=3(2-27).

A concise graphical means of representing the symmetric
component of such a matrix is as an ellipse (see Fig. 4) whose
contour is the locus of force vectors produced by rotating
a fixed-length displacement vector (or one of its derivatives,
for the dynamic impedance components) about the origin [9].
Such an ellipse is characterized by size, shape, and orientation.
The size is proportional to the determinant, the shape is given
by the ratio of the larger to the smaller eigenvalue, and the
orientation by the angle made by the principal eigenvector with
the z-axis. The larger and smaller eigenvalues are equal to the
forces exerted along the major and minor axes, respectively,
against a rotated unit displacement. If the eigenvalues are
not equal to one another, i.e., if the contour is not a circle,
it is only along these axes that the force is colinear with
the displacement. For all other directions, the restoring force
direction is determined as shown in Fig. 4.
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The following equations transform the elements of the
symmetric two-dimensional matrix

7= |2 %] ©

82 83

into size, shape, and orientation values:

Ao,1 = %[(81 + s3) & \/(81 + 53)% + 4(s3 — 5183)] (7a)

A=7mAA (7b)
A2
- /\2 - 81 — 82
1 1
= —_— —_— d
# = tan % tan py—— (7d)

where A; are the eigenvalues (A2 > Ay), and A, R, and @ are
the size (area), shape (aspect ratio), and orientation values,
respectively.

III. RESULTS

Postural Unloaded Impedance: 1dentification of the mass,
damping, and stiffness matrices in (3) was carried out using
the three filtering methods. For each filtering method, all
of the trajectories for a given test position were considered
simultaneously from the onset of the perturbation to a specified
end time in a recursive least-squares fit of the parameters. The
parameter estimates for all three filtering methods converged
to near-constant values within 0.5 s, remaining within 8% of
these values until the selected end time of 1.0 s.

The extent of agreement between the filtering methods was
determined by comparing their mass estimates, which were
most subject to error from the filtering process due to their
dependence on acceleration. In addition, the mass estimates
could be compared to mass values obtained from a passive
inertial model of the human arm. A similar check could not
be made for the damping and stiffness, which result from
neuromuscular inputs to the arm.

Unlike the optimal frequency-domain filter, in which op-
timal filter coefficients are automatically chosen for each
trajectory, the lowpass and state-variable filters required tun-
ing. The lowpass filter cutoff frequency was set at 10 Hz, and
a second-order state-variable filter [15] of the form

T(s)

2
Wn

T2t 20wns + w2

©®

was chosen with its natural frequency wy, tuned to the average
peak frequency in the Fourier transform of the displacement
data. The damping ratio ¢ was set to a value close to that
exhibited by the displacement data, approximately 0.1. With
the exception of the mass values for the proximal position, the
estimates for mass, damping, and stiffness given by the three
filtering methods agreed with one another to within 15% of
the maximum values in their respective matrices. The mass
values at the proximal position differed from one another by
as much as 25%, although the damping and stiffness values
remained within 10% of one another.

In order to check the agreement of the mass matrices
identified by the three filtering methods with the assumption
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TABLE 1
IMPLIED LINK MASSES m1 AND mg(kg) FOR THREE HUMAN SUBJECTS

Filtering Method

Subject Link masses Lowpass Optimal  State-Variable
1 my 1.8040.45 1.7440.38 2.474+0.36
ma 1.56+0.13 1.49+0.11 1.54£0.10
2 my 1.5840.69 1.611047  2.19+0.53
ma 1.74£0.20 1.7440.13 1.584+0.15
3 my 0.92+0.47 1.08+0.85  1.36 £0.61
ma 1.36+0.13 1.28+0.24 1.23+0.17

of solely passive inertial effects, the inertia matrix I(©) was
derived by modelling the upper arm and forearm as two
cylindrical links in the horizontal plane with lengths [; and Iz,
and masses m; and mg, respectively. The link lengths were
fixed based on anatomical measurements, and least-squares
error minimization was used to determine the link masses
implied by the Cartesian mass matrices identified at the five
test positions. Data from the proximal position were found to
skew the results and were therefore left out of the data set.
The resulting implied link mass values, along with a single
standard deviation, are given for three subjects in Table 1.

The methods were consistent in their estimates of the
forearm link mass, ms, differing from one another by less
than 10%. However, the variation among filtering methods
in the estimates of the upper arm link mass m; was much
higher. This was attributed to the fact that the forearm link was
immediately excited by the manipulator, whereas the upper
arm link was excited intermediately, by virtue of its connection
to the forearm. Thus, the greatest information about the upper
arm link mass was provided when the forearm was excited
longitudinally. However, because it was in this direction that
human arm damping was generally greatest, the excitation was
not as persistent, and the resulting implicit upper arm mass
estimates were less reliable. This problem appears to have been
most severe at the proximal position, where the longitudinal
damping was greatest among the positions, and the angular
displacements, velocities, and accelerations of the upper arm
were smallest.

In each case, the state-variable filtering method had the
smallest ratio of standard deviation to estimated value for
the upper arm mass. The process may be inverted to yield
the Cartesian mass matrices corresponding to a given pair of
implied link masses, and these mass matrices may be compared
graphically to those experimentally identified. This is shown
for the state-variable estimates for a typical subject in Fig. 5,
and it is seen that the general character of the mass ellipses
is captured by the assumption of passive inertial effects, with
the largest deviations at the proximal position.

Damping and stiffness estimates for the three filtering
methods were also compared. For all subjects, the maximum
difference between corresponding individual damping matrix
values for the three filtering methods was less than 15% of the
maximum value in the compared matrices. For the stiffness
values, this deviation was less than 10% at all positions.

In order to examine the degree of stability of the damping
matrix estimates with respect to changes in the mass matrix
estimates, a constrained identification was carried out. The
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Fig. 5. Identified and modeled mass ellipses, subject 1. The radius of the
calibration circle in the upper left-hand corner corresponds to 2.0 kg. The
dashed-line ellipses are those directly identified by experiment. The solid-line
ellipses are those found by least-squares fitting the experimental data to a
two-cylindrical-link passive model of the human arm.
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Fig. 6. Damping for identified and modeled masses, subject 1. The radius
of the calibration circle corresponds to 15.0 N m/s. The damping ellipses
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modeled, or reconstructed, masses of Fig. 5.

mass estimates were set equal to those reconstructed by
the implied human arm link masses found above, and the
stiffnesses were set equal to those found in the unconstrained
identification. The resulting damping values differed by less
than 5% of the maximum values of their respective matrices.
The changes in size, shape, and orientation of the damping
estimates were also small. Thus, the damping estimates remain
rather stable even when the mass estimates are adjusted to
conform to the assumption of solely passive effects. Fig. 6
illustrates this stability by showing the damping ellipses for a
single subject in the constrained and unconstrained cases.

In summary, the mass, damping, and stiffness matrix esti-
mates from the three filtering methods were found to be largely
mutually confirmatory. However, the state-variable method
gave mass estimates which conformed most closely to those
expected from a passive model of the human arm inertia
matrix. The state-variable estimates were therefore used as
the basis for further. analysis.

Antisymmetric Impedance Component: The magnitudes of
the antisymmetric components of the identified impedance
matrices were measured in order to determine the magnitude
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of the purely rotational force field, or curl. In the cases of mass
and stiffness, the size of the rotational component is a measure
of the conservative nature of the impedance with respect to
energy. Because damping forces are strictly dissipative, zero
curl in the case of damping does not have the interpretation of
conservativity. However, Hogan (7] has argued that for both
damping and stiffness, the only way to produce non-zero curl is
through intermuscular feedback with unequal gains. The zero-
curl component of the impedance is therefore due to some
combination of intrinsic muscle properties and intermuscular
feedback with equal gains.

Two straightforward normalized measures of the magnitude
of the antisymmetry of a matrix are given by the ratios of
its skéw-symmetric component to its maximum and minimum
eigenvalues (Pmin = 2a/Amax a0d Pmax = Za/Amin)- These
measures give the percentage rotational force with respect to
the forces along the major and minor impedance ellipse axes.
A single, combined measure is given by the geometric mean
Of Prmin and Pmax

Pmean = v/PminPmax ©

and may be regarded as a percentage curl, or percentage
rotational force field [9].

In the stiffness case, the findings of Mussa-Ivaldi ez al
[9] were confirmed. For seven of the eleven subjects, pmean
was less than 15% for all stiffness matrices. One subject had
anomalously high values for pmean at positions one through
four (41, 27, 32, and 18%). Neglecting these anomalous values,
Pmean Was 25% or less in all cases, 15% or less in over 90%
of the cases, and 10% or less in 80% of the cases. As reported
previously [9], these generally small percentage-curl values
suggest that human arm stiffness is primarily spring-like, or
conservative. In the case of mass, ppean Was 25% or less in all
cases, and 15% or less for 95% of the matrices. These small
percentage curl values imply the conservative nature of the
human arm mass characteristic. In the case of damping, ppmean
was again relatively small, being 25% or less for all matrices,
and 15% or less for 75% of the matrices. The predominant,
symmetric component of the impedance matrices, which can
be graphically represented by an ellipse giving a locus of
restoring-force vectors, is considered in the following sections.

Patterns of Impedance: Certain patterns in the orientation,
size, and shape characteristics of the impedance ellipses were
observed for single subjects and among subjects. The orien-
tation of the impedance ellipses remained fairly consistent
among subjects. The maximum standard deviation of the ori-
entation angle across all positions, subjects, and ellipse types
(mass, damping, and stiffness) was 11 deg. As the distance
of the arm endpoint from the shoulder frame increased, the
orientation angle of the impedance ellipses tended to increase
in a clockwise direction. For all subjects, the stiffness ellipses
were rotated clockwise with respect to the mass ellipses at
all positions. The angle of this rotation for a given subject
was roughly constant, and its average value ranged among
subjects from 22 to 39 deg. About two-thirds of the damping
ellipses were rotated by more than 5 deg with respect to their
corresponding stiffness ellipses. The orientation of the mass,
damping, and stiffness ellipses gave a “fan effect” in most
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Fig. 7. Mass, damping, and stiffness ellipses, subject 2. The radius of the
calibration circle corresponds to 2.5 kg, 16.0 N m/s, and 200.0 N/m for the
mass, damping, and stiffness ellipses, respectively.

cases, with the damping ellipse oriented in more than 80% of
the cases somewhere between the mass and stiffness ellipses.
Although there were in most cases significant differences in
orientation between the damping and stiffness ellipses, the
damping ellipse orientations were generally closer to those
of the stiffness ellipses than to those of the mass ellipses. Fig.
7 shows the mass, damping, and stiffness ellipses for a typical
subject, illustrating the general characteristics described.

The shape of the stiffness ellipses for a given subject
followed a regular pattern. At the proximal position, the
stiffnesses were most nearly circular, ranging in shape from
1.3 to 3.2. As the arm endpoint moved further away from
the body, the stiffnesses generally become more elongated,
reaching maximum shapes of as high as 8.3 at the distal
position. Among subjects, shapes at a given position varied by
as much as a factor of 3.3. Contrary to the conclusion reached
by Mussa-Ivaldi et al.[9], this demonstrates a significant differ-
ence in the shape characteristic of stiffnesses among subjects.
Damping shapes also tended to increase as the arm endpoint
distanice from the body increased, but damping shape varied
among positions to a smaller degree than did the stiffness
shape.

Model Validation: For the human arm at rest, M in (3)
arises from the passive inertial behavior of the arm, whereas
K results from coactivation of opposing, or antagonist, muscle
groups. The velocity-related term in a given model for the
arm’s endpoint behavior could conceivably stem from the
inertial and kinematic character of the arm, in the form of
Coriolis and centrifugal terms, as well as from the damping
of coactivated antagonist muscles. The model (3) was derived
by assuming Coriolis and centrifugal effects to be negligible,
and it is one of the purposes of this section to examine that
assumption. Velocity-related terms arising from Coriolis and
centrifugal terms are nonlinear and are unrelated to muscle
coactivation. In order to determine whether these terms were
larger than or comparable in size to the¢ muscle-based terms,
part of the model validation involved consideration of their
simulated and actual contribution to the measured forces. The
theta-based Coriolis and centrifugal forces may be written

C(80,6) = B;(60)06T (10)
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TABLE 1I
AVERAGE FITTING ERRORS 01,02 (IN) FOR Two HUMAN SUBJECTS
Model
Subject Position A3) (13) (14) (15)

1 1 0.21,0.34 028,053 028,053 021,035
2 0.23,0.56 0.28,0.73 0.28,0.73 0.23, 0.51
3 033,082 047,099 047,099 0.33,0.84
4 0.32,0.45 037,064 0.37,0.64 0.32,051
5 027,034 0.43,0.53 043,051 0.34, 042

2 1 0.36, 0.48 0.39,0.54 0.38,0.53 0.35,0.48
2 0.27,0.66 029,074 0.29,0.73 0.27, 0.65
3 0.41, 053 046,058 0.45,0.58 0.40, 0.55
4 0.30, 0.50 0.36,0.59 0.36, 0.58 0.31, 0.50
5 0.40,0.29 048,042 048,041 043,032

where the matrix B;(©y) represents the joint-based squared-
and coupled-velocity damping about the equilibrium position
Oy, since the matrix ©OT contains the terms 7 and 6;6;. By
using the relationship

X = J(8)0 11)

and substituting functions of X 1 and Xz for 91 and 92 in (10),
C(6©¢,©) may be written in Cartesian variables as

C(6¢,0) = Bc(09)XXT 12)

where Bc(©y) is a Cartesian squared- and coupled-velocity
damping matrix.

Three alternative models were compared to (3) and to one
another in terms of their fitting error. These models are:

F=MX+ K(X - Xo) 13)
F=MX+BcXXT + K(X - X) 14
F=MX + B[X2X3T + K(X — Xo) (15)

where X = [X;X,]7 is the displacement vector. Model (13)
neglects damping entirely, model (14) includes the Cartesian
form of centrifugal and Coriolis forces, and model (15) mod-
ifies (3) by squaring the velocity terms, thereby rendering
it nonlinear. These models were compared to the full linear
model (3) on the basis of the average fitting error

VeTe
N

where e is a vector of fitting errors, or deviations from the
measured force values, in the reconstructed or “fitted” version
of the output, and N is the total number of data points.
In the two-dimensional case considered, two displacement
inputs were fitted independently to two different force outputs,
yielding two independent o-values for a given fitting, one for
each output (o7 and o2). These average fitting errors were
found at each test position for a parameter identification over
the entire set of 16 perturbations.

Typical average fitting errors for two human subjects for
models (3) and (13)(15) are shown in Table II . The model
(13), with no velocity-related terms, had higher error values
than the linear model (3) in every case. In all but two of
the twenty comparisons shown (two o-values for each of five
positions for two subjects), the difference was greater than or

o=

(16)

equal to 0.05 N, the dynamic noise figure for the force sensor.
This indicates that velocity-related terms play a significant role
and must be included in the identification.

Model (14), which considers Coriolis and centrifugal force-
related velocity terms, had larger fitting errors than the linear
model (3) in every case. In addition, the decrease in fitting
error over model (13) was negligible, averaging less than 0.005
N. This result was confirmed in simulation by calculating
the term BcXX7T 'in model (14) using the experimentally
observed maximum arm endpoint velocity of 80 cm/s, and
finding it to be one to two orders of magnitude smaller
than the velocity-related BX term experimentally identified
in model (3). Finally, the terms resulting from a first-order
expansion and linearization about a median velocity of 40
cm/s of the velocity-related terms in (14), coupled with the
maximum observed endpoint velocity, were found again to
be one to two orders of magnitude too small to account
for the experimentally identified terms. In summary, although
velocity-related terms are significant in the identification, they
do not arise from Coriolis or centrifugal forces, i.e., from
passive dynamic effects associated with the human arm’s
inertial and kinematic character.

Finally, fitting errors from model (15), which substituted
a squared-velocity for the simple linear velocity term, were
comparable to those from model (3). In twelve out of the
twenty cases, the fitting error from model (3) was smaller, and
in three out of these twelve cases, it was significantly smaller.
In no case in which model (15) had a smaller fitting error was
the difference greater than the sensor’s dynamic noise figure.

In conclusion, the linear model (3) is the most applicable
to the force-displacement relationship for the human arm
endpoint in the face of small perturbations from an equilibrium
point. Velocity-related terms are significant and are accounted
for by neuromuscular effects, rather than by passive dynamic
effects. The former include short-latency muscle spindle re-
flexes whose EMG latencies can be as short as 40 ms, resulting
in small muscle force generation 50 ms after perturbation
onset [16], as well as larger forces generated by longer-latency
reflexes from both spindles and Golgi tendon reflexes. Houk
has proposed specific models whereby these reflexes regulate
muscle stiffness and viscoelastic effects [17], [18]. For the
purposes of this paper, all of these effects are subsumed below
the level of analysis of the model given by (3).

Relationship Between Joint Damping and Stiffness: The
measured Cartesian matrices M, B, and K are related to
the human arm joint impedance matrices I, Bg, and Ko,
respectively, through the Jacobian J(©) as

I1=J"MJ (17a)
Be =JTBJ (17b)
Ko =JTKJ. (17c)

The relationship between joint damping and stiffness has been
investigated in the single-joint case for the human forearm
and elbow joint [19]-{21], but not in the multi-joint case. In
the single-joint case, Cannon and Zahalak [19] found the ratio
T between joint damping and stiffness to be nearly constant
with a mean value of 0.05 s for muscle torques ranging from
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TABLE 111
SINGLE-CONSTANT JOINT DAMPING-STIFFNESS RELATIONSHIPS
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TABLE IV
MULTIPLE-CONSTANT JOINT DAMPING-STIFFNESS RELATIONSHIPS

Assumption SS Assumption SD

Subject 7(s) % error ¢ % error
1 0.0561:0.007 20 0.2540.02 13
2 0.057+0.005 14 0.2540.01 9
3 0.0261+0.005 31 0.1740.02 25
4 0.0681-0.007 17 0.27+0.02 13
5 0.15140.013 17 0.51+0.03 12
6 0.22740.030 27 0.62+0.07 22
7 0.07140.007 20 0.231+0.03 25
8 0.026+0.006 34 0.1440.04 34
9 0.077+0.008 20 0.254+0.02 18
10 0.0254-0.006 35 0.12+£0.02 29
11 0.01140.002 30 0.08+0.01 29

3.0 N-m to 30.0 N-m. In another set of experiments {20]
involving varying levels of resistance to small pseudorandom
perturbations, 7 was found to increase from 0.058 s to 0.125
s in the transition from a “resist” to a “do not resist” task, and
to decrease from 0.08 s to 0.025 s for the opposite transition.
The damping ratio ( = /B2/4KI, where B and K are
the elbow damping and stiffness, respectively, and [ is the
forearm inertia, had a smaller percentage change in these
transitions, increasing from 0.448 to 0.476 for the first, and
decreasing from 0.338 to 0.218 for the second. Flash [10]
noted that it was impossible on the basis of these experimental
data to unequivocally determine the relationship between joint
damping and stiffness. In the multi-joint case, the joint stiffness
and damping matrices are of the form

_|Bu B2
Re—[Rzl Rzz}

where the term Rj; is the net shoulder joint stiffness or
damping, Ra; is the net elbow joint stiffness or damping,
and R;2 and Ry; are the doubly-connected joint parameters.
We have demonstrated that both stiffness and damping have
small percentage curl, so that Ris and Ry are approximately
equal. This results in three joint parameters for both stiffness
and damping. Flash [10}] used two different assumptions about
the relationship between these damping and stiffness param-
eters in order to estimate the joint damping values from the
measured joint stiffnesses. These assumptions were based on
the ambiguous data resulting from the single-joint experiments
described above. The first was that the joint damping values
scale simply with the stiffness values by a single constant 7,
so that B;; = 7K;;. The second was that the damping ratio
¢ remains constant for all three viscous coefficients, so that
B;j = 2(/T;;K;, where I; is the 7, j element of the inertia
matrix. We shall refer to these assumptions as SS (single-
constant scaling) and SD (single-constant damping ratio). The
ability of these assumptions to explain the actual data was
tested by least-squares fitting the calculated joint damping
values and stiffnesses to the single constants 7 and ¢ for
each subject. The results are shown in Table III, with a single
standard deviation shown. The percentage error figure is the
ratio of the average fitting error to the maximum value of the
joint damping across all test positions for a given subject.

(18)

Assumption MS Assumption MD

Swject 7 e iy oo G G G g
1 0.067 0.040 0.039 17 0.254 0.261 0.176 12
2 0.062 0.046 0.021 11 0.252 0.284 0.104 7
3 0.037 0.013 0.012 21 0.186 0.097 0.063 19
4 0.082 0.050 0.045 13 0.272 0295 0.196 12
5 0.178 0.108 0.078 10 0.507 0.553 0.243 9
6 0.246 0.214 0.177 25 0.582 0.977 0512 17
7 0.067 0.082 0.053 20 0.201 0.427 0.143 17
8 0.019 0.042 0.010 30 0.105 0.402 0.067 22
9 0.087 0.069 0.027 18 0.249 0.349 0.089 15
10 0.030 0.020 0.004 33 0.127 0.135 0.015 27
11 0.010 0.013 0.008 29 0.067 0.139 0.063 23

The scaling factor 7 ranged from 0.011 s to 0.227 s, which
was somewhat larger than the range of single-joint values
(0.025 s to 0.125 s) previously found for the forearm [20].
The damping ratio ¢ varied from 0.08 to 0.62, with a mean
value of 0.26 and single standard deviation of 0.16, placing
it within the range of mean values found in the single-joint
case [20]. For nine out of the eleven subjects, assumption
SD, which explicitly involved the joint inertias, yielded lower
percentage error. Only one subject’s data were better explained
by the first assumption. In the Cartesian domain, this was
reflected by the general deviation in orientation and shape
of the damping ellipses from their corresponding stiffness
ellipses. If the assumption SS of simple scaling between joint
damping values and stiffnesses were valid, the eigenvectors
of the joint and Cartesian stiffness matrices would be shared
by their corresponding damping matrices, leading to identical
shapes and orientations for damping and stiffness.

In order to examine the relative participation of shoulder,
elbow, and two-joint impedances in both damping and stiff-
ness, the above assumptions were modified to allow for an
independent scaling constant and damping factor for each
element of the joint impedance matrix. We shall refer to
these assumptions as MS (multiple-constant scaling) and MD
(multiple-constant damping ratio). For assumption MS, By =
T3K11, Bzz = 'TEKQQ, and B12 = thKlz, where Tsy Tes and
:; are scaling constants for the shoulder, elbow, and two-
joint impedances, respectively. For assumption MD, By, =
2¢svVTi1 K11, Baz = 2(cv/122Ka2, and Byy = 2¢;;v/ T12K1o,
where (s, (., and (;; are the damping ratios for the shoulder,
elbow, and two-joint impedances, respectively. Table IV shows
the results of fitting the data to these constants.

For assumption MS, the shoulder and elbow scaling con-
stants 7, and 7. were larger than the two-joint constant 7; in
every case. This implies that the relative participation of two-
joint impedance is smaller for joint damping than for joint
stiffness. This is reflected in a general trend for the Cartesian
damping ellipses to be thinner than their stiffness counterparts.
For assumption MD, the damping constant ¢ is smallest for
the two-joint impedance parameters in every case. Assumption
MD, which included consideration of the joint inertia values,
has smaller fitting error than assumption MS in every case.
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Single-constant Scaling Hypothesis

—— |dentified
——- Reconstructed

(@

—— |dentified
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Fig. 8. Identified and reconstructed damping ellipses for the single-constant
scaling (a) and damping-factor hypotheses (b), subject 1. In the majority of
cases, the damping-factor hypothesis gives a better fit.

The ability of the single- and multiple-constant assumptions
to reconstruct the measured Cartesian damping ellipse was
examined graphically, as well. Fig. 8 and 9 show the identified
and reconstructed damping ellipses for the single- (SS and
SD) and multiple-constant (MS and MD) assumptions, respec-
tively, for a representative subject (subject 1). Assumption SD
fits the actual data more closely than SS, especially at the
proximal position. The MD and MS assumptions, however,
are barely distinguishable.

In summary, the single-constant assumptions (SS and SD)
do not capture the major features of the observed damp-
ing ellipses, although SD appears more likely than SS. The
measured Cartesian damping ellipses generally have different
orientations and shapes from their corresponding stiffness
ellipses, which would not be the case if simple scaling (SS)
were valid. The multiple-constant assumptions (MS and MD)
are better able to reconstruct the observed damping ellipses,
and MD results in somewhat smaller fitting error than MS.
However, the differences between MS and MD in fitting
error and in the ability to reconstruct the Cartesian damping
ellipses may not be large enough to unequivocally prefer one
over the other. Fitting according to assumption MS shows

that the relative participation of two-joint muscles is smaller .

in damping than in stiffness, relative to the shoulder and
elbow muscles. Fitting according to assumption MD shows
lower damping factors for the two-joint muscles than for the
elbow and shoulder muscles. The net effect of these general

Multiple-constant Scaling Hypothesis

—— Identified
——- Reconstructed

—— Identified
- -- Reconstructed

®)

Fig. 9. Identified and reconstructed damping ellipses for the multiple-
constant scaling and damping-factor hypotheses, subject 1.

differences between shoulder/elbow muscles and two-joint
muscles is to elongate the damping ellipses with respect to
their corresponding stiffness ellipses.

IV. POSTURAL LOADED IMPEDANCE

Because orientation was the most stable characteristic in the
unloaded experiments, the potential for stiffness shape change
was focused upon by taking data along the radial direction,
i.e., at the proximal, reference, and distal positions. As before,
the experimental data were fitted to (3). The state-variable
filtering method was applied to the data, as before, and the
stiffnesses were also determined by extracting the final static
position and force values. The latter were found by scanning
each trajectory backward in time starting with its final value,
finding the first section of duration 0.2 s or more with velocity
less than 5 mm/s, and averaging the force and displacement
over this period.

Shifts in Equilibrium Point: In the unloaded experiment,
the equilibrium position vector X was expected to be near-
zero, since each perturbation began with zero initial bias
forces. This assumption was borne out by the data, the
actual calculated equilibrium vectors being smaller than 1
mm in magnitude in every case. In the loaded experiment,
X, was expected to be nonzero in those cases for which
initial bias forces were nonzero, corresponding to a shift in the
spring center. Actual and predicted equilibrium vectors were
calculated for each of the four bias force directions at each
position. The “actual” equilibrium vectors were those found
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from the fitting of the data to the static equation
Fiinal = Kloaded (Xfinal — Xo)

where Fina1 and Xgna are the final (static) force and displace-
ment vectors, respectively, and Kjoaded and Xo are the implied
loaded stiffness matrix and equilibrium vector, respectively. A
static, rather than full dynamic, measurement of stiffness was
used in this comparison in order to prevent skewing the results
in favor of the equilibrium vectors implied by the initial bias
forces. The predicted equilibrium vectors, on the other hand,
were generated by averaging the initial and final unloaded
stiffnesses to find an average unloaded stiffness Kunloaded,
and calculating X according to

Xo =

(19)

(20)

where F};. is the bias force applied to the arm prior to each
perturbation. The depicted predicted equilibrium vectors are
thus based on the assumption that the loaded stiffnesses do not
vary greatly from the unloaded stiffnesses. Fig. 10 compares
the actual and predicted equilibrium position vectors for the
proximal, reference, and distal positions for a single subject.
The orientations of the actual equilibrium vectors correspond
fairly closely to those predicted by the assumption that loaded
and unloaded stiffnesses are equal to one another. Those
differences in orientation and magnitude between the actual
and predicted equilibrium vectors which appear are reflected in
differences in size, shape, and orientation between the loaded
and unloaded stiffnesses, which are discussed below.

The loaded stiffness characteristics have genuinely shifted
spring centers, since the fitting errors for the loaded and

-1
Kunloaded Fbias

unloaded cases are comparable in size. This was tested by

using the final, static values of the force and displacement,
and omitting the initial bias force, to avoid artificially reducing
the average fitting error. Thus, in the face of perturbations
superimposed upon a static bias force, the human arm responds
as if displaced by some equilibrium vector X, from a “spring
center” which does not correspond to its initial position. This
extends the applicability of the hypothesis of human arm
stiffness control to include the loaded case.

Impedance Modulation: In the loaded case, stiffness shapes
at a given position varied by a factor between 1.1 and 1.5,
and shapes were generally greater (i.e., more elongated) for
bias forces along the ellipse major axes than for bias forces
along the minor axes. Damping ellipse shapes varied by a
factor between 1.1 and 1.5, but without a clear correspondence
between shape changes and bias force directions. Stiffness size
changes remained less than 50%, and there was no marked
tendency for stiffness size to increase in the loaded case. This
may have been partly due to the fact that the size of the
bias forces had to be kept fairly small (approximately 1.0 N)
in order for the resultant implied equilibrium vectors to be
on the order of the perturbation sizes. Variations in stiffness
orientation at a given position were smaller than 20 deg, and
had no apparent relationship to the direction of bias force.

V. CONCLUSION

This paper extends the characterization of human arm
impedance control beyond the measurement of unloaded pos-
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Fig. 10. Predicted and actual spring-center vectors in the face of preloading
at the distal, proximal, and reference positions. The spring centers shift in the
expected directions, with some variations in magnitude and orientation.

tural stiffness. Three research themes have been pursued: mea-
surement of the dynamic components of postural impedance
(mass and damping), investigation of the relationship between
these components and postural stiffness, and characterization
of postural stiffness modulation under various cognitive con-
ditions and in the face of initial static loading.

The results of the research have lead to an improved
understanding of human arm control modalities. The mass and
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damping components of impedance were found, like the stiff-
ness component, to have small rotational components. Doubly
joint-connected muscles were found to play a relatively smaller
role in damping than in stiffness, causing damping ellipses
to be more strongly directional thoughout the human arm
workspace than their stiffness counterparts. In the case of
stiffness modulation in response to cognitive cues, the basic
strategy for increasing stiffness along a given direction was to
increase it in all directions (i.e., increase stiffness size, rather
than significantly altering stiffness shape or orientation.) The
significance of this is that the three basic arm muscle groups,
shoulder, elbow, and two-joint, tend to work in concert with
one another in increasing stiffness, rather than exhibiting a
large degree of independence. By applying initial static bias
forces to the arm endpoint and observing regular shifts in the
arm’s spring center, or equilibrium position, the validity of
the impedance control hypothesis in the loaded postural case
was confirmed.

The full characterization of human arm endpoint impedance
is potentially applicable to the design and configuration of a
wide variety of human-machine and human-object interaction
tasks. There are many such tasks in which the human arm
traverses its workspace, as opposed to fine-motion tasks in
which hand and finger motions are of primary importance. In
the area of teleoperation, where force reflection is sometimes
used to give the operator greater dexterity and a richer sense
of the environment with which the controlled manipulator is
interacting, the results of human arm impedance measurement
could be used in several ways. Human impedance character-
istics could be “mapped” onto the slave telemanipulator by
operating it under (robotic) impedance control [22] with the
desired input trajectory specified by human guidance of the
master manipulator, causing the resulting contact dynamics of
the slave with its environment to resemble those of the human
arm. Reflected forces could be simply those experienced by
the slave, or could be transformed based on knowledge of the
current configuration of the human arm and its corresponding
impedance. For example, forces in directions of larger stiffness
could be amplified relative to those of smaller stiffness in order
to give the human more uniform sensitivity to environmental
forces. In the area of prosthetics, where restoration of natural
limb function by imitation of the intact human arm is an area
of research [5], knowledge of the damping characteristic gives
a richer description of the mechanical behavior of the human
arm than that afforded by stiffness alone. Integration of the
results of full impedance measurement of the human arm with
research characterizing the intent of neuromuscular commands
to the arm could lead to the design of artificial limbs that more
closely mimic their intact counterparts.

APPENDIX
CARTESIAN MODEL OF HUMAN ARM ENDPOINT

Fig. 1 shows a simplified two-link model of the human arm
in the horizontal plane [8], in which the numerous muscles
present in the arm are brought together into three basic groups:
1) singly joint-connected shoulder muscles (SS), 2) singly
joint-connected elbow muscles (SE), and 3) doubly joint-

connected shoulder-elbow muscles (DJ). Each of the muscle
elements in Fig. 1 is a linear series combination of a springlike
and a viscous damping element. For small excursions from an
equilibrium theta position ©g, a linear model of the torque-
displacement relationship is

T = K@O [@ - @0] + Beoe (21)
where
Ke = K, +Kq Ky _ | Ku K
©0 = K K.+ K4 Kn Kz
Be = B, + By By _|[Bu B
G0 = By B. + By By; Ba

where Ko, and Bg, are the joint stiffness and damping
matrix, respectively, at the equilibrium position ©p, and the
subscripts s,e, and d designate the impedances due to the
shoulder, elbow, and doubly-connected muscle groups, respec-
tively. The inertia matrix I(®o) and Coriolis and centrifugal
effects C(Og,®) associated with the arm may be approxi-
mated by modeling the two links as uniform cylinders. The
full joint-based human arm model then becomes

T = I(@o)@ + C(@o,@)
+ Bo,® + Ko, [© — Og). (22

In order to relate the joint-based model to its Cartesian
counterpart, we use the relationship

r=JT(0)F (23)
§X = J(©0)80 (24)
X = J(60)0 (25

where F is the Cartesian force applied to the endpoint of the
arm. (24) is exact only for infinitesimal displacements, but is
approximately valid for small excursions from the equilibrium
point, so that

X — Xo = J(©0)[© — Oq]. (26)
Differentiating (25), we obtain
X = J(80)6 + J(60)8. @27

The time rate of change of the Jacobian is negligible for small
excursions, so we make the approximation

X = J(©0)0. (28)

Using the kinematic relationships (23), (25), (26), and (28)
in (22), neglecting Coriolis and centrifugal forces, dropping
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theta-arguments for simplicity, and rearranging, we obtain
F=JT{IJ'X + Be,J ' X + Ko, J "'[X — Xo]}. (29)
Consolidating terms, we may finally write
F=MX + BX + K(X ~ Xo) (30)

where the Cartesian mass, damping, and stiffness matrices at
the equilibrium position X, are

M=JTrj! (31a)
B=J"TBg,J! (31b)
K=J"TKe,J " (31c)
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