
Toward A Quantitative Method for Assuring
Coordinated Autonomy

Sagar Chaki1?, John M. Dolan2, and Joseph Andrew Giampapa1

chaki@sei.cmu.edu jmd@cs.cmu.edu garof@sei.cmu.edu

1Software Engineering Institute, Carnegie Mellon University,
4500 Fifth Avenue, Pittsburgh, PA 15213-2612, USA

http://www.sei.cmu.edu/

2Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

http://www.ri.cmu.edu/

Abstract. One of the biggest obstacles to the procurement and deploy-
ment of coordinated autonomous systems is the difficulty of assuring
them, that is, to set and manage their performance expectations. This
article introduces a reliability engineering assurance approach based on
probabilistic model checking. It also introduces two models to guide and
extend the reliability engineering approach: (1) a characterization of the
range of autonomous coordination phenomena and (2) phases of a coordi-
nated mission. Two instances of the models are implemented as discrete
time Markov chains (DTMC). Results from in-progress validation exper-
iments with robots are reported, as well.

Keywords: quantitative assurance method, coordinated autonomy, human-
agent-robot teams, reliability engineering, probabilistic model checking

1 Introduction

As autonomous robots and agents become ubiquitous, the range of missions to
which they apply will become more complex, as well. Autonomous robots and
software agents, designed with highly specialized capabilities, will be applied to
tasks that when combined, form more varieties of missions, with greater mis-
sion longevity, and in more diverse and dynamic environments. Many forms of
coordination manage the integration of autonomous systems. They range from
simple biologically inspired algorithms, to long-term team-oriented contractual
commitments that involve conversations about such coordination elements as the
formation of the overall team plan, role assignment, plan execution, monitoring,
repair and eventual completion. One of the biggest obstacles to the procurement
and deployment of coordinated autonomous systems [1] is the difficulty of as-
suring them, that is, to set and manage their performance expectations. This

? Authors are listed alphabetically by last name.

2 Chaki, Dolan, Giampapa

article introduces a reliability engineering (RE) assurance approach based on
probabilistic model checking. Since reliability engineering has not been previ-
ously applied to autonomous coordination, this article suggests two models by
which RE can be extended. The models can be used to guide the selection of
dimensions and principal components by which reliability models can be derived.

In software engineering, assurance is the means by which one makes claims
about properties of a system and proves them via reasoned arguments until a
knowledgeable reviewer can read the assurance claims and arguments to support
them and have justified confidence in the expected behaviors of the system [5].
Testing and evaluation is a synonym for assurance, but when both terms are
used together, assurance usually applies more broadly, referring to any form of
claim or logical argument that is focused on the system. Quantitative methods
for assuring systems allow numeric measures to be made of them. Such measures
not only establish the (non-)existence of the property being tested, but assign
a number and scale to the property under consideration so that a comparison
with other techniques for achieving it can be made. While test suites, arenas and
field tests all provide means of quantitatively evaluating coordinated autonomy,
they typically are presented in absence of a comprehensive assurance argument.
At industrial robotics conferences, there is general public consensus that nobody
knows how to make such an argument. This article is an attempt at responding
to that problem.

The structure of the article is as follows. Section 2 introduces the models by
which reliability engineering can accommodate coordinated autonomy. Section 3
briefly introduces reliability engineering and analysis techniques of relevance to
our problem. Probabilistic model checking is introduced in section 4 and applied
in two instances to our models. Our validation plan is described in section 5 and
we conclude with section 6.

2 General Model

Autonomy is the property of an entity to have persistent, goal-directed behavior.
Goal-directed behavior allows for alternative courses of action to achieve a goal
in a dynamic and unpredictable environment. The dynamism and unpredictabil-
ity of the environment is what makes autonomous systems challenging to assure,
test and evaluate. The persistence ensures that the entity will attempt to achieve
the goal as long as it can reason that it has a means of achieving it, or an interest
in attempting to do so. The reasoning can involve reliance on commitments from
other entities to assist it. Implicit in this description is the assumption of either
altruistic or self-interested cooperation, and that the range of possible actions
and consequences is computable, which implies that assurance claims about au-
tonomous systems can be modeled and evaluated. Except when noted, we use
the term autonomous agent, or simply agent to refer to a software autonomous
entity, autonomous robot, or human in a limited socio-technical context.

To illustrate, consider the following example of altuistic autonomous cooper-
ation. A robot might be capable of lifting a 25kg object as long as the object is

Toward A Quantitative Method for Assuring Coordinated Autonomy 3

Fig. 1: Characterization of the Range of Autonomous Coordination Phenomena.
CE = coordination element

no more than 2m in length and 30cm in thickness. If the length and weight of
the object are doubled, the robot might not attempt to move it without the con-
temporaneous commitment from another robot with similar capabilities to help
it move the object. The persistent and goal-directed behaviors are to attempt
to move the object as long as the robots believe that it is within their collective
capability to move it. The altruism is that they have no contract to guarantee a
reward for self-interested participants.

Coordinated autonomy, used interchangeably with autonomous coordination,
ensures that a goal can be achieved collectively by a group: (a) if the goal is
achievable through the collective actions of the group and not just by one in-
dividual, (b) if individuals of a group can contribute capabilities that can help
achieve the goal — be it by altruism, a form of capability-based coordination
[14], or by short-termed service contracts, (c) through plan execution monitoring,
which allows either (d) the individual to de-commit from the plan or service con-
tract if they deem it is no longer achievable or in their interest, (e) the recruiting
of additional individuals to collaborate on a team — possibly by short-termed
contract — or (f) the repair of the team plan, which might involve reassigning
roles or adopting another plan altogether. Coordination improves the likelihood
to complete a mission by adding and managing redundancy of the resources used
to achieve it. Coordination facilitates the scalability of additional resources by
managing them: temporal-spatial localization, collision avoidance, synchronizing
power drives, multi-tasking and parallelizing work. There are many forms of co-
ordinated behaviors: more than even the missions or tasks that warrant them.
For this, it is impossible to exhaustively enumerate them, but to group them
into broad categories and to show how it is possible to derive variants of those
categories as the situation warrants.

Fig. 1 illustrates such a grouping and a characterization of the range of au-
tonomous coordination phenomena. Inexhaustive, it roughly situates the com-
mon forms of coordination that are frequently discussed in the Agents Com-
munity. In the order: bottom, middle/green, top, within the arrow are: (coor-
dination artifacts) which implement forms of agent coordination and are often
implemented in software for software agents and robots, but are also specified by
norms and policies, (coordination types) as the name suggests, a simple taxon-
omy of coordination types, and (participants) the nature of the agents that are

4 Chaki, Dolan, Giampapa

participants in the coordination. The terminated arrow indicates that there is a
limit to the complexity of the spectrum at one end of the range, but limitless
complexity at the other end. That is, since the arrow-head includes any number
of social sub-organizations of agents, each can create its own normative space
that has an impact on individual, peer-to-peer, and group behavior.

The assurance of coordinated autonomy involves making and proving as-
surance claims about elements of the coordination artifacts layer. We call those
elements coordination elements (CEs). Coordination elements are situated in the
coordination artifacts layer, but are generalized by the names of the coordination
types in the layer above them. Contributions such as norms and policies from
disciplines such as Economics, Game Theory and Computational Mechanism
Design are accommodated by the coordination artifacts layer.

The brown band beneath the arrow situates two common systems engineering
classifications, cyber-physical systems (CPSs) and socio-technical systems along
the same axis, as a way of showing how the coordination maps to the respective
systems engineering disciplines. Considering a cyber-physical system to be a
software-driven system that has a closed loop with phenomena in the physical
world, coordination algorithms on the CPS side of the spectrum will require
more validation of their physical properties than coordination algorithms on
the socio-technical end of the spectrum. This spectrum illustrates intuitions
for how to balance the effort of validating any system of agents with physical
characteristics against a system of agents that must reason and operate within
a complex normative space. If an agent has physical properties, then it is likely
that its principal contribution to the mission has something to do with its ability
to perform a role in the physical world, otherwise the physicality, with all its
attendant requirements for maintenance and spatial location, is unnecessary and
the agent is either opportunistically included in a group or a human. If the model
of its physical execution cannot be validated due to whatever reason(s), then even
if its socio-technical properties can be validated, it is unlikely that the agent will
be deemed suitable for its mission. The risk is too great that it will not be able
to physically execute its role. The reverse of these conditions, by the same logic,
where the CPS model is validated but the socio-technical component is not,
may not invalidate the agent for the mission. Norms can be violated even if such
violations are not welcomed by the other agents, and if the agent fills a critical
physical role, then it justifies its existence in the group.

Returning to Fig. 1, biologically inspired algorithms (coordination artifacts)
such as digital ants, swarms and flocking, are forms of emergent coordination
(coordination types), in which the individual entities have no explicit notion of
teamwork but the coordination is in the proverbial “eye of the beholder” as an
emergent behavior derived from simpler ones which each agent manifests. The
agents that participate in such forms of coordination may be insects, birds, or
even reactive software and robotic systems (participant layer). The programmer-
specified coordination behaviors (coordination artifacts) straddle coordination
type generalizations of both emergent coordination and structured coordination
elements. Systems that implement structured coordination elements, often soft-

Toward A Quantitative Method for Assuring Coordinated Autonomy 5

Fig. 2: State Transition Diagram Illustrating Phases of a Coordinated Mission

ware agents and robots (participant layer) are socially aware of other agents,
aware of the infrastructure that allows them to discover other agents, and inter-
act with them — often in the roles of providing or receiving services [14] and
[12]. As agents in the autonomous coordination system become more self-aware
and deliberative about their actions, the coordination elements that result in
their assurable behaviors will more likely be drawn from an action plan library:
a metaphorical, if not actual, repository of goal-directed behavior specifications
that are motivated by normative space as much as by the task to be accom-
plished. As the socio-technical complexities increase, so too, is there an increase
in the number of multiple and highly-interacting coordination elements which are
the result of exposure to agents from multiple normative groups. The partici-
pants for such types of coordinated autonomy will be hybrid human-agent-robot
teams [13]. Since humans act in a very complex normative and plan space, the
upper bound limit on socio-technical complexity that must be assured will be
determined by the number of normative and plan space interactions of software
agents and robots.

The coordination elements to which the research described by this article
applies are those that are selected by the “Structured CE” coordination type.
The main coordination elements around which we focus our assurance arguments
are:

Mission Objective which can include multiple objectives of equal or subordi-
nate rank with respect to each other. Mission objectives provide the motiva-
tion for quantitative assurance claims and the metrics by which the claims
are assessed.

Operating Context includes the physical, computing, and data communica-
tions environments, and other possible influences on the outcome.

Individual Capabilities The union of individual agent capabilities across all
members of the team must satisfy the requirements of a team plan. The
quantitative evaluation of individual capabilities will contribute to the eval-
uation of the quantitative metrics of the team.

Team Plan includes the roles, or sub-plan assignments to individual teammates
or subgroups thereof, against which the individual capabilities will be eval-
uated. As mentioned previously, team plans and roles, as coordination ele-
ments, ensure that team scalability can be achieved, as well as remediate for
individual deficiencies at achieving the mission objective.

If the above-specified coordination elements are to be evaluated in the con-
text of an entire mission, it is necessary to subdivide the mission into principal

6 Chaki, Dolan, Giampapa

phases. The criteria for subdivision is based primarily on notions of the operating
context, e.g. terrain, and the anticipated coordination needs for the activity that
will be performed while in that context. Fig. 2 illustrates our characterization
of a coordinated mission. Not all of the phases will be present in every mission.
The following enumerations correspond to the edge labels in the figure.

1. Assembly in a Staging Area The assembly area is an important point in a
robotic mission, as it is the closest that the support crews can be to the actual
task area. It provides important logistical support to the deployed robotic
team and access to additional resources, such as off-board computation, spare
components and fuel resupply. It is also where the robotic team is assembled
and prepared for performing their mission in the task area.

2. Travel to Task Area from the Assembly Area The transit of the autonomous
team to the task area imposes constraints on the mission duration as well as
on the spatial orientation of the robots for performing their mission. In the
case of air vehicles, those in the air must loiter until all members of their
squadron are airborn.

3. Ingress into Task Area & Transition to Physical Roles This is the phase
when the robots prepare themselves for executing the team plan. It has been
documented that for some robotic coordination missions this can be a critical
moment that leads to unexpected team configurations. [9]

4. Performance of Task This can be further decomposed into the following
coordination elements:
(a) Monitor Team Performance Applicable to teams of type, stuctured co-

ordination elements, this activity involves determining if any objectives
will not be met based on how the team is performing its team task. If
so, then the following coordination elements may be employed.

(b) Detect Failure The team must agree that there is a failure that needs to
be addressed.

(c) OPT: Repair Typically, this refers to the following activities:
– Recruit additional team members, either in substitution or to enrich

the performance of the team, and/or
– Adopt a new team plan, and/or
– Reassign roles and transition to them.

(d) Consensual Team Plan Termination This can occur due to a detected
team failure, or due to completion of the team plan.

5. Travel from Task Area to Departure Corridor This is when the robots leave
their roles and prepare to leave the task area.

6. Return to Staging Area
7. Disassembly

This non-exhaustive characterization identifies a segmentation of team activ-
ity in which all physical entities must engage, but also some software agents at
a metaphorical level. This segmentation situates some of the coordination ele-
ments that are interleaved with actual physical processes. As the activities of the
team evolve toward a predominantly socio-technical nature, other team activi-
ties would need to be added to account for more negotiation based on normative
reasoning. We do not address that phenomena in this paper.

Toward A Quantitative Method for Assuring Coordinated Autonomy 7

Fig. 3: The bathtub curve, shown as a long-dashed red line, which represents the
characteristic shape of a reliability model. The dotted horizontal line illustrates
a random and constant failure rate.

3 Reliability Engineering and Analysis Techniques

Reliability engineering provides quantitative methods and a precise language for
measuring and discussing reliability [11] [7]. Reliability is the probability that a
system will operate without failure for a given time. Failure is usually defined as
the loss of a function. The hazard rate h(t) is the instantaneous rate of failure of
a component at a given time. A reliability model describes how the hazard rate
changes over time. The characteristic shape of a reliability model, known as the
bathtub curve, is represented in Fig. 3, which also illustrates the main phases of
the reliability model [10]:

A - The burn-in period, or the phase of a component’s life cycle when it fails
due to defects introduced during the manufacturing process,

B - The service life, or the phase that corresponds to the component’s expected
useful work life,

C - The wearout phase: the part of a component’s life in which failures will
occur due to old age.

Manufacturers typically guarantee the service life of their product, that is,
phase “B” of the bathtub curve. In the ideal world, the characteristic shape of
the service life phase of a product’s reliability model is a constant horizontal line
with 0 failure rate. In reality, the failure rate is non-zero, though it may be very
small, and will often have a non-zero slope. Since the reliability estimate of a
product’s service life is dependent on the reliability of its constituent parts, an
accurate predictor of service life will be based on the shortest duration that is
completely in common with the other interacting components.

Reliability analysis involves employing a collection of techniques for estimat-
ing the reliability model. The selection of techniques depend on the goals of the

8 Chaki, Dolan, Giampapa

analysis, which could range from cost-tradeoff analysis to critical failure analysis
to determining operating temperatures and durability assessments. The selection
of techniques also depends on the availability of data for a particular component,
and how multiple components relate to each other for a particular analysis.

A reliability prediction is a quantitative assessment of the level of reliability,
or lack of failure, in the design of a product. Since failure is often defined as a
lack of function, reliability assessments of a product focus on assessments of each
of its constituent functions. For each product function, studied in turn, it is nec-
essary to identify the constituent components that comprise it and contribute to
its function. Consequently, one of the first steps to analyzing the reliability of a
system is to construct a functional block diagram, which illustrates the relation-
ships among parts, assemblies and subsystems. The functional block diagram
shows inputs and outputs but does not usually show how system elements are
physically connected or positioned. From the functional block diagram, a reli-
ability block diagram (RBD) is derived. The RBD consists of three basic types
of building blocks: series configurations, parallel configurations, and combina-
tions of series and parallel configurations. For each of these configurations, the
reliability is calculated as follows:

Series Configuration The reliability of a system, when all the elements in
the system are in a series, is the product of the individual reliabilities. Also
known as “Lusser’s law”, the mathematical model is shown in Eq. (1), below.

RS = R1 ×R2 × . . .×Rn =

n∏
i=1

Ri (1)

Active parallel configuration (redundancy) When all system elements are
connected in parallel, on at the same time, and can take over in the event
that any one element fails1, the easiest way to calculate the reliability of the
configuration is to determine the probability of all elements failing, and then
to subtract this probability from 1. The formula is shown in Eq. (2), below.

RS(t) = 1−([1−R1(t)]×[1−R2(t)]×. . .×[1−Rn(t)]) = 1−
n∏

i=1

[1−Ri(t)] (2)

Standby parallel configuration (redundancy) One element is performing
the necessary function and another element must be switched on in the event
of failure. The failure detection, switch, and element that must be switched
on, can each and jointly be a source of failure.2

Combined configuration Any combination of series and the above parallel
configurations. To calculate the system reliability, first calculate the reliabil-
ities of each individual configuration [7].

1 Also known as hot standby.
2 The formula for modeling this requires introducing terms that are out of scope with

this article.

Toward A Quantitative Method for Assuring Coordinated Autonomy 9

For the purposes of the quantitative assurance of coordinated autonomy,
reliability engineering (RE) techniques are highly relevant but need to be ex-
tended. The underlying assumption is that the coordinated autonomous system
will probably depart from a behavior that is being tested. Reliability engineering
has the assumption of failure, and offers techniques to quantify its likelihood.
Depature from an expected behavior for a coordinated autonomous system can
be construed as a “failure”, but if the system continues to function, provide a
service and make progress toward any mission objectives, it really is not a failure.
Failure of coordinated autonomy is not as much a focus of investigation as is the
ability to identify and quantify differences of behavior. RE is applicable because
individual behaviors can be modeled as if they were failures: the system either
exhibits a specific behavior or it does not. Reliability models must be created
for each individual autonomous coordination element and then tested for how
it manifests itself as a behavior. If the question is to quantify which form of
coordination element is more advantageous for a mission and context, then it
is not important that the estimates of all behaviors sum to a probability of 1.
Yet, if the question is to reason that the coordinated autonomous system will
not exhibit unexpected behaviors, then equating the sum of the probabilities of
all likely behaviors — including an “unknown” and undesired behavior — to 1,
will be important and necessitate a different RBD.

The “bathtub” characteristic curve for reliability models is applicable, but
to very limited contexts of high detail. Interesting to note is the intuitive and
accepted practice of segmenting reliability model phenomena into phases so as
to isolate predictable curves to which useful formulas can be applied. The quan-
titative description of coordinated autonomous systems will necessarily involve
many levels of reliability modeling, with many segments that do not correspond
to the equivalents of burn-in and wearout phases, although the characteristics
of how power varies over time are likely applicable to describe the performance
of individual robots during a mission.

Other contributions of reliability engineering that can be immediately used
without modification are the equations for calculating reliabilities. They offer
precise mathematical models of how to combine reliability measures. But in
order to achieve that precision, they need to be applied to very specific contexts.
An initial attempt to apply these mathematical models to coordinated autonomy
is presented and discussed in Section 4.

4 Probabilistic Model Checking

Probabilistic model checking (PMC) is an algorithmic approach to decide whether
a system S satisfies a property ϕ, denoted by S |= ϕ. The key difference be-
tween PMC and classical model checking [3] is that both S and ϕ are stochastic.
Specifically, S is expressed as a (dicrete or continuous time) Markov chain, a
Markov decision process (MDP), or a probabilistic timed automaton (PTA).
The property is expressed in a probabilistic temporal logic such as probabilistic

10 Chaki, Dolan, Giampapa

computation tree logic (PCTL) [6]. The model checking algorithm then checks
whether S |= ϕ via exhaustive exploration of the statespace of S.

The advantage of probabilistic model checking (compared to simulation) is
its exhaustive nature. Since realistic systems have very large (or even infinite)
statespaces, simulation provides low coverage, and therefore a correspondingly
higher margin of error. In contrast, PMC provides sound and precise results.
However, successful application of PMC must overcome the statespace explosion
problem – this is the price paid for being exhaustive. State-of-the-art solutions
rely on two complementary approaches to ameliorate this problem.

First, while modeling the problem, manual abstraction is performed to elim-
inate details that are irrelevant to the target property ϕ. Second, modern prob-
abilistic model checkers, such as prism [8], use symbolic data structures such as
Multi-Terminal Binary Decision Diagrams (MTBDDs) [4] to verify systems with
very large statespaces. In the rest of this section, we explore the efficacy of these
two techniques for verifying the quality of distributed coordination algorithms
in multi-agent systems by modeling and verifying a robotic demining scneario
using the prism tool.

4.1 The Scenario: Robotic Demining

We consider a two-dimensional area (modeled as a 10×10 grid of cells) randomly
seeded with mines. A team of N robots must sweep the area, detect each mine,
and either defuse it or (failing which) mark it. The mission succeeds if all mines
are detected and defused (or marked) within a specified deadline D. The mission
is parameterized not only by N and D, but also the capabilities of each robot,
the terrain, and coordination algorithm used by the robots.

We model the system using a discrete time Markov chain (DTMC) and use
prism to compute the probability of mission success and expected terrain cov-
erage under a variety of mission configurations. We use the results to pose and
answer a number of hypotheses related to mission success and terrain coverage,
and the number of robots used. Finally, we discuss possible areas of furture work.
Coordination Algorithms. Recall that N is the total number of robots. We con-
sider the following two coordination algorithms:

1. C0: Parallel Independent. Each robot is assigned d 100N e cells to demine
a-priori. Each cell is allocated to exactly one robot. Each robot works inde-
pendently and stops after demining all the cells allocated to it. This is an
operator defined static coordination scheme.

2. C1: Follow the leader. All N robots move together in a team, with a single
leader in the front and the remaining followers maintaining a fixed distance
behind her. The leader performs mine detection, defusing, and path planning.
If the leader is disabled by a mine explosion, one of the followers (decided
by a leader election protocol) takes over as the new leader and continues.

Path Planning. We assume that the robots follow a pre-determined path through
the grid, as shown in Fig. 4(a). In the case of coordination C0, if N = 1, then

Toward A Quantitative Method for Assuring Coordinated Autonomy 11

START END START Robot 1 END Robot 4

START Robot 2

END Robot 1

END Robot 2 START Robot 3

END Robot 3

START Robot 4

(a) (b)

Fig. 4: Path followed by robots.

the single robot follows the path shown in Fig. 4(a). If N > 1, then each robot
follows the same path, but only over the cells allocated to it. We assume that a
robot is always allocated cells that are contiguous in the path shown in Fig. 4(a).
For example, if N = 4, the starting and ending cells of each robot are shown
in Fig. 4(b). In the case of coordination C1, the entire team follows the path
shown in Fig. 4(a).

Behavior In a Cell. In the case of coordination C0, a robot maintains two vari-
ables, cells – the number of cells it has processed so far, initialized to zero, and
clock – the time elapsed, initialized to zero. In each cell, the behavior of a robot
is expressed via the DTMC shown in Fig. 5. In the following, tk means the
transition labeled k in Fig. 5.

The robot begins in state INIT. If all cells allocated to it have been pro-
cessed (t1), it moves to state DONE and loops there forever (t2). Otherwise, it
increments cells (t3) and moves to state DETECT MINE.

From DETECT MINE, it either exceeds the deadline (t4) and loops forever in
state TIMEOUT (t5), or proceeds with detecting a mine (t6). The result of mine
detection is either an explosion with probability p explode detect (t7), a mine
found with probability p detect mine (t10), or no mine found (t9). If there is an
explosion, the robot loops forever in state BLOWNUP (t8).

If no mine was detected (state NOT DETECTED), then we assume that with
probability p false neg, there is actually a mine. In this case, with equal likeli-
hood, the robot either explodes (t11) or moves to the next cell (t12). In the latter
case, we indicate mission failure (since a mine has been missed) by setting the
flag failed to true. Finally, with probability (1 - p false neg), the robot moves
to the next cell (t13), continuing with its mission. The probability p false neg is
a function of both the robot’s detecting capability and the terrain, as discussed
later.

If a mine was detected, the robot attempts to defuse it. We assume that
the robot is in one of three defusing situations with increasing difficulty – easy,
medium and hard. Initially (DEFUSE1), the robot assumes that it is in the

12 Chaki, Dolan, Giampapa

INITDONE cells > MAX

DETECT_MINETIMEOUT
clock + t_detect

> DEADLINE

BLOWNUP

clock + t_sense· DEADLINE
clock+=t_sense

p_explode_detect

DEFUSE1

p_detect_mine

NOT_DETECTED

p_false_neg * 0.5

GOTO_NEXT_CELL

1 - p_false_neg

TIMEOUT

clock + t_defuse1
> DEADLINE

clock + t_defuse1 · DEADLINE
clock += t_defuse1

DEFUSE2

BLOWNUP

DEFUSE3

clock + t_defuse2 · DEADLINE
clock += t_defuse2

p_d2 £ p_ed2

p_false_neg * 0.5
failed=true

p_d1 £ (1-p_ed1)

clock + t_defuse2
> DEADLINE

clock + t_defuse3 · DEADLINE
clock += t_defuse3

p_d2 £ (1-p_ed2)
p_d3 £ p_ed3

p_d3 £ (1-p_ed3)

MARK

clock + t_defuse3
> DEADLINE

clock + t_mark
> DEADLINE

1-p_em
clock+=t_mark

p_em
clock+=t_mark

p_d1 £ p_ed1

GOTO_NEXT_CELL

cells++

Robot moves to
next cell and

repeats from INIT

Robot moves to
next cell and

repeats from INIT 1
2

3

4

5

6

7

8

9

10

11

12

13

14

5

15

17

8 16

18

19

20
21

22
23

24

25
26

27

28

29

30

31

Fig. 5: Behavior of a robot in each cell. Transitions are numbered for ease of
reference, and labeled by associated probabilities (green), guards (black) and
commands (red). tk = transition number k; true guards and 1.0 probabilities are
ommited for brevity; implied probabilities (since probabilities over all outgoing
transitions from each state must sum to 1.0) are ommited. For example, the
probability of t2 is 1.0, the guard of t2 is true, and the probability of t9 is
(1 − p explode detect − p detect mine). States (e.g., TIMEOUT) and transitions
(e.g., t5) are repeated as needed to reduce clutter.

easy defusing situation. From this state, it either times out (t14), or updates
its clock and proceeds with the defusing operation (t15). The result is either an
explosion with probability (p d1×p ed1) (t16), successful defusal of the mine with
probability (p d1 × (1 − p ed1)) (t17), or a decision to move on to the medium
defusal scenario (t18). Here, p d1 is the probability that the robot is actually in
an easy defusing situation, and p ed1 is the probability that there is an explosion
given that the robot is trying to defuse in an easy situation. As discussed later,
while p d1 is a function of the terrain, p ed1 is a function of the robot’s defusing
capability.

In the medium defusal scenario (DEFUSE2), the robot either: (a) times out
(t19), or (b) updates its clock (t20) and then probabilistically blows up (t21),
successfully defuses the mine (t22), or moves to the hard defusal scenario (t23).
The probabilities involved in this step are: p d2 – the terrain-dependent proba-
bility that the robot is actually in a medium defusing situation, and p ed1 – the

Toward A Quantitative Method for Assuring Coordinated Autonomy 13

probability (dependendent on the robot’s defusing capability) that there is an
explosion given that the robot is trying to defuse in a medium situation.

In the hard defusal scenario (DEFUSE3), the robot either: (a) times out
(t24), or (b) updates its clock (t25) and then probabilistically blows up (t26),
successfully defuses the mine (t27), or attempts to mark the cell (t28) as being
mined. The probabilities involved in this step are: p d3 – the terrain-dependent
probability that the robot is actually in a hard defusing situation, and p ed3 –
the probability (dependendent on the robot’s defusing capability) that there is
an explosion given that the robot is trying to defuse in a hard situation.

Finally, when the robot attempts to mark the cell, it either: (a) times out
(t29), or (b) updates its clock and then either blows up (t30) with probability
p em, or succeeds (t31) and continues to the next cell. The probability p em of
an explosion during the marking operation is a function of the robot’s defusing
capability, as discussed later.

Model Parameters. The DTMC in Fig. 5 is parameterized by the following:

1. The number of robots N . Note that, in Fig. 5, MAX = d 100N e since the cells
are allocated equally to each robot.

2. The deadline D. Note, in Fig. 5, that DEADLINE = D. Depending on the
experiment, D was either fixed or varied.

3. The time required for detecting a mine (t detect), defusing a mine (t defuse1,
t defuse2 or t defuse3 depending on the level of difficulty), and to mark a cell
(t mark). For our experiments, we assigned them fixed values.

4. The probability (p detect mine) of detecting a mine in a cell. For our exper-
iments, this was fixed.

5. The remaining probabilities in Fig. 5 were computed from the terrain and
the robot’s capabilities as discussed next.

Modeling Terrain and Robot Capabilities. The robot’s mine detection capability
was modeled by a parameter DET with three possible values – LOW, MEDIUM
and HIGH. The robot’s mine defusing capability was modeled by a parameter
DEF with three possible values – LOW, MEDIUM and HIGH. The terrain was
modeled by six independent parameters: (i) p fn dc0, p fn dc1 and p fn dc2 are
the probabilities of a false negative (i.e., mine present but not detected) given
that DET = LOW, MEDIUM and HIGH, respectively; and (ii) p d1, p d2 and
p d3 are the probabilities of being in an easy, medium, or hard defusing situa-
tion, respectively. For our experiments, all six terrain parameters were assigned
constant values, but in future experiments we plan to use these to represent the
performance capabilities of individual robots to move precisely over the terrain.

Remaining Probabilities. The probability of a false negative in Fig. 5 are com-
puted as follows:

p false neg =

p fn dc0 if DET = LOW,
p fn dc1 if DET = MEDIUM,
p fn dc2 if DET = HIGH.

14 Chaki, Dolan, Giampapa

The probability of an explosion while detecting a mine is computed as follows:

p explode detect =

10−4 if DET = LOW,
10−5 if DET = MEDIUM,
10−6 if DET = HIGH.

Finally, the probabilities of an explosion while defusing or marking a cell are
computed as follows:

p ed1 = p ed2 = p ed3 = p em =

10−2 if DEF = LOW,
10−3 if DEF = MEDIUM,
10−4 if DEF = HIGH.

Leader Election. In the case of coordination C1, we have the additional complex-
ity of electing a new leader in case there is an explosion. To this end, we modify
the model in Fig. 5 as follows. First, we add a variable team sz that indicates
the current size of the team. We initialize team sz to N , the number of robots.
In addition, whenever there is an explosion (i.e., we reach state BLOWNUP in
Fig. 5), we first check the current value of team sz. If the value is 1 (i.e., the last
robot exploded), we loop in state BLOWNUP. Otherwise, we either timeout, or
we update the clock (by t elect leader), decrement team sz, and either proceed
to the next cell (state GOTO NEXT CELL) with probability p elect leader – this
means that a new leader was elected successfully – or loop in state BLOWNUP
– this means that leader election failed. For our experiments, the paramaters
t elect leader (time for leader election) and p elect leader (probability of success-
ful leader election) were assigned constant values.

4.2 Experiments

We experimented with two metrics of mission success: (i) succ = probability
of covering all the cells without blowing up or missing a single mine; (ii) cov
= expected number of cells defused or marked. The goal of these experiments
is to demonstrate the suitability of using probabilistic model checking to make
appropriate tradeoff decisions when designing robotic missions, and to form and
validate specific hypotheses in the context of such missions. All our experiments
were performed on an Intel Core i7 machine with four cores (each running at
2.7GHz) and 8GB of RAM. We used prism version 4.0.3, which was the latest
version available at the start of this project. All our prism models, results, as
well as instructions to reproduce them are available at http://goo.gl/nC5DF.
Experiments with succ. Note that if we use coordination C0, increasing N has
no effect on succ. Therefore, we first evaluated the effect of increasing N (from
1 to 10) on succ using coordination C1. Table 1 summarizes the results for four
assignments – A0, A1, A2 and A3 – to parameters DET and DEF. In each case,
succ increases with N . For both A0 and A1, succ is quite small, and does not
seem to saturate even for N = 10. Indeed, the difference between A0 and A1 is
marginal, indicating that an improvement in defusing capability alone provides
very little benefit in terms of mission success. In contrast, for A2, succ is orders

Toward A Quantitative Method for Assuring Coordinated Autonomy 15

succ

N A0 A1 A2 A3

1 1.51E-05 2.62E-05 0.3659 0.6026

2 1.08E-04 1.72E-04 0.6430 0.7570

3 3.90E-04 5.73E-04 0.7468 0.7766

4 9.57E-04 1.30E-03 0.7724 0.7782

5 1.80E-03 2.29E-03 0.7771 0.7783

6 2.80E-03 3.34E-03 0.7778 0.7783

7 3.77E-03 4.27E-03 0.7779 0.7783

8 4.58E-03 4.96E-03 0.7779 0.7783

9 5.15E-03 5.41E-03 0.7779 0.7783

10 5.51E-03 5.67E-03 0.7779 0.7783

Table 1: Results for succ with increasing N and coordination C1 and the
following assignments to DET and DEF: A0 = (DET=LOW, DEF=LOW);
A1 = (DET=LOW,DEF=HIGH); A2 = (DET=HIGH,DEF=LOW); A3 =
(DET=HIGH,DEF=HIGH).

of magnitude higher and seems to saturate around N = 5. This suggests that
improving a robot’s mine detection capability alone provides a big boost to the
probability of mission success, all else being equal. Finally, even though A2 and
A3 saturate to similar succ values, A3 enables us to achieve the same mission
success rate using fewer robots. For example, A3 provides 75% mission success
with 2 robots, while A2 only provides this rate with at least 4 robots.
Experiments with cov. Next, we evaluated the effect of increasing N (from 1 to
10) on cov using both coordinations – C0 and C1. Table 2 summarizes the re-
sults for four assignments – A0, A1, A2 and A3 – to parameters DET and DEF.
In each case, cov increases with N . In addition, cov increases more if detection
capability is increased, compared to an increase in defusing capability. This is
the same trend as in the case of succ. Finally, coordination C1 always provides
equal or more coverage compared to C0, indicating that the more sophisticated
coordination embodied by C1 leads to improved coverage (in addition to a higher
likelihood of success, as seen earlier). For example, in the case of A3, both coor-
dinations provide equal coverage with N = 1. However, the coverage produced
with C1 jumps rapidly to more than 99% with even N = 2. In contrast, the
coverage with C0 ramps up much more slowly, crossing 98% with only N = 7,
and never reaching 99%.

4.3 Summary

In this section, we presented an approach that uses probabilistic model check-
ing to provide quantitative assurance for a system of coordinated autonomous
robots. We demonstrated our approach by modeling and analysing a robotic
demining scenario using the prism tool. Our results indicate that the approach
is promising. Our models are simple, and this enables us to avoid the statespace

16 Chaki, Dolan, Giampapa

cov

C0 C1

N A0 A1 A2 A3 A0 A1 A2 A3

1 18.089 19.827 70.525 88.362 18.089 19.827 70.525 88.362

2 34.168 36.841 83.646 93.997 35.794 39.022 93.573 99.057

3 45.613 48.455 88.558 95.903 52.427 56.595 98.881 99.931

4 54.998 57.728 91.495 96.997 67.037 71.392 99.813 99.984

5 61.538 64.077 93.184 97.613 78.799 82.646 99.945 99.987

6 66.028 68.388 94.218 97.984 87.380 90.316 99.960 99.987

7 69.289 71.497 94.916 98.233 93.029 94.996 99.962 99.987

8 72.788 74.812 95.620 98.483 96.388 97.559 99.962 99.987

9 74.631 76.551 95.975 98.608 98.195 98.825 99.962 99.987

10 78.522 80.204 96.691 98.859 99.079 99.392 99.962 99.987

Table 2: Results for cov with increasing N and coordination C0 and
C1 and the following assignments to DET and DEF: A0 = (DET=LOW,
DEF=LOW); A1 = (DET=LOW,DEF=HIGH); A2 = (DET=HIGH,DEF=LOW);
A3 = (DET=HIGH,DEF=HIGH).

explosion problem. At the same time, the models are rich enough to provide
quantitative feedback for judging the likelihood of mission success, as well as to
make informed tradeoffs between mission configurations.

Our ongoing and future work is building on this work in several directions.
One issue is that our models are based on a-priori probabilities (e.g., the proba-
bility of finding a mine in any cell). We assume that these probabilities are avail-
able with sufficient accuracy. Otherwise, the predictions made via probabilistic
model checking will be correspondingly inaccurate. As part of our ongoing work,
we are developing ways to estimate these probabilities via field experiments.

Another problem is the fidelity of our models, and the validity of our as-
sumptions. For example, we assume that every robot has perfect ability to move
between cells, and that every robot has identical capability. In practice, these
assumptions may not hold. To address this issue, we are working on making our
models richer, while at the same time avoiding the statespace explosion problem.

Finally, the work presented here is non-generative. It does not design an
optimal mission given a set of mission parameters, and associated constraints.
It would be interesting to look into whether probabilistic model checking tech-
niques can be adapted to create a more generative approach that can handle an
expressive range of mission configurations and constraints.

5 Validation Plan

Our validation plan is to test our models and the quantitative estimates associ-
ated with the modeled states and state transitions by constructing a variety of
demining robotic missions. The test arena is 108”× 96”, with a printed “terrain
pattern” that can be changed with others, altered with printed overlays, and

Toward A Quantitative Method for Assuring Coordinated Autonomy 17

arranged with obstacles to simulate a variety of terrain conditions. For the pur-
poses of testing our current set of probabilistic models, the terrain is a printed
checkerboard pattern of 17 × 17 squares, each 5” × 5”. A checkerboard terrain
pattern of 5” × 4” provides buffer space to give the robots room to maneuver
without colliding with the protective wooden wall that surrounds the arena.
Each square of checkerboard pattern is designed to correspond to one cell of
the prism model terrain pattern. The dimension of the cell corresponds to the
configuration space around an individual robot. Mines are drawn in a square as
colored particle clouds of varying densities to represent mines of diverse difficul-
ties to detect and disarm. The best color saturation for a mine is in the center of
the square. Navigation errors that cause the robot to drive over any part but the
center of a square increase the likelihood of the robot not detecting the mine,
and of possibly detonating it.

Three comodity Mindstorm NXT robots are configured for a coordinated
demining mission. One robot has four wheels, a second has two and a skid, the
third has two tracks. All have a color sensor in the center of their chassis, pointing
downward, to detect mines, a forward-looking optical camera for recognizing
landmarks and other robots, and a forward-looking range-finding IR sensor.

The robots were programmed to follow proposed scan patterns of the terrain
so that their performance could be matched with the prism model and encoded
to quantify the likelihood of the reproducibility of their behaviors. The two
wheeled robots behaved alike and differed somewhat from the tracked robot, but
all three deviated from their paths very quickly. This is because the mechanics
and control of the robots is very simple — using odometer readings to dead
reckon robot location. More sophisticated forms of dead reckoning are planned
for the future based on [2], but whatever the sophistication of the robot, we
know that the models must account for their imprecisions in whatever form they
appear. A series of atomistic performance tests were run to characterize their
performance, and are summarized in Fig. 6.

In the first set of characterizing experiments, see Fig. 6a, wheeled and tracked
robots were compared on their ability to execute 90-degree turns. The wheeled
robots demonstrated repeatable and consistent fidelity at turning three consec-
utive times without any error. On the fourth turn, a slight error was noticeable,
which appeared to accumulate by the same amount — 3.5 degrees from comple-
tion — in each successive turn. That is, the fourth turn would be 86.5 degrees,
fifth 83 degrees from a right angle, and so-on. The tracked vehicles, on the other
hand, overshoot every turn by approximately 8.5 degrees (e.g. 98.5, 107, 115.5,
etc.). For the first missions, each robot must complete two 90-degree turns in
order to move from one scan row to the other. This first evaluation leads one to
understand that the tracked robots will be very poor performers in being able
to execute their roles in any plan. Nonetheless, this experience revealed that our
prism model must be updated to include performance measures of the robot in
the mechanical execution of all aspects of its role — such as locomotion — and
not just the application-specific aspects of its role, such as mine detection. If

18 Chaki, Dolan, Giampapa

(a) (b)

(c) (d)

Fig. 6: Fig. 6a summarizes wheeled vs. tracked performance when turning 90-
degrees. Fig. 6b illustrates the probability of detecting a mine due to naviga-
tional correctness when moving from one square to the next. Fig. 6c and Fig. 6d
decompose that probability according to the tendency of the robot to drift left-
right or over- or under-shoot the 5” distance of moving from one square to the
next. A step corresponds to a “start” followed by the traversal of a variable num-
ber of squares, followed by a “stop”. As the summaries indicate, performance
sometimes varies according to the number of squares traversed in a step.

the robot cannot reliably navigate a scan path, its role in addressing the overall
problem is similarly limited.

Fig. 6c and 6d summarize the tendencies of the robots to deviate from the
controlled navigation of a path consisting of a row or column of squares. A step
corresponds to a “start” followed by the traversal of a variable number of squares,
followed by a “stop”. The mechanical inertia of the tracked robots equalizes any
differences between left and right traction motor start/stop conditions, render-
ing the tracked robots the more stable and reliable variety for traversing short
distances during each step. Due to the large and variable contact area between
the tracks and the smooth, flat terrain, vehicles with tracks tend to drift when
traversing more squares during a movement step. Wheeled robots, however, are
more sensitive to differences in drive motor timing, power, encoder errors, and
sometimes to the “terrain effects” of the paper terrain pattern pillowing and
bunching under the wheels. This causes their motion to vary more widely. Sim-
ilarly, wheeled vehicles have more difficulty stopping and frequently roll beyond
their targeted stopping position, whereas tracked robots “stop dead in their

Toward A Quantitative Method for Assuring Coordinated Autonomy 19

tracks”. The immediate impact of both forms of drift is that the robot scans
cells unevenly, will begin to form holes in its search pattern and not approach
the mine from an angle that will maximize its likelihood of detection. By not
having a model to indicate the effects of navigation on performance, we crudely
mapped such performance characteristics to the metric, the probability of detect-
ing a mine given motion drift by the robot. This is summarized by Fig. 6b. The
formula for calculating this metric is:

Pr(d) = 1− |Dlr ×Dfb| (3)

where

Pr(d) is the probability of detecting a mine given left-right and front-
back drift in the robot’s motion,

Dlr is the probability of the robot to drift left (-) or right (+), and
Dfb is the probability of the robot to pass (+) or fall short (-) of its

target travel distance.

The estimates will be applied to the model that is used to calculate the proba-
bility of a mine detection in a given terrain square. Their effects are cumulative.

6 Conclusions

The contribution of this paper is to offer a strategy by which coordinated au-
tonomous systems can be assured, tested and evaluated. We do this by adapting
techniques from the reliability engineering discipline, which offers precise ter-
minology and quantitative methods for evaluating reliable system performance.
Reliability engineering is a mature discipline and is presently used for assessing
complex engineered, mission-critical and safety-critical systems, but has not yet
been applied to coordinated autonomy. We propose models by which reliability
engineering can be so extended: a characterization of the range of autonomous
coordination phenomena and the phases of a coordinated mission. We imple-
mented two instances of those models as discrete time Markov chains (DTMCs)
using a novel probabilistic model checking technology, prism. In an effort to val-
idate our theoretical models, we began constructing robots and a test arena, and
show how partial results can map to and be used by the probabilistic models. We
demonstrate by these examples how this technique can be one of the anticipated
and many new techniques that can be used to quantitatively assure coordinated
autonomy.

Acknowledgment

The authors thank David S. Kyle and John F. Porter for their contributions to
this research.

Copyright 2013 ACM. This material is based upon work funded and sup-
ported by the Department of Defense under Contract No. FA8721-05-C-0003

20 Chaki, Dolan, Giampapa

with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center. 3

References

1. The role of autonomy in DoD systems. Task force report, Department of Defense
Defense Science Board (July 2012)

2. Chong, K.S., Kleeman, L.: Accurate odometry and error modelling for a mobile
robot. In: ICRA. vol. 4, pp. 2783–2788 (1997)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge,
MA (2000)

4. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-Terminal Binary Decision Diagrams:
An Efficient Data Struct. for Matrix Repres. FMSD 10(2/3), 149–169 (04 1997)

5. Goodenough, J.B.: System of systems software assurance (2 November 2009), www.
sei.cmu.edu, accessed 2013-02

6. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (December 1994)

7. Headquarters, Department of the Army: Technical Manual No. 5-698-3 (2005),
approved for public release: distribution is unlimited, accessed 2013-02

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: (CAV 2011). LNCS, vol. 6806, pp. 585–591. Springer (2011)

9. Scerri, P., Vincent, R., Mailler, R.: Coordination of Large-Scale MASs, chap. Com-
paring Three Approaches to Large-Scale Coordination, pp. 53–71. Springer (2006)

10. Stancliff, S.B.: Planning to Fail: Incorporating Reliability into Design and Mission
Planning for Mobile Robots. PhD thesis, RI, CMU (2009)

11. Stancliff, S.B., Dolan, J.M., Trebi-Ollennu, A.: Towards a predictive model of mo-
bile robot reliability. TR CMU-RI-TR-05-38, RI, CMU (August 2005)

12. Sycara, K., Giampapa, J.A., Langley, B.K., Paolucci, M.: The RETSINA MAS, a
case study. In: SELMAS, vol. LNCS 2603, pp. 232–250. Springer-Verlag (2003)

13. Sycara, K., Lewis, M.: Integrating intelligent agents into human teams. Team Cog-
nition: The Factors that Drive Process and Performance pp. 203–232 (2004)

14. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.A.: The RETSINA MAS
infrastructure. JAAMAS 7(1), 29–48 (July 2003)

3
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WAR-
RANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY,
OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT. This material has been approved for public release and unlimited distribu-
tion. Internal use:* Permission to reproduce this material and to prepare derivative works from this material for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.External use:* This material may be reproduced in its entirety, without modification, and
freely distributed in written or electronic form without requesting formal permission. Permission is required for
any other external and/or commercial use. Requests for permission should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu.* These restrictions do not apply to U.S. government entities. Carnegie
MellonR©is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM-0000174

