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Abstract

Many vision and AI techniques assume that some form of the infamous corre-
spondence problem has been solved. Typically, a best mapping between sets of
features is found either as a pre-processing step or as a side-effect of applying the
technique. In this paper we argue that it is incorrect to insist on a single ’best’
mapping between features in order to estimate a property that depends on this
correspondence. Instead, one should take into account theposterior distribution
over all possible mappings, given the measured feature data. The estimate thus
obtained can differ substantially from the one where a best mapping is first sin-
gled out. The main contribution in this paper is to show how Markov Chain Monte
Carlo methods can be used to efficiently sample the correct distribution over corre-
spondences, and how this sample can subsequently be used to estimate a property
of interest. We will show examples and results for several applications, including
pose estimation and structure from motion. The method we propose can be used
in any application where the correspondence problem is a central component.



1 Introduction

There are many algorithms in computer vision and other disciplines of AI that
assume that some form of the ’correspondence problem’ has been solved. Exam-
ples from computer vision - which we will focus on - include: pose estimation,
object recognition, stereo vision and 3D reconstruction, structure from motion,
and motion estimation. Those algorithms that attempt to solve these problems us-
ing sparse features measured in substantially separated images (spatially or tem-
porally), typically assume the correspondence between features across different
views is known.

If the correspondence is not known, the ’best’ mapping between feature sets is
found either as a pre-processing step or as a side-effect of running the algorithm.
The algorithms in the ’pre-processing’ class typically construct a cost matrix that
encodes the cost of associating two features in different sets. In many cases, the
construction of this cost matrix is based on Ullman’s ’minimal mapping’ princi-
ples of proximity, similarity and mutual exclusion [22]. In [16, 17, 14] an eigen-
value analysis on this cost matrix leads to a mapping that approximately satisfies
mutual exclusion and can be shown to be optimal under certain - rather restrictive
- assumptions. In [3, 4] finding the best mapping is formulated as a maximum-
weight bipartite matching problem. [18] use simulated annealing to find the best
mapping between two point sets. In other algorithms the correspondence problem
is more integrated. In [2] the correspondence problem is posed as a hypothesis
testing problem. [9] use neural networks in an EM type algorithm that alternates
between estimating pose and correspondence.

In this paper we argue that it is incorrect to insist on a single ’best’ mapping
between features in order to estimate a property that depends on the correspon-
dence, such as pose. Instead, one should take into account theposterior distri-
butionover all possible mappings, given the measured feature data. The estimate
thus obtained can differ substantially from the one where a best mapping is first
singled out. The main contribution in this paper is to show how Markov Chain
Monte Carlo methods can be used to efficiently sample the correct distribution
over correspondences, and how this sample can subsequently be used to estimate
a property of interest. We will show examples and results for several applications,
including pose estimation and structure from motion. However, the methods we
advocate can be used in any application where the correspondence problem is a
central component.

Unbeknownst to us at the time of writing, MCMC has been used for a similar
purpose in [13], where it used in the context of a traffic surveillance applica-
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Figure 1: Left: A 2D model shape, defined by points on a circle with radius 1.
Right: Measured feature points. The true rotation is 70 degrees, measurement
noise� = 0:2.

tion. They, like us, propose to use EM in order to perform maximum likelihood
inference for quantities that depend on the outcome of an assignment problem.
Our formulation is different than theirs, however, in that we assign image fea-
tures to 3D entities, rather than pairwise associating them between images. Our
approaches are very similar in spirit, however.

The paper is laid out as follows: in Section 2 we motivate our main point
with a simple example from pose estimation. Section 3 explains how we can use
the Metropolis sampler to sample from a joint distribution over correspondence
mappings and the parameters to be estimated. If only a MAP or ML estimate is
needed in a given application, we can use the EM algorithm to efficiently obtain
this, as explained in Section 4. The latter approach is illustrated in the results
section, Section 5, with an example from thestructure from motiondomain.

2 Motivation

In order to motivate the need for obtaining adistribution over correspondence
mappings, we will look at a simple example from pose estimation. Assume we
have a 2D model shape, given in the form of a set of 2D pointsfxi 2 R

2; i 2
1::Ng, as shown in Figure 1. We observe an image of this shape which has under-
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gone an unknown rotation, and the problem is to recover the unknown parameters
� of this transform. As data we are given noisy measurementsfzk 2 R2; k 2
1::Ng on the feature points defined in the model shape, as shown at right in Fig-
ure 1.

2.1 Known Correspondence

In the Bayesian probability paradigm, if we are interested in characterizing our
complete knowledge about�, given the dataz, we need to obtain the posterior
distributionP (�jz). By Bayes law, we can express this in terms of a likelihood
P (zj�) of � givenz, and a prior distribution on�:

P (�jz) = CzP (zj�)P (�) (1)

whereCz = 1
P (z) is a constant that only depends onz.

We can easily obtain an expression for the likelihoodif the correspondence
between measurementszk and model featuresxi is known. Assuming i.i.d. nor-
mally distributed noiseni 2 R2 on each measurementzi, we have for alli

zi = f(xi; �) + ni

wheref : R2� R3 ! R
2 is the measurement function that models the 2D trans-

form. The likelihood termP (zj�) can then be written as

P (zj�) =
Y
i

N(zi; f(xi; �); �) (2)

whereN(:;�; �) denotes the radially symmetric 2D normal distribution with mean
� 2 R2 and standard deviation�.

It is just as easy to obtain a singlemaximum a posteriori(MAP) or maximum
likelihood (ML) estimate. Assuming we have no prior information about�, the
ML estimate�� can be found by a simple least-squares fit:

�� = argmin
�

X
i

kzi � f(xi; �)k
2

These concepts are illustrated in Figure 2, where the likelihood of the rota-
tion parameter is plotted, given the measurements from Figure 1. In this case,
the likelihood function is unimodal and the ML estimate is located at its global
maximum.
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Figure 2: The likelihood function (2) (normalized so maximum=1) of rotation�
for the example in Figure 1, with known correspondences.

2.2 Unknown Correspondence

The difficulty we face in this paper is that the correspondence mappingc that
maps measurementszk to the model featuresxi is unknown. In that case, to
obtainP (�jz), we need to integrate over all possible mappings:

P (�jz) =
X
c

P (�; cjz) = CzP (�)
X
c

P (c)P (zj�; c) (3)

Note that we have used the identityP (cj�) = P (c), which says that in the ab-
sence of measurement information, the model parameters� do not provide any
information about the mappingc:

We can formalize this by viewing the mappingc as a functionc : Z! Z

from measurement indices to model feature indices. For simplicity’s sake we will
assume for now that there are no occlusions or spurious measurements, so thatc
is a one-on-one mapping, i.e. a permutation of the indices1::N . In that case, each
term in (3) can be written as

P (c)P (zj�; c) =
1

N !

Y
i

N(zi; f(xc(i); �); �) (4)

whenc is a permutation, and0 otherwise. The factorN ! in the denominator arises
because there areN ! such permutations, and each mappingc is assumed equally
likely a priori.

Thus, in the example of Figure 1, the full posterior will be a mixture of 6!=720
functions of the form (4). Note that as� is small compared to the distance between
model features, only 6 of the 720 mixture components will have any appreciable
probability mass in them, each associated with one of the six rotations that are
consistent with the ambiguous measurement data. This is illustrated in Figure 3.
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Figure 3: In the case of unknown correspondence, the posterior distribution (nor-
malized so maximum=1) of rotation� corresponding to the situation in Figure 1
is a mixture distribution with 720 components.

2.3 Summary

As illustrated above, the fact that we do not know the correspondence a priori
can drastically alter what knowledge we can derive about the parameters�. In a
sense, the simple example presented above is a worst case scenario, as the model
shape whose pose we want to estimate is radially symmetric. In this case there is
a strong inherent ambiguity in the rotation part of the pose. However, ambiguity
can arise in any situation in which the measurements and the noise are such that
the identity of the measurement can be mistaken. When estimating a property of
interest, the correct approach is to take this ambiguity into account, and factor it
into the estimate, rather than choosing one or the other possibility.

3 Sampling the Posterior

Now that is established that we indeed want to consider the full distribution over
correspondence mappings, we need a practical way to do this. Unfortunately, eval-
uating the total posterior probability (3) can be a challenge. This is because the
number of possible mappingsc is combinatorial in the number of features to be
matched, making a direct computation ofP (�jz) in (3) intractable in most cases.
In some cases, e.g. when all mappings are equally likely and certain independence
assumption hold, (3) can be simplified into a manageable number of terms. How-
ever, in typical correspondence problems the factorP (c) provides hard to encode
knowledge about what type of mappingsc are allowable. For example, in the pose
estimation case above, only permutations are allowed. Since this is hard to specify
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analytically, it seems the only way to calculateP (�jz) is to explicitly enumerate
all allowable mappings.

As a solution to this computational challenge we propose is to instead obtain a
sample from the posterior distributionP (�jz). Again, since (3) is hard to evaluate,
sampling directly fromP (�jz) is probably intractable. However, if we can obtain a
samplef(�r; cr); r 2 1::Rg from thejoint distributionP (�; cjz), we can construct
a sample from the marginal distributionP (�jz) simply by discarding the mapping
partcr from the tuples(�r; cr). This gives us the the samplef�r; r 2 1::Rg from
P (�jz). A way to sample from the joint distribution will be given below.

MCMC Sampling

To sample from the joint distributionP (�; cjz) we propose to use the Metropolis
algorithm, an instance of the Monte-Carlo Markov-Chain methods (abbreviated
MCMC), which involve a Markov chain in which a sequence of samples is gen-
erated [8, 11]. If we set up the transition probabilities correctly, the equilibrium
distribution of the Markov chain will be equal to the posterior distribution we
would like to sample from. In our case, we would like to generate a sequence of
samples fromP (�; cjz), and the Metropolis algorithm can be formulated in the
current context as follows (adapted from the general description in [11]):

1. Start with a initial tuple(�0; c0).

2. Propose a new tuple(�p; cp), which is probabilistically generated from(�r; cr).

3. Compute the ratio

a =
P (�p; cpjz)

P (�r; crjz)
(5)

4. If a >= 1 then accept(�p; cp) as(�r+1; cr+1).
Otherwise, accept(�p; cp) with probabilitya. If the proposal is rejected,
then we keep the previous sample.

The sequence of tuples(�r; cr) thus generated will be a (correlated) sample from
the joint distributionP (�; cjz). Note that we have assumed here that theproposal
densityused in step 2 is symmetric, which leads to the simple algorithm above.
If this density is asymmetric, the more general Metropolis-Hastings algorithm
should be used [7].
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What is left to do is specify how the proposal step is implemented and how
a is to be calculated. In addition, care is required so that no invalid mappings
c are proposed. These implementation details are necessarily application depen-
dent, but we will provide an example below in the context of the pose estimation
example.

3.1 Detailed Example

In the pose estimation example, we will start the chain with a random value�0

for � and a randomly chosen permutationc0 of the indices. In the proposal step,
we choose randomly between two strategies: (a) in a ’small perturbation step’ we
keep the mappingc but add a small amount of noise to�. This serves to explore
the continuous values of� within a mode of the posterior probability. (b) in a
’long jump’, we completely randomize both� andc, as in the initialization phase.
This provides a way to jump between probability modes.

After we have proposed the new tuple(�p; cp), we calculatea. In this example,
and in many other applications, the noise on the feature measurements is normally
distributed and isotropic. By invoking Bayes law and eq. (4), we can rewritea
from (5) as

a =
P (�p; cpjz)

P (�r; crjz)
=

Q
i
N(zi; f(xcp(i); �

p); �)Q
iN(zi; f(xcr(i); �r); �)

Here we have assumed that we have uniform prior on� and all allowable mappings
c are equally likely, so that the posterior ratio is equal to the likelihood ratio. We

can simplify the notation by definingf r
i

�
= f(xcr(i); �

r). By further manipulation
we obtain

a = exp

"
1

2�2

X
i

(kzi � f r
i k

2 � kzi � fp
i )k

2)

#
(6)

The result of this procedure is shown in Figure 4, where we have plotted the
histogram of the rotation parameter� as a non-parametric approximation to the
analytic posterior shown in Figure 3. The figure shows the results of running a
sampler for 100,000 steps, the first 1000 of which were discarded as a transient.
We can deduce from the uneven mass in each of the six modes that the ’long jump’
was not accepted in many cases, as otherwise the modes would have evened out.
Ongoing work attempts to quantitatively evaluate different proposal densities in
terms of their efficiency. Note that this will depend on the application considered.

7



0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Histogram for the values of� obtained in one MCMC run, for the situa-
tion in Figure 1. The MCMC sampler was run for 100,000 steps, the first 1000 of
which were discarded as a transient. This figure should be compared with Figure
3, which is the analytic version of the posterior.

3.2 Flip Proposals

A different and appealing way to propose a new correspondence mappingc is
through a local operation such as flipping two assignments. A substantial benefit
of this approach is that we can drastically simplify (6), as a local operation will
only involve a limited set of features. Whether this strategy leads to efficient
sampling depends on the application, but we have used it with success for structure
from motion (see below).

In a ’flip proposal’, we propose to obtaincp by switching the mappingcr

on two randomly chosen indices,j andk.Formally, we havecp(j) = cr(k) and
cp(k) = cr(j). Because this proposal only changesc, and not�; i.e. �p = �r, we
will have fp

j = f r
k andfp

k = f r
j after the switch, and furthermorefp

i = f r
i for all

other indicesi =2 fj; kg. With these facts, the sum in (6) will consist of only these
four terms:

kzj � f r
j k

2 � kzj � f r
kk

2 + kzk � f r
kk

2 � kzk � f r
j k

2

Noting thatka�bk2�ka�ck2 = bT b�2aT (b�c)�cTc, and further simplifying
leads to the following simple expression fora:

a = exp

�
1

�2
(zk � zj)

T (f r
j � f r

k )

�

The expression above is cheap to evaluate and is applicable in a wide variety of
applications. It asserts that, when we switch the correspondence mapping of two
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randomly chosen indices, the acceptance ratioa only depends on the dot product
between two vectors related to the switch. This holds whenever the noise on the
measurement is normally distributed and isotropic.

4 MAP or ML Estimates

If we are interested only in a single MAP or ML estimate, we can avoid having to
sample over the large joint space of mappingsc and parameters� by making use
of the Expectation-Maximization (EM) algorithm. To obtain the MAP estimate,
we need to maximizeP (�jz). Since this is given by (3), we can attempt to directly
maximize that expression, but this is likely to be as intractable as sampling from
it. Fortunately, the EM algorithm provides a more tractable alternative, and it can
be proven that the EM algorithm converges to a local maximum ofP (�jz) [12].
The idea of EM is to maximize theexpectedlog posterior

Qt(�)
�
= EflogP (�jz; c)g

where the expectation is taken with respect to the posterior distributionP (cjz; �t)
over all possible mappingc given the dataz and a current guess�t for the param-
eters. The EM algorithm then iterates over [20]:

1. E-step: Calculate the expected log posteriorQt(�):

Qt(�) =
X
c

P (cjz; �t) logP (�jz; c) (7)

2. M-step: Re-estimate�t+1 by maximizingQt(�):

�t+1 = argmax
�

Qt(�)

However, instead of calculatingQt(�) exactly using (7), which again involves
summing over a combinatorial number of terms, we can replace it by a Monte
Carlo approximation:

Qt(�) �
1

R

RX
r=1

log P (�jz; cr) (8)
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wherefcr; r 2 1::Rg is a sample fromP (cjz; �t) obtained by MCMC sampling.
Formally this can be justified in the context of aMonte Carlo EMor MCEM,
a version of the EM algorithm where the E-step is executed by a Monte-Carlo
process [20, 12]. The sampling proceeds exactly as in the previous section, using
the Metropolis algorithm, but now with a fixed parameter� = �t. Note that�t

changes at each iteration of EM, and in each iteration we sample from a different
posterior distributionP (cjz; �t) over mappingsc .

5 Results

We have applied the concepts above with success in the domain ofstructure from
motion(SFM). The problem is as follows: given thatn 3D features are observed
in m images, estimate both the 3D position of then features and them camera
poses at the time the measurements were taken. Here we restrict ourselves to the
case were images are taken from separated viewpoints and the a small number of
sparse measurements are taken in each image.

SFM is one of the most successful applications of computer vision, and there
have been numerous papers with algorithms that work under a wide variety of as-
sumptions [21, 15, 19, 10]. However, the applicability of these methods is limited
by by their reliance on error-prone correspondence techniques. Feature-tracking
techniques often fail to produce correct matches due to large motions, occlusions,
or ambiguities. Furthermore, errors in one frame are likely to propagate to all
subsequent frames of the sequence. Outlier rejection techniques [1, 23, 6] can
ameliorate these problems, but at the cost of eliminating valid features from the
reconstruction, resulting in an incomplete model that does not take into account
all available image measurements.

By working with the distribution over correspondence mappings from 3D fea-
tures to 2D measurements, we avoid the reliance on a separate correspondence
finding algorithm. Instead, structure and motion estimates are obtained that in-
corporate all the knowledge that can be inferred from the measurement data, in-
cluding ambiguity between different correspondence mappings. The way this is
done is through the use of the the Monte-Carlo EM algorithm as described in the
previous section. The implementation details are beyond the scope of this paper,
but are detailed in a separate paper [5].

In practice, the algorithm converges consistently and fast to an estimate for
the structure and motion where the correct correspondence is the most probable
one, and where most if not all assignments in the different images agree with
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Figure 5: Three out of 11cubeimages. Although the images were originally taken
as a sequence in time, the ordering of the images is irrelevant to our method.

t=0   σ=0.0 t=1   σ=25.1 t=3   σ=23.5

t=10   σ=18.7 t=20   σ=13.5 t=100   σ=1.0

Figure 6: Starting from a random guess for the structure (t=0) we recover gross 3D
structure in the very first iteration (t=1). As the annealing parameter�is gradually
decreased, successively finer details are resolved (iterations 3,10,20, and 100 are
shown).
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each other. We illustrate this using the image set shown in Figure 5, which was
taken under orthographic projection. The complete set consists of 11 images,
and 55 features were manually measured in each image, for a total of 550 2D
measurements. To initialize, the 55 unknown 3D points were generated randomly
in a normally distributed cloud around a depth of 1, whereas the 11 camera poses
were all initialized at the origin. We ran the EM algorithm for 100 iterations,
and ran the sampler each time in each image for 10000 steps. The algorithm
converges to the solution in about a minute on a standard PC, but may have to
be restarted on occasion when it gets stuck in a local minimum, as can happen
with EM. One reason for its computational efficiency is use of flip proposals to
propose new mappings, which only involves a simple local calculation to evaluate,
as discussed.

To avoid getting stuck in local minima, it is important in practice to addan-
nealingto the basic EM scheme. In annealing we artificially increase the noise
parameter� for the early iterations, gradually decreasing it to its correct value.
This has two beneficial consequences. First, the posterior distributionP (cjz; �t)
will be less peaked when� is high, so that the Metropolis sampler will explore the
space of assignments more easily, and avoid getting stuck on islands of high prob-
ability. Second, the expected log likelihoodQt(�) is smoother and has less local
maxima at higher values for�. We use a logarithmically decreasing annealing
scheme, but found that the algorithm is not sensitive to the exact scheme used.

The typical evolution of the algorithm is illustrated in Figure 6, where we
have shown a wireframe model of the recovered structure at successive instants of
time. There are two important points to note: (a)the gross structure is recovered
in the very first iteration, starting from random initial structure, and (b) finer
details of the structure are gradually resolved as the parameter� is decreased. The
estimate for the structure after convergence is almost identical to the one found by
factorization when given the correct correspondence. Incidentally, we found the
algorithm converges less often when we replace the random initialization by a
’good’ initial estimate where all the points in some image are projected onto a
plane of constant depth.

6 Conclusions and Future Directions

In this paper we show that taking into account a distribution over possible cor-
respondence mappings gives more complete and more accurate knowledge about
the properties we want to estimate. To obtain these distributions, we propose the
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use of the Metropolis sampler, an MCMC method, which can be implemented ef-
ficiently in many applications. We demonstrate the validity of the approach with
some simple examples from pose estimation, and a fairly elaborate structure from
motion application. We have many more results for the SFM application, that are
discussed in more depth and with detailed implementation notes in an accompany-
ing paper (reference omitted). However, we have only explored the joint sampling
approach discussed in Section 3. Ongoing work is evaluating the applicability of
the method in object recognition and motion estimation. Specifically, we would
like to see whether the approach has merit in estimating quantities such as the
fundamental matrix [23].
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