Managing Software with New Visual Representations

Mei C. Chuah
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
(412) 268-2145
mei+@cs.cmu.edu

Abstract

Managing large projects is a very challenging task
requiring the tracking and scheduling of many resources.
Although new technologies have made it possible to
automatically collect data on project resources, it is very
difficult to access this data because of its size and lack of
structure. We present three novel glyphs for simplifying
this process and apply them to visualizing statistics from
a multi-million line software project. These glyphs
address four important needs in project management: 1)
Viewing time dependent data; 2) Managing large data
volumes; 3) Dealing with diverse data types and 4)
Correspondence of data to “real-world” concepts.

1 Introduction

Visualization can suppdrt software engineering at
many levels. For code production, which includes code
writing, code understanding, debugging, and feature
modifications, visualizations are wused to highlight
functions, identify the differences between releases,
examine function execution times, and to understand code
change history and authorship [1,2,6,11]. For algorithm
understanding, animation can easily communicate the
underlying mathematical concepts [4,8]. There Iis,
however, an aspect of the software process that
visualization has yet to impact: Project management, the
overall task of efficiently managing and processing
resources, both human and machine, involved in a
software project.

Managing a large software project is time intensive.

Any reasonable-sized project will have many different
classes of resources (lab equipment, staff time, machine

For Color Plate See Page 118

0-8186-8189-6/97 $10.00 © 1997 IEEE

30

Stephen G. Eick
Bell Laboratories
Room 1G-351
Naperville, IL 60566
eick@research.bell-labs.com

cycles, disk resources, interim deliverables, customer
commitments) that must be scheduled and tracked.
Inevitably problems will arise and solutions must be
found. To support the management process, information
systems collect and maintain large status databases. Our
aim is to support and improve this process through
visualization.

Although large volumes of data are collected, much of
it remains underutilized. The size of the data volumes
make them unfeasible to read textually, and their lack of
structure frustrates statistical analysis tools. New visual
metaphors can simplify the process of extracting
information and presenting it to users in an actionable
form. This paper presents three novel glyphs for exactly
this purpose.

Managing a large software project is a specific
instance of the project management problem. Project
management is “the art of directing and coordinating
human and material resources throughout the life of a
project by using modern management techniques to
achieve predetermined objectives of scope, cost, time,
quality, and participation satisfaction” [7]. Besides
software, project management is involved in many other
industries including construction, manufacturing, and
transportation. Thus even though we will only show the
application of these glyphs to software production
management, they address issues that are common to
project management domains in general.

There are four interesting issues in project management

data:

1. Time: Project management is time-oriented. Each
project has a “life” or a time in which it must be
completed (deadline). To properly meet deadlines it
is important to track milestones, monitor resource
usage patterns, and anticipate delays.

2. Large Data Volumes: Large projects have a lot of
data associated with them. For example, a multi-
million line software project may be partitioned into
tens to hundreds of subsystems, hundreds to
thousands of modules, and thousands to hundreds of
thousands of files. Our experience is that much of
this data is unstructured, so mining information from
it is difficult. Our approach, as is typical in large
projects, is to partition the data hierarchically. For
example, a software project will have a high-level
manager with overall responsibility. This manager
may have several supervisors under her and each
supervisor will lead a group of engineers.

3. Diversity/Variety: It is common for projects to have a
diverse group of resources as well as resource
attributes. Expressing different types of resources
(e.g. engineers, computers) as well as their attributes
(e.g. number of code lines, number of errors) requires
that the visual representations be flexible enough to
convey meaningfully information about a set of
diverse data. Our glyphs are designed to be versatile
so that they can show data for many different
software artifacts. Users do not need to relearn new
visualization structures for each object type.
Flexibility i1s achieved by enabling our
representations to show many different data types,
including both discrete and continuous domains. This
is unlike previous glyphs [5,10] that focus on a
narrower set of data types.

4. Correspondence to “real world” concepts: In a
project database, data elements usually correspond to
“real world” entities or concepts. For example, a
userID-1 data element in a software database
represents an actual person and the element file-125
corresponds to a source code file. By using glyphs,
we maintain the “objectness” of the data elements
because all the properties of a data element are
grouped together visually. Visual grouping is
achieved in our glyphs in two ways: 1) by bringing
together various graphical artifacts to form a familiar
shape, namely an insect; 2) by arranging the
graphical elements according to a common geometric
shape (circle). Another method for viewing multi-
dimensional objects is through linked scatterplots {3],
however, this method does not preserve the
“objectness” of the software components.

Glyphs are not a new concept, being first developed
for multi-dimensional data by Chernoff in 1973 [5]. Our
work, however, is different from previous efforts because
it combines established visualization views (time series,
histogram, rose-diagram) to form glyphs. This allows

31

users to more easily interpret the glyph by using prior
graphic knowledge.

Above we have described how our glyphs deal with
the issues of diversity and “real-world” correspondence.
In the next two sections we describe how our visual
representations can be applied to view time information
and deal with large data sets.

2 Viewing time-oriented information

Visualizing time-oriented information is challenging
because it is unclear what representation will best show
the salient information. Animation, a traditional method,
uses a symbol to represent the information at one slice in
time. This symbol is then rapidly varied to show the data
for subsequent time slices. Rapid changes representing
outliers are jarring and easily perceived [3]. Although
effective for identifying outliers, animations are less
effective than traditional time-series plots for determining
overall time patterns. A time-series plot has time on the x-
axis and a variable on the y-axis. For viewing time
information we present two types of visual
representations: timeWheel and 3D-Wheel. These
representations are a variation of the time series plots.

2.1 TimeWheel

In a timeWheel each object attribute is represented as a
time series and the time series are laid out around a circle.
The goal of this display is to be able to quickly or even
preattentively pick out objects based on their time trends.
Figure 1 shows a timeWheel and the different attributes
that are mapped onto it. The direction of the arrows
indicates the direction of time increment for each series.

#-cf-error-
added-lires g ofarror-
{asm) deletectlines
#-of-people (n
people (Op}x (dem)
§} #-of - newr-added-
#—Iinee—of—code? « lines (anew)
(lec) ./ Userldl
w #-of-new-deleted-
#-cf-errors (em) - lines (dnew)
] B #-of-undefined-
#-of-file-changes added lines (auder)
{fehg) #-of-undefined

deleted-lines (dudef)

Figure 1: TimeWheel Glyph

We encode attributes in two ways, by their position on
the circle and by a rainbow-hue colormap. Color, or hue,
simplifies the process of identifying object attributes. The
rainbow colormap is appropriate for encoding the

attribute types because it is a perceptually discrete
dimension [12]). Nevertheless, with a careful choice of
scale, hue may also be used to encode continuous
variables [9].

Figure 2: Left - increasing trend timeWheel
(prickly fruit); Right- decreasing trend timeWheel
(hairy fruit)

TimeWheel glyphs show two major trends: the
increasing trend and the decreasing or tapering trend. The
increasing trend glyph looks like a “prickly fruit” (Figure

L Thmelisact

2-left) and it indicates objects which have very little
activity at the outset but increasing activity towards the
end. The decreasing trend glyph on the other hand looks
like a hairy fruit, e.g. a coconut husk (Figure 2-right).
Decreasing trends indicate high activity at the outset but
declining activity through time.

Figure 3 (Plate 1-a) shows 16 software releases using
the timeWheel glyph interface. Looking at this figure we
can partition releases into three major classes: 1) objects
with increasing trends, which are new releases that have
only been worked on later in the project (outlined in light
gray in Figure 3 and white in Plate 1-a); 2) objects with
decreasing trends which are the older releases and activity
has since slowed to a crawl (outlined in black in Figure 3
and red in Plate 1-a), and 3) in-between objects which
represent releases worked on in the middle of the project
(non-outlined objects in Figure 3 or Plate 1-a).

| File

r WM"M»,W
> .) I Y { e
el 1L b - % e :q& " rel :m‘
refesse- ralesss2 : * pelease-d g release-
! /’{s‘, Y ’,‘{\ o - By - %?
P S 5 _—
e
i, L P
#-oum Lo a o ? o~
3 5 b \ 7
i A o, % . 5 %
TYrelease- 7 frelesse-b ?rélease-?g ; ~ releage-8
‘}"‘Y’ﬁd “ ‘% “§ %—«,& % W!& e g
o " % T
‘a%\ %
P
(f s g .,{ L
L o
A-Achd Ur +ralesse -3 “yreleasa-10
ey
B —
#-Del Urd
%W ¥ y - a A 4,
4R b §

; i \‘“} Y “'\? L . %, L o iy
1 ¢ re!ea.sew?%\ release—‘lkﬁ frg\gs_se-{i # release-1 y:;
= .~ y - e 3 SR\

= Lo N ~__ ~_ :

A e 0 8 0 A 8 055 ot

Figure 3: timeWheel interface for 16 software releases (Plate 1-a)

32

Grouping the time series into a glyph allows us to
identify the dominant time trend, however, having the
individual time series available allows us to examine
divergences from that trend. For example in Figure 1,
userld-1 has an overall tapering trend, but there are
divergent variables. The interesting information to derive
from wuserld-1’s timeWheel display is that the aerr and
derr attributes have tapering trends while the anew and
dnew attributes have increasing trends. Because the loc
trend (colored in red) is tapering, we can deduce that most
of the code added were from error fixes. In addition, we
can tell that there are two clear phases for developer
userld-1. First, userld-1 did error fixes but later moved on
to developing new code. We can also deduce that error
fixing accounted for a more important portion of userld-
I’s activities because it corresponds to the dominant
trend.

An obvious and traditional way to arrange a set of time
series on a two dimensional plane would be to lay them
out linearly as in Figure 4. For tasks involving browsing
or searching for gestalt patterns, the circular layout may
be more effective than a linear layout for four reasons:
eye movement, local pattern perception, reading order,
and information density.

Reduce the number of eye movements per object: Cropper
& Evans as well as Danchak found that the visual angle
over which the eye is most sensitive is 0.088 radians (5
degrees) [14]. Cropper and Evans subsequently stated that
“the presentation of information in “chunks’ ... which can
be taken in one fixation will help to overcome the
limitations in the human input system in searching tasks”.
Laying out the time series in a circular fashion as in
Figure S allows all of the time plots to be taken in with
one eye fixation. However, laying them out in a linear
fashion as in Figure 4 requires more than one eye
fixation.

There is, however, a limit to the number of object
attributes that can be displayed in the timeWheel for it to
fit within the area of an eye fixation. As a rough
approximation, for a viewer that is 15 inches from the
screen, a visual angle of 5 degrees translates into a
circular area on the screen with a radius of 0.65 inches.
Our experience 1s that we can comfortably encode 10
variables in that area. It may be possible to encode as
many as 15 variables before the display becomes too
dense to interpret.

An alternative layout scheme arranges the time series
in rows. This reduces the number of eye fixations,
however, the user might begin to cluster the data by rows
because we are conditioned to it from reading text. This

33

would adversely affect the users’ ability to sense the
overall time patterns 1n the glyphs. Another possibility
positions the time series out in 3D space and encode
properties along the z-axis. The drawback to this 3D
layout is occlusion: The first few series occlude the
others.

A
A A A

Figure 4: Linear layout of object-1 and object-2

Figure 5: Circular layout of object-1 and
object-2

Less susceptible to local patterns: Linear ordering
highlights local patterns. For example, in Figure 4 a
dominant visual impression is the cyclic local pattern
shown in Figure 6. The local pattern is formed here
because our perceptual system groups the two time series
based on the gestalt principle of closure [13]. This
grouping however is spurious because the object
attributes have no ordering.

The perceptual differences between the two rows in
Figure 4 are emphasized due to local grouping effects. By
comparison, the circular placement suffers less because
the symbols are not placed directly next to each other. As
an example Figure 5 shows that the rows in Figure 4 are
in fact quite similar -- one is merely a rotation of the
other. This pattern is masked in Figure 4 because of
distracting local patterns.

Figure 6: Cyclic local pattern

Reading order: A linear layout encourages users to read
the plots from left to right. Since the attribute types are
unordered, this may cause false impressions. For
example, more importance could be placed on the series
at the start or end. Unlike linear ordering, a circular layout
positions each time series at the same distance from the
glyph center. In this way, the time series position has a
much weaker ordering implication. Reading order is

another reason why the two rows in Figure 4 appear to be
different. The bottom object has cyclic patterns at its start
and end while the top object has two opposing patterns

namely ./ and .

Less separation and therefore higher information density:
The circular layout creates a strong gestalt pattern out of
individual time series. We recognize the circular pattern
because it is a common geometric shape. On the other
hand, the linear layout ties the time series together only
through spatial proximity. As a result, for us to see the
boundaries between objects, we have to leave a lot more
whitespace between the series than in the timeWheel
case.

I

A N
~) ~)

Figure 7: The objects in Figure 4 and Figure 5
placed close to each other

For example the top row in Figure 7 contains the same
information as the bottom row and is divided by the same
amount of whitespace, however it is hard to see the
division between the top objects while it is much easier to
see the division between the bottom objects. Instead of
whitespace we could use a bounding box to indicate
object boundaries for the linear layouts, however this
adds to the density of the display and may distract the
user[14].

2.2 3D-Wheel

The 3D wheel encodes the same data attributes as the
timeWheel but using the height dimension to encode
time. Each variable is encoded as an equal slice of a base
circle and the radius of the slice encodes the size of the
variable as in a rose diagram. Each variable is also
colored in its own discrete, shaded color. An object that
has a sharp apex as in Figure 8-left has an increasing
trend through time and an object that balloons out as in
Figure 8-right has a tapering trend.

Figure 9 (Plate 1-b) shows the 16 releases from Figure
3 using 3D wheel glyphs. The 3D wheel shares the
advantages of the timeWheel over linear ordering
methods. However, unlike the timeWheel where the
dominant trend is perceived through the global pattern
formed by the series, the 3D wheel allows users to
perceive the dominant time trend through its shape. As a
result it is easier to identify overall time trends using the

3D wheel. It is however harder to identify divergences
because of occlusion and perspective. Even though there
is occlusion in the 3D wheel, it is still a lot less than if we
were to lay out the time series over the z-axis.

N

Figure 8: Left - increasing trend (sharp apex);
Right - decreasing/tapering trend (balloon)

reicate s relts e 12 reloase1%

roloase 4

Figure 9: 3D wheel interface of the 16 software
releases shown in Figure 3 (Plate 1-b)

3 Viewing summaries with INFOBUG

Associated with any reasonably-sized software project
are diverse data sets involving the developers, files,
software releases, etc.

Organizational
Classification
Department

Functional
Classiflcation

Package

Structural
Classification
Sub-system

Figure 10: Software Hierarchy

Physical constraints (e.g. screen space) and cognitive
constraints (e.g. short-term memory) make it unfeasible to
view all this data at once. To address this problem, we
partitioned the data hierarchically into three classes of
software artifacts (Figure 10) and used it to construct a
scatterplot interface (Figure 11).

Selected object

°

module-x adule-¥ 115 sup1 car '
B3

a6 wserldd 1868 featsre.1
m 1205
518 [
= * s le

2

L 180 53 1<) e
doveloper ap BRSO

) kil

Figure 11: Scatterplot interface

On the x-axis of each scatterplot we encode the number of
code lines (loc) and on the y-axis we encoded the number
of errors (err). This encoding is made because the ratio of
errfloc helps determine the quality of a software
component. Objects may be selected in the scatterplot by
using a bounding box swept out by the mouse. Once
selected, the children of the objects may be viewed at a
lower level in the scatterplot hierarchy (Figure 11).

Viewing objects hierarchically helps alleviate some of
the data scale issues. Even so, it is often the case that
within each level of the hierarchy summarization is still
needed. The InfoBUG glyph shows many properties
simultaneously in a small footprint such that patterns
preattentively “jump out” at the user. :

Four important classes of software data are represented
by the infoBUG head, tail, wings, and body. As is shown
in Figure 12 the number of code lines and number of
errors are assigned to the bug wings, the code type
consistency to the head, the number of changes to the bug
tail, and the component size to the body.

The infoBUG glyph is interactive and through
animation can show the information at different times
within the project. Clicking on the wings selects a time-
slice causing the head, body, and tail to update. The
selected time slice is indicated with a red band on the
infoBUG wing. The time component for all infoBUG
glyphs can be changed simultaneously by using the slider
at the bottom of the interface (Figure 13).

Lines of code vs. number of errors ratio. This is an
important measure for determining problems within
project components and is encoded within the wings of
the infoBUG. Each wing is a time series with time
running from top to bottom. The x-axis on the left bug
wing encodes the number of code lines and the x-axis of
the right bug wing encodes the number of errors. Usually
increases in code bring about comparable increases in
number of errors. This results in symmetrical insect
wings.

Wwings Head

J L c-co@e . sdcode
headéfs
-~ L0

lines
#-lings-of-codle #-arrors

Time

Body

#-Lines i

) children
deleted #File

changgs
#-Lines added #-Lines added
fr. emors fr. new
functionality

Figure 12: InfoBUG glyph

L ot

release-2

el

release-13

iGlobal timestep 7
0

n,]um,ﬁi rdnw.»fx
: A %{) Lo - .:«)(
-] |] . »
I . E -
release-9 releage- 10

-M@ui Prewttes

rdmsc 14

e
- i --4, -

mlumn release-4

it!LdM,—? elease-8

i

release-11 release-12

-)“,: [5% <

redeage- 16

release-1 J

R —— e

20

Figure 13: infoBUG interface of the 16 software releases shown in Figure 3 and Figure 9 (Plate 1-c)

Increases in code that are not accompanied by similar
increases in errors may imply that the component is not
being well tested. On the other hand increases in the
number of errors that are not accompanied by similar
increases in code could mean that the existing code is
inherently difficult, has architectural problems, or is
poorly written and in need of re-engineering. These cases
are represented visually by non-symmetrical wings which
are easy to identify using infoBUGs.

The position of the wings (whether starting at the top
or bottom) indicates the time at which the project was
started while the shape of the wings shows whether the
number of code lines and the number of errors found are
increasing, decreasing, or static with time,

Code type consistency: A particular software component
may consist of several different types of code. For
example to implement the glyph systems described in this
paper (Figure 3, Figure 9, Figure 11, and Figure 13) we
used Java to specify and control the interfaces, Perl to
extract and process the data, and VRML to render the
three dimensional wheel glyphs.

The code consistency of software components indicate
the components’ capabilities and purposes. For example

36

knowing that VRML is used suggests three dimensional
representations. Examining such data might also show
changes in development practices and in the requirements
for a software component.

Code type consistency is encoded by the infoBUG
head. The head shows, for a given time slice, the relative
code sizes by type. The code type is color coded and the
color scale for it is shown at the left of the interface in
Figure 13 (Plate 1-¢) For example the software
component in Figure 12 is made up of C code, SD (State
Definition) code, and header lines.

By interactively changing the time component we are
able to obtain information on how the different code types
evolve. Such changes give us hints about the changing
needs of a software component.

Information on changes made: The bug tail is triangle-
shaped. Its base encodes the number of code lines added
and its height encodes the number of code lines deleted.
The tail base is further divided into two parts: code added
due to error fixing (color coded in red) and code added
for new functionality (color coded in green). Figure 13
(Plate 1-c) shows that most of the releases consist of code

added for new functionality, except for release-8 which is
a bug fixing release.

By looking at the shape of the tail we can determine
the ratio of number of code lines added to lines deleted. A
short squat triangle like the one for release-8 shows a
high added to deleted ratio. The shapes of the triangles for
most of the other releases are less squat indicating a lower
added to deleted ratio. A triangle that is higher than it is
wide has more deleted lines than added lines. This could
be an indication of a serious problem in the release. None
of the releases in Figure 13 show this property.

Size of components: The size of a component is often
important as it reflects the extent to which a component
affects the project. Component size is encoded in two
ways: through the number of altered files and through the
number of child objects a software component contains.
The bar in the middle of the infoBUG body shows the
absolute number of file changes. The size of the black
circles on the body encode the number of child
components that are contained within the current objects.
The type of child objects encoded depends on the
software hierarchy of the system being analyzed. Our
system for example, is based on the software hierarchy
shown in Figure 10.

The size of the children groups helps us gauge whether
a software object is “wide” (i.e. related to many other
components) or “narrow” (i.e. related to only a few other
components). A software component may be wide in
certain respects and narrow in others. For example
release-1 and release-2 in Figure 13 are spread out over
many modules (top left body circle) but affects very few
supervisors and packages. This indicates that the releases
are specific to a small set of packages but the changes
made affected large portions of those packages. On the
other hand, release-11 affects many packages (lower right
body circle) but the effects within each package are
relatively small as indicated by the small module circle
(top left circle). ‘

Conclusion

We have developed three novel representations for
dealing with project management data. These
representations address important issues in project
management namely: time dependent data, large data sets,
diversity, and correspondence to real world entities.

37

One particularly exciting aspect of this research
involves the company Intranet. We are using the
corporate WEB as a distribution mechanism to provide
access to our visualization. We built our glyphs using
Java and VRML and have them running on top of a
Netscape browser. Now anyone inside the corporate
firewall can access our software visualization glyphs and
display software project data. In the past we have built
many innovative tools that were not widely used because
of platform and database obstacles. By centralizing the
databases and building on top of a ubiquitous platform,
we can connect with a much wider user base.

References

1. R.M. Baecker and A. Marcus, Huwman Factors and
Typography for More Readable Programs, Addison-
Wesley, Reading, Mass., 1990.

2. T. Ball and S.G. Eick, “Software Visualization in the
Large,” IEEE Computer, No. 4, Vol. 29, 1996, pp. 33-42.

3. R.A. Becker and W.S. Cleveland, “Brushing Scatterplots,”,
Technometrics, Vol 29, 1987, pp. 127-142.

4. M.H. Brown, “Algorithm Animation,” in ACM
Distinguished Dissertations, MIT Press, New York, 1988.

5. H. Chernoff, “The Use of Faces to Represent Points in k-
Dimensional Space Graphically”, Journal of the American
Statistical Association, 1973, pp. 361-368.

6. S.G. Eick, J.L. Steffen, and E.E. Sumner, Jr., “SeeSoft—A
Tool for Visualizing Line-Oriented Software Statistics,”
IEEE Trans. Software Eng., Vol 18, No. 11, 1992, pp. 957-
968.

7. C. Hendrickson, T. Au, Project
Construction, Prentice Hall, 1989.

8. E. Kraemer and J.T. Stasko, “The Visualization of Parallel
Systems: An Overview”, J. of Parallel and Distributed
Computing, Vol. 18, 1993, pp. 105-117.

9. H. Lefkowitz and G.T. Herman, “Color Scales for Image

Data”, IEEE Computer Graphics and Applications, Vol.

12, No. 1, January 1992, pp.72-80

R.M. Pickett and G. G. Grinstein, “Iconographic Displays

for Visualizing Multidimensional Data,” Proceedings IEEE

Conference on Systems, Man and Cybernetics, 1988, pp.

514-519.

11. B.A. Price, .S. Small, and R.M. Baecker, “A Taxonomy of

Software Visualization,” J. Visual Languages and

Compuring, No. 3, Vol. 4, 1993.

B.E. Rogowitz and L. A. Treinish, “An Architecture for

Rule-Based Visualization”, Proceedings IEEE

Visualization "93, pp.236-243.

Spochr, K.T., and Lehmkuhle, S.W., Visual Information

Processing, W.H. Freeman and Company.

T.S. Tullis, “The Formatting of Alphanumeric Displays: A

Review and Analysis”, Journal of Human Factors, Vol. 285,

No. 6, 1983, pp.657-682.

Management for

10.

13.

14.

Managing Software with New Visual Representationsvouerentntntataeeat oo 30
M. Chuah, S. Eick

i —

118

