On-line Memory-based Detection of
General Purpose Systems

Kan Deng Andrew W.Moore Michael C. Nechyba

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Kdeng@cs.cmu.edu

Abstr act

By combining memory-based learning methods with likelihood
analysis, we provide a technique which can distinguish the
underlying system given a set of the system input and output
observations. It is surprising that this straightforward technique is
capable of doing many hard jobs. As a demonstration, we use it to
distinguish different styles of manipulating a tennis simulator.
Also, we apply it to a driving style detection domain, using both
simulation and real world data.

1 INTRODUCTION

Let’s begin with explaining the title. A system usually has inputs and outputs. The
output is a function of the input, plus noise. We assume both the input and output
are fully observable. Some systems are dynamic, because they have feedback.
Others are static: simply mappings between inputs and outputs.

By “general purpose” we mean the input and output of a system can be any type of
value. They can be continuous, or discrete, including categorical, or even a mixture
of them. More importantly, given a specific input, the output can be of any
distribution. For some systems, the outputs corresponding to the same input may
scatter around a center, so that the conditional distribution of the output with respect
to an input is reasonable to be formed as Gaussian. However, for a general purpose
system, we don’t need this Gaussian assumption. Later in this paper, we will find
that the multinomial discrete distribution is very interesting.

The task of system detection is that given a set of observations of input and output
signals, we want to figure out who generates these signals among a finite set of
system candidates.

In some situations, we don’t have the closed-form knowledge of the candidate
systems; instead, we have stored previous observations of the input and output
signals for each of them. To detect a set of unlabeled observations generated by a
unknown system, we compare the unlabeled signals with the observations of each
candidate system. If the unlabeled observations are similar to the observations from
a candidate, the underlying system is likely to be the corresponding candidate
system. That is the principle of “ memory-based system detection”. To be on-line,
we need some tricks to make the processing sufficiently fast.

For the sake of convenience, we hame our method On-line Memory-based GenerAl
purpose system detection (OMEGA).

2 RELATED WORK

The related work in literature can be referred to system identification, system
recognition, system verification, prediction, novelty detection, etc. Each of them has
its own goal. The comparison between them and OMEGA is only in the point of
view of system detection.

Classification Based on Features.

A simple way to detect a system is to calculate the distance from the centroid of the
unlabeled observations to the centroid of a certain candidate system’s memory
observations, then compare the distances with respect to different candidates to
figure out the most likely one. In literature, this method is called Bayes classifier
[Duda, 73].

However, this method assumes that the distributions of the unlabeled observations
and those of the candidate systems are Gaussian; but maybe with different
parameters. In many domains, this assumption doesn’t hold. Of course, Bayes
classifiers can be improved with the help of complicated distribution approximating
techniques, but that may increase the computational cost, and begs the question of
who decides what these distributions should be.

Linear System Identification

System identification from control tries to figure out the parameters of a system,
given a set of observation and a priori knowledge of the type of the system, e.g.
linear. Once we have known the parameter values of the system, it is
straightforward to compare the unlabeled system with the candidate ones [Makhoul,
75], [Eykhoff, 74], [Basseville, 93]. However, there are two restrictions in this
technique.

1. Because of the linear assumption, this technique performs badly in case the
underlying system is non-linear. Also because of the linearity, the output must
be uni-modally distributed. This assumption doesn’t hold in many domains.

2. In many cases, the system model is assumed to be global. That is, for different
inputs, the system model’ s parameters must keep the same values.

Neural Detection

Because of the restrictions of the linear model, some researchers use neural nets to
approximate the system models. Before the detection work starts, a neural network
is configured and trained off-line for each of the candidate systems. To detect a set
of unlabeled observations, one can compare the observed outputs with those
predicted by the neural nets [Narendra, 90]. Since each candidate system needs a
neural net, it is hard to update them when new training data keep coming. This
problem becomes more serious when the number of candidate systemsis large.

Hidden Markov Model

HMM [Rabiner, 89] plays an important role in time series analysis [Nechyba, 98].
HMM assumes the input and output signals of a system are decided by some hidden
states, and the transition probabilities of these states determine the similarity of
different time series observations. This assumption works well with speech; but it is
arguable whether or not in other domains the transition probability is the only
principal characteristic of a time series. Besides, the training of HMM is data-
consuming. And similarly to neural nets, each candidate system needs a HMM
model. Hence, it is not easy to update the HMM models on-line, too. Further
discussion on the comparison between HMM and OMEGA refers to [Deng, 98].

3 MEMORY-BASED SYSTEM DETECTION.

Given an aobservation of input and output, (X;, VY:), the probability that this
observation is generated by a system S,, P(S, | X;, Y1), is proportional to P(y; | X, S).
If y; is continuous and its distribution is uni-modal, one can always roughly treat y;
as Gaussian distributed.

[y, - E(yIS,.)1,
25 2 !

P(yt|s,,,xt):m%S exp{-

In the situation that the closed-form function relationship between x; and vy, is
unknown, but there are sufficient previous observations of (x;, y;) generated by the
system S,, memory-based machine |earning methods can be used to approximate E(y
| S, %) and s. Kernel regression is one of these methods. If there are N data points
generated by S, (X, ¥i), 1= 1,2, ..., N,

N N
_ o o
B[S, X)=a wy, /aw s 2 =E(Y,"1S,,%) - E(%1S;,%)
Now let's consider the situation that y; is continuous but not uni-modal.
Theoretically, we should use state-of-art techniques to approximate the distribution
of P(y | S,). But in practice, we simply discretize y and treat it as a multinomial
distribution.

If y isadiscrete variable whose distribution is multinomial,

N N il wheny, =y
P(y, 1S, x) =& WF(y,.y) /& w F (YY) =1 .
(yl I b Xt) 9.1 i (yl y|)/a_.1 i (y“y') ’:‘O otherwise

Note that multinomials are usually used to model the distribution of categorical
variables. One cannot say one value of a categorical variable is closer to another
value, but further from a third one. Therefore, the multinomial approximation of a
continuous multi-modal distributed variable is in fact the lower bound of the correct
approximation.

If there are a set of observations, the likelihood is a good metric of the overall
probability that the observations are generated by an assigned system. For the sake
of computational convenience, we use the average of the negative log likelihood in
our system,

- lik(S;) =- & 1ogP(y, %S)/T

When —ik(S,) is close to zero, P(y: | x,) is near 1.0, therefore, the underlying
system which generates (x;, y;) is very likely to be S,.

This formula works for most cases. However, when the density of data points varies
greatly with different x, the approximation of P(y; | x, &) may have different
confidence. To adjust the overall log likelihood, we should insert a weight into the
sum. The weight is a function of the density of data points near x. One possible
implementation is,

N
w(x) = é W, /N N is the number of data pointsin memory
i=1

To make the process sufficiently fast to be on-line, we use a kd-tree for kernel
regression [Deng, 95]. Kd-tree has other good features, for example, it can help us
focus on the more promising candidate systems, while ignoring the others, from the
very beginning of the process.

4 EXPERIMENT TWO: TENNIS SIMULATION.

Real Player: Marianne, No. 5
T T T

—log Lik

H g, VS
- i‘i?f;-m@‘yg”}.ﬁw“m? ek

;. Marianne

o 1‘0 2‘0 BIU 4‘0 5‘0 S‘U T‘U B‘U SIU 100
Num of Datz Points.
(b)
Figure 1 a. Tennis simulator interface. b. Likelihood curves of six human

In this experiment, we designed a simple simulator of tennis, to study different
people's performance styles. The ball is served automatically from a random
position in the upper half field with a random speed and a random direction towards
the bottom line. A human player can control the racket by moving the mouse. The
line segments in Figure 1.a illustrate the recent movement of the racket. Notice that
this is not a dynamic system, because every serving and hit is independent without
feedback.

Six people were invited to do the experiment. Each of them played sixteen runs, and
during each run, they hit the ball one hundred times. For each hit, we recorded eight
variables: the position where the ball was served, the ball's speed and direction, the
position where the racket hit the ball, and also the speed and direction of the ball
after the contact. We assigned the first six variables as the inputs, and the latter two
as the outputs. For the same input, different people's outputs may be of
distinguishable distributions. We didn’t evaluate the merit of the performance, we
only focused on the different styles.

One run from each player was used as a test set, with the other nineteen used for
training. To detect who was the hidden player of a certain test data set, we tried
OMEGA with respect to all the players memory data sets one by one; hence, we got
six average negative log likelihood curves. The curve closest to the horizontal axis

indicates the hidden player, because this curve' s average negative log likelihood is
closest to zero, in other words, its likelihood is closest to the maximum, 1.0.

Figure 1.b is a typical picture of the likelihood curves, which detects Marianne is
the hidden player. This result is correct. We tried ninety-six cases. Among them,
eighty-five are correct, four are wrong and seven are confused. By confusion, we
mean this situation: although the lowest curve does correspond to the correct player,
there is another curve very close it, so that they are not distinguishable from each
other. Figure 2.a shows a confused case.

The likelihood curves are bumpy some time. This is because the player performed in
a way that hasn't been observed in memory. If a performance was so strange that it
never happened to all the players, then all the likelihood curves are bumpy, in a way
roughly paralleling each other. Therefore, the bumpiness implies the consistency of
the players. Comparing Figure 2.a with Figure 2.b, it is obvious that Willoughby is
more consistent than Edward.

The distances among the likelihood curves imply whose performances are similar.
In this experiment, Margaret and Willoughby behaved similarly, referring to Figure
2.b. But they are different from the others. As in Figure 2.a, their curves were so
much higher than the others that they are off the graph.

Table 1 is the comparison of the accuracy between OMEGA and Bayes classifier. It
is obvious that OMEGA outperforms Bayes classifier by a large margin. HMM
cannot be used in this domain, because it is not a dynamic system.

Real Player: Edward, No. 12 Real Player: Willbughby, No. 17
- T T T T T T

.
Colonal | ¥

| Wiloughby |

i i i
[10 20 30 40 50 60 70 80 30 100
Num of Data Points Rlisrm mé Mabe Drinte

(@) (b)

Figure 2. The likelihood curves of the tennis simulation experiments by six players.

Table 1 The comparison of the accuracy between Bayes classifier and OMEGA

Correct Wrong Confused

Bayes 34 40 22

OMEGA 85 4 7

o

i H L
500 1000 1500

H H
2000 2500 3000

Leglikeliheod

Driving Performance Detection, the driver is in fact Tory

c2nd Clurly

i i
500 1000

i
1500

i
2000

Time, number of dataprt

Figure 3. Simulation driving style detection.

Table 2. The comparison of Bayes classifier, HMM and OMEGA.

i
2500

Correct Wrong Confused
Bayes 0 5 10
HMM 13 0 2
OMEGA 13 0 2

H
3000

5 EXPERIMENT THREE: DRIVING STYLE.

We have also done experiments to distinguish driving styles using both simulation
and real world data. For simulation, we asked five people to operate a driving
simulator by moving the mouse and pushing the buttons to control direction and
speed. The input contains the vehicle's speed, direction, its position in the road, and
their previous values. Besides, the curvature of the road, the previous values of the
driver's control of the steering angle and gas/brake are also included in the input.
The output is assigned to be the driver steering control. Due to the limitation of
space, we cannot explain the experiment and its results in detail. Figure 3
demonstrates the success of OMEGA in this simulation domain. Table 2 compares
OMEGA with Bayes classifier and HMM. Both HMM and OMEGA significantly
outperform Bayes classification, but it is hard to tell who is better between HMM
and OMEGA.

Figure 4 is OMEGA'’s performance in a real world driving domain. The data was
collected by NavLab of CMU [Pomerleau, 96]. Eight people drove a vehicle with
many sensors from Pittsburgh to Grove City and back. This experiment is more
difficult than the simulation one, not only because the data is from real world, but
also does it involve traffic conditions as a part of the input

Theresult in Table 3 is easy to understand, but the interesting thing is that OMEGA
even outperforms HMM which is a more complicated method. Further discussion on
the comparison of OMEGA and HMM goes to [Deng, 98].

CONCLUSION.

By combining memory-based learning methods with likelihood analysis, we come to
a general purpose system detection technique. Although this technique is

The real driver is d2, on road 1

o 500 1000 1500 2000
Time or Num of Datapoirts

3500

4000

The real driver is d5, on road 2

500 1000

2000 2500 3000 3500 4000

Time or Num of Datapoirts

Figure 4. NavLab Real world driving style detection.
Table 3. The comparison of Bayes classifier, HMM and OMEGA.

Correct Wrong Confused
Bayes 0 5 11
Global Linear 4 7 5
HMM 11 2 3
OMEGA 13 0 3

straightforward, it is a surprise that it is capable of doing many difficult jobs with
competitive quality.

Reference:

[Basseville, 93] Detection of Abrupt Changes. Theory and Application. By M.
Basseville, 1.Nikiforov, 1993.

[Deng, 95] Multiresolution Instance-based Learning. By K.Deng, A.W.Moore. Proc.
of 1JCAI, 1995.

[Deng, 98] On the Comparison of Memory-based System Detection Method and
Hidden Markov Model Approach. By K.Deng, A.W.Moore. In preparation.

[Duda, 73] Pattern Classification and Scene Analysis. By R.O.Duda, P.E.Hart.
Published by John Wiley & Sons, New York, 1973.

[Eykhoff, 74] System Identification: Parameter and State Estimation. By P.Eykhoff.
Published by: Wiley-Interscience New York. 1974.

[Makhoul, 75] Linear Prediction, by JMakhoul: Proc. of IEEE. Vol 63, No. 4,
April, 1975.

[Narendra, 90] Identification and Control of Dynamical Systems Using Neural
Networks. By K.S.Narendra, K.Parthasarathy. IEEE Trans. On Neural Networks,
val. 1, pp. 4 —27, March, 1990.

[Nechyba, 98] On Discontinuous Human Control Strategies. By M.C.Nechyba,
Y. Xu, Proc. IEEE Int. Conference on Robotics and Automation, May, 1998.

[Pomerlear, 96] Rapidly Adaptive Machine Vision for Automated Vehicle Steering.
By D.A.Pomerleau, T.Jochem. IEEE Expert, vol. 11, No.2, pp. 19-27, 1996.

[Rabiner, 89] A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, By L.R.Rabiner, Proc. of IEEE, vol. 77, No. 2, Feb. 1989.

