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Abstract 

 Branching structures are ubiquitous elements in several environments on Earth, from trees 

found in nature to man-made trusses and power lines. Being able to navigate such environments 

provides a difficult challenge to robots ill-equipped to handle the task. In nature, locomotion through 

such an environment is solved by apes through a process called brachiation, where movement is 

performed by hand-over-hand swinging. 

 This thesis outlines the development of a two-link Brachiating robot. We will present our work 

on implementing an Energy-based Controller where we inject or remove energy into the system before 

assuming the grasping posture. We will show that the controller can solve the ladder problem and 

swing-up for continuous contact brachiating gaits, and compare it to other control approaches in 

simulation. We will also show our work in developing a real-world brachiating robot, and show the 

implementation of our controller in this robot. 

The robot developed in this thesis moves only on a 2-D plane, and traverses by swinging on one 

inch thick aluminum tubes spaced 50-65cm apart. These tubes are positioned perpendicular to the 2-D 

plane the robot moves on. The two-link structure and simplified 2-D motions allows us to better study 

the control algorithms needed for brachiating locomotion. 

  

 

 

 

 

 

 

 



Chapter 1 

Introduction 

1.1. Overview 

In this thesis, we outline the simulation and implementation of a 2-link brachiating robot. As 

shown in Figure 1.1, the robot is approximately 80cm long and weighs approximately 4kg, with the 

lengths and mass distributed roughly evenly between two linkages connected at an elbow joint. This 

thesis examines the simulation of the robot, the electrical and mechanical design of the robot, and the 

control strategy used. Using energy control along with a state machine, we were able to achieve 

continuous contact brachiating swing and swing-up.  

 

Figure 1.1: The Solidworks drawing of the robot skeleton. The black components are 3D printed. 

To simplify the control problem, the robot developed in this thesis moves on a 2-D plane, and 

contains two linkages. The robot is driven by four brushed DC motor actuators, two of which drive 

grippers on each end of the robot, and two of which are coupled together to form a single actuator at 



the elbow.  The objective of the robot was to brachiate on a ladder of one inch thick aluminum tubes 

spaced 50-65cm apart.  

1.2. Motivation 

Branching structures are a ubiquitous element in several environments on earth, from trees 

found in nature to man-made trusses and power lines. Being able to navigate such environments 

provides a difficult challenge to robots ill-equipped to handle the task. In nature, locomotion through 

such an environment is solved by apes through a process called brachiation, where movement is 

performed by hand-over-hand swinging.  

The type of brachiation examined in this work is called a continuous contact brachiating gait, 

because at least one arm is in contact with the environment at all times and there is a moment when 

the swinging arm is grasping the target branch that allows for complete rest. Figure 1.2 shows a typical 

stride of continuous contact brachiation in gibbons. This simplifies the problem by removing flight 

phases and prevents momentum from being carried over between swings for two-link brachiators. 

Therefore, if a single instance of a swing from one branch to the next can be demonstrated, then 

periodic motion can be achieved by simply swapping the swinging and grasping arm after a swing, and 

applying the same controller to the new position.  

 The types of problems involved in brachiation include swing-up, the rope problem, and the 

ladder problem. Swing-up includes the motion necessary to bring the brachiator from a neutral rest 

position to making the first grasp. The rope problem is a continuous swing problem where any position 

along a horizontal axis is a possible grasping location. This is a subset of the ladder problem, where only 

specific points in space are allowed for grasping. Solving for the ladder problem would also provide a 

controller for the rope problem, but not vice versa.  

 

Figure 1.2: A typical stride of continuous contact brachiation in a gibbon (Pennock). 

Brachiation falls under the umbrella of under-actuated control as the robot cannot provide 

torques at the handhold. In addition, it has additional difficulties such as the motion being chaotic and 



fast. The problem is also multivariate in continuous space, and difficult to optimize. Finally, it is risky in 

that failure can lead to a fall. These issues make it an interesting and challenging topic to explore. 

1.3. Literature Review 

1.3.1.  Brachiation in Nature 

Nature has often found effective solutions to locomotion in a variety of environments, from fins 

for aquatic species, wings for flight, and bipedal and quadrapedal motion for walking and running. 

Therefore, it makes sense to look to nature to see what solutions have already been established for 

arboreal locomotion. 

Some primates have adapted to live in arboreal environments, and are able to navigate 

extremely complex canopies with speed and ease. The evolutionary advancements that would allow for 

brachiation are thought to have occurred in the late Oligocene around 33.9 to 23 million years ago 

(Pennock). Today, brachiation in nature is commonly used by gibbons, a type of ape from Southeast 

Asia. Unlike other primates, gibbons are “true” brachiators in that they have adopted this as their 

primary form of locomotion, accounting for up to 80% of their travelling behavior ranging from a pace 

equivalent to human walking speeds all the way up to astonishing speeds of 35m/h when startled. With 

special adaptations such as long arms and strong shoulder muscles, gibbons are able to perform both 

continuous contact brachiation and ricochetal brachiation, the type with ballistic flight phases as shown 

in Figure 1.4.  

 

Figure 1.4: (A) depicting the continuous contact brachiation pendulum where velocity is zero at double 

contact, (B) depicting the ricochetal brachiation pendulum with a ballistic aerial phase (Pennock). 



If it is possible to replicate this method of locomotion in a robot, it would offer desirable 

advantages including an effective way to gain a higher vantage point and the opportunity to perform 

desirable tasks in such environments such as sample collection of arboreal flora/fauna, exploration, or 

power line inspections. 

1.3.2.  Brachiation Control Strategies 

Brachiation was first compared to that of a pendulum in the 1960s (Tuttle). Later, Fukuda et al. 

applied reinforcement learning based brachiating control schemes, using error-learning to develop 

robust swing motion, with the disadvantage of long 200 iteration real-world experiments as learning 

periods for each robot configuration (Hasegawa, Fukuda and Shimojima). They used a heuristic learning 

method that modifies the applied force over time. The force was described as a cubic spline and the 

robot modified the splines handle points with repeated trials. Fukuda et al. also examined a control 

approach called Target Dynamics, requiring knowledge of the exact robot’s dynamical and kinematic 

parameters to encode the motion of slow brachiation in terms of the output of a “target dynamical 

system”, the harmonic oscillator (Nakanishi, Fukuda and Koditschek). The robot is shown in Figure 1.5.  

 

Figure 1.5: A picture of continuous locomotion from a brachiator (Nakanishi, Fukuda and Koditschek). 

The robot was controlled using a Target Dynamics Controller. 

Hasegawa and Fukuda also proposed a behavior-based controller to reduce the number of 

degrees of freedom to be considered (Hasegawa and Fukuda). Their approach was to decompose 

behaviors into a hierarchical structure and then to co-ordinate them together to perform swing motions, 

as shown in Figure 1.6. This approach requires accurate tuning each time the brachiator configuration is 

modified, but was able to control highly complex robots with multiple degrees of freedom, as shown in 

Figure 1.7 as Brachiator III. 



 

Figure 1.6: The hierarchical controller (Hasegawa and Fukuda). 

 

Figure 1.7: Brachiator 3 controlled by Fukuda et al. 

 Other approaches include model-based predictive controls (Oliveira and Lages), where the 

motion of the brachiator and the inputs needed to correct for errors are predicted using a non-linear 



controller. Figure 1.8 shows an outline for this controller. This controller works for the rope problem, 

but extensions to swing-up and the ladder problem and analysis of stability were not performed. The 

authors also noted a significant disadvantage in the computation time required at each time step, and 

noted that real-time performance of the non-linear approach was infeasible, and that linearization was 

required. 

 

Figure 1.8: The model-based predictive control scheme (Oliveira and Lages). 

Another approach is to use evolutionary algorithms (Timm and Lipson), where energy efficient 

brachiation swing motions can be developed. This method allows for tuning of extremely efficient long 

range brachiation, but is not entirely a controller as the method only produces the feed-forward torques 

over time for a particular environmental setup. The solution was also applied only to the rope problem. 

There are also works in examining passive-swing dynamics (Gomes and Ruina), where swing-

motions without the need of actuators are examined, but such motions are restricted to frictionless 

swing motions and was only applicable to the rope problem. Energy based swing controllers were also 

developed by Fukuda et al. (Kajima, Hasegawa and Doi), which involve exchanging kinetic energy for 

potential energy like a pendulum, taking advantage of symmetrical motions to perform brachiation. The 

controller designed also used the high-degree of freedom of the robot it was implemented on, allowing 

it to do double contact swing-back motions that a two-link brachiator cannot perform. Figure 1.9 shows 

such a swing-back motion. Fukuda et al also used an energy based method called parametric excitation 

for two-link brachiators (Saito, Fukuda and Fumihito), specifically for the swing-up phase. In this 

method, energy was controlled by directly controlling for swing amplitude, which was increased by 

moving the center of mass back and forth. However, the actual brachiation did not use energy-based 



methods, and instead used a heuristic learning method. One reason for this is that swing amplitude is 

not entirely applicable to actual brachiation, it’s only useful for swing-up. 

 

Figure 1.9: Energy based swing-back control (Kajima, Hasegawa and Doi). The brachiator positions its 

body to gain energy for the swinging motion. 

 Another energy based approach performs brachiation by using Lynapunov stabilization on the 

energy of a two-link brachiator (Zhao, Cheng and Xiaohua). However, this approach required multiple 

swings of the shoulder to move the arm from one branch to the next, requiring three shoulder 

oscillations to move from a starting position of      
         

  to a symmetrical position on the 

other side. The experimental setup of this brachiator also used a simplified brachiator arm, consisting of 

no grippers and an actuation at the shoulder using a synchronous belt. Figure 1.10 shows their 

experimental setup. 

 

Figure 1.9: The experimental setup of the brachiator arm using Lynapunov stabilization the total energy 

(Zhao, Cheng and Xiaohua). 



Energy based approaches are also commonly used to control for the stabilization of the inverted 

pendulum problem. Since a two-link brachiator is a double pendulum with actuation at the elbow, and 

locomotion with a two-link brachiator is somewhat equivalent to controlling for swing-up of the double 

pendulum, it behooves us to seek a solution from previous control and stabilization works. One 

approach that looks promising is the energy based approach using the derivative of the energy that was 

applied to a pole-cart problem (Udhayakumar and Lakshmi). In this approach, we control for the change 

in the derivative of the energy, which is similar but not exactly the same as controlling for its 

acceleration. We perform actions based on the sign of the terms in the derivative that we have control 

over, allowing us to inject or remove small amounts of energy at each time step. After energy injection, 

the proposed method transitions to a stabilization control. 

When looking at energy based approaches, we must also go back and examine energy based 

approaches in nature. Usherwood et al. found considerable overshoot in gibbons using continuous 

contact brachiation, with energy losses of 60-90% of the total energy on contact with the target branch 

(Usherwood and Bertram). Reasons for this were due to the considerable penalty of falling due to not 

reaching the contact branch in nature. 

The energy based approach provides a promising solution to both the swing-up and ladder 

problem, without the need for accurate dynamical models and training. Examining the total potential 

and kinetic energy of a kinematic chain is simple, as is taking its derivative and collecting the terms we 

have control over. In addition, the stabilization control phase can be simply replaced with a pose control 

phase that uses PID to obtain the desired final pose. This approach is also more generalizable, and does 

not need special symmetry requirements during modeling or special body plans. 

1.4. Problem Statement 

The aim of this thesis is to develop a robotic brachiator, to better understand and compare 

different brachiation control strategies, and to implement the control strategies in a real-world robot. 

We will be exploring the simulation setup, the mechanical and electrical development, and comparison 

between three control strategies in simulation. The three control strategies were the Dynamic 

Programming based controller, the Neural Network based controller, and the Energy based controller. 

The Energy based controller was found to be the most feasible, and was implemented in the real-world 

robot weighing roughly 4kg. Testing was done on a ladder with rungs spaced 50-65cm apart, with 

various inclinations up to 10 degrees.  

 



Chapter 2 

Conceptual Design 

2.1. Introduction 

Early in the design phase, two brachiator body plans were considered and two gripper 

configurations were examined. The two body plans were a five-link brachiator and a two-link brachiator, 

while the two gripper configurations were a passive hook-type gripper and an active claw-type gripper. 

This section outlines the comparisons between the two body plans and two gripper designs. 

Ultimately, the five-link body plan was scrapped in favor of the two-link brachiator design due to 

the benefits of mechanical simplicity and relaxed actuator specifications offered by the two-link design. 

Additionally, the claw-type gripper was selected due to lower energy requirements for initiating and 

terminating the swing motion, as the claw-type gripper would approach from under the ladder bars 

while a hook type gripper requires the arm to approach from above. 

2.2. Body Plans 

2.2.1.  Five-link design 

Five-link brachiators have been examined mathematically in previous works (Gomes and Ruina) 

and allow for more lifelike motions to be performed as it allows for motions integral to brachiation in 

gibbons, such as arm-extensions, arm-flexion, and leg-lifting (Usherwood and Bertram). The addition of 

a body segment also allows for additional control over the momentum of the system by applying swing-

back torques to the body segment motor (Hasegawa and Fukuda), and allows for a convenient location 

to mount hardware. 

Unlike the two-link brachiator which can be approximated as a double pendulum and as such 

there is a wealth of previous work available, control of the five-link brachiator is much more 

complicated. Previous approaches started with simple zero-friction models using numerical methods 

simulating pendulum or 2-link brachiators, and then using a search space to identify swings that result in 

periodic motions (Gomes and Ruina). This was then expanded to 3-link and then 5-link brachiator 

models by using the solutions from previous models as a starting point for the simulation search space. 

This approach did not account for branch positioning as any location on the “ceiling” was considered as 



a possible grasp location. It also did not consider swing-up, energy loss due to friction, and only 

considered symmetrical movements. 

Nevertheless, initial development of the brachiating robot started with the five-link design. A 

simulated brachiator, a Solidworks model, and a physical prototype were designed to test if the issues 

with the five-link design could be overcome with the components available. Figure 2.1 shows the model 

of the brachiator in Matlab. Since SimMechanics was too slow with the hardware available and 

produced singularities during simulation, the physics for the simulation were instead performed with a 

custom rigid body simulation engine. Early attempts to produce swing up motions were done by 

modeling the robot as a pendulum, and applying a sinusoidal torque to each segment at the 

fundamental frequency, similar to the parametric brachiation approach used by Fukuda et al (Hasegawa, 

Fukuda and Shimojima). After reaching a large enough swing amplitude, the robot would use PID 

controllers to snap to the final arm configuration solved by inverse kinematics. A Solidworks model of 

the proposed design was then created, as shown in Figure 2.2. Note that this figure contains a prototype 

of a hook-type passive gripper, and a prototype of a claw-type gripper. 

There were a few iterations that provided several small design changes, such as the positioning 

of the motors and the length of the linkages. During testing, it was found that there was significant wear 

on the brass bevel gears, causing increased backlash at every joint. Propagating from the first linkage to 

the last linkage through four bevel gears, the error in end effector positioning would sometimes reach 

20cm. In addition, it was found that the motors selected would not be able to handle the torque 

impulses experienced by the robot. Some of these impulses were caused by rapid snapping motions due 

to the backlash in the gears as the robot engaged the gears from one backlash direction to the other 

one. These torque impulse eventually caused the destruction of the gears in the motor gearboxes. 

Finally, there were issues with overheating, and the robot would often need rest periods to cool the 

motors. 

 

 

Figure 2.1: The five link brachiator in Matlab.  



 

Figure 2.2: The Solidworks model of the five-link brachiator. Both the hook-type gripper and the claw-

type gripper are shown in this drawing. 

Although the five-link brachiator allows for higher degrees of freedom and more lifelike 

motions, the issues encountered in both simulation and in the physical design prompted a change in 

robot configuration to the two-link body plan. 

2.2.2. Two-link design 

A two-link brachiator is a simpler brachiator configuration compared to the five-link brachiator. 

It is easy to model as a double-pendulum, of which there is a host of previous literature available for 

swing-up and control. Having less linkages also helped alleviate the problem involving errors 

accumulating along the kinematic chain due to backlash. 

Simulation was performed both in Matlab and in SimMechanics. The Matlab simulation, shown 

in Figure 2.3, used Euler-Lagrange differential equations to simulate the motion, and perform 

visualizations across multiple swings in sequence. This also allowed for tests of multiple different swing 

algorithms. 



 

Figure 2.3: Matlab simulation of the two-link brachiator. 

 The SimMechanics simulation, shown in Figure 2.4, allowed for the importation of the 

Solidworks model to simulation. This allowed for the model to have a better representation of the 

masses and moments of inertia that would be found in the real-world robot. 

 

Figure 2.4: The SimMechanics model created by importing the Solidworks CAD drawing. 

 Finally, the real-world robot was built, as shown in Figure 2.5. Note that although a two-link 

brachiator only needs one actuator at the elbow joint, the brachiator prototype instead uses two 

coupled actuators to allow for an increase in speed and improve overall balance in the robot. 

 

Figure 2.5: The real world two-link brachiator prototype. 



 In a five-link brachiator torques caused by moving the arm to the final position can be 

counteracted by torques from the body segment. Compared to the five-link brachiator, movement of 

the two-link brachiator to the final grasping position and the movement for swinging motion must be 

done simultaneously. Another issue with the two-link brachiator is that the two-link body plan is more 

limited in the direction that the end effector can approach the target branch. For example, a claw-type 

gripper cannot grasp the target branch of the claw swings above the branch, whereas with a five-link 

brachiator the claw can be re-oriented so that the gripper approaches the branch from the correct 

attack angle. These two issues require a better control algorithm for swinging, which can be solved by 

better energy control. 

 Finally, a two-link brachiator cannot release from the previous branch when using passive hook-

type grippers as described in the next section. Moving to the two-link brachiator cemented the design 

decision to use the claw-type gripper over the hook-type gripper in the final robot. 

2.3. Gripper Configuration 

2.3.1. Hook-type gripper 

A hooked-type gripper was considered for its simplicity. Hook-type grippers can be passive, 

removing the need for gripper actuators and reducing the amount of moving parts needed. Figure 2.6 

shows a couple of iterations tested.  

 

 

Figure 2.6: Two hook-type gripper designs. 

 A disadvantage of the hook-type gripper was that grasping required an approach from a 

direction that was dependent on the orientation of the hook. Therefore, forward and backwards motion 

was not symmetrical, requiring additional cases to handle both motions. Another disadvantage was that 



hook-type grippers require the hook to swing above the branch in order to grasp it, requiring additional 

energy compared to claw-type grippers that can approach from underneath the branch. Releasing from 

a branch is also complicated, requiring the robot to impart a large momentum impulse to cause the 

releasing arm to “jump” upwards. 

During testing, it was also found that there would be jerking motions caused by the rapid 

movement of the robot that would cause the robot to “jump”. These small jumps were often enough to 

cause the gripping arm to accidentally bounce off the branch, causing the robot to fall. Finally, passive 

hook-type grippers were not applicable to two-link brachiators as the brachiator had considerable 

difficulty releasing from the grasping bar.  

 

 

Figure 2.7: An active hook-type gripper design. Four servos were coupled to improve torque that would 

allow for opening when already grasped to a branch. 

 An attempt was made to alleviate some of these issues by using an active hook-type gripper 

instead of a passive one, as shown in Figure 2.7. Several designs were considered that would lock the 

hook into a position that would prevent accidental release, and to allow for the release of the gripper 

when used by a two-link brachiator body plan. However, the speed and power required by the 

actuators, the required durability of the quick-release mechanism, and the overall complexity made the 

designs impractical. 



 These issues cumulated in the eventual switch to the claw-type gripper, which was used in the 

final brachiating robot design. 

2.3.2.  Claw-type gripper 

The claw-type gripper is more complicated than a passive hook-type gripper, but solves some of 

the issues the hook-type gripper encountered. Compared to the hook-type gripper, releasing and 

grasping is easier as the robot does not need to perform special “jump” actions or overhand grasping 

motions. The tradeoff is an increase in complexity, including the addition of gripper actuators that need 

to be fast. Figure 2.8 shows final claw-type gripper design used in the brachiator. 

 

Figure 2.8: The claw-type gripper design. 

 In the five-link body plan, the time of contact of when the swinging arm is about to grasp the 

next branch can be changed by bending the swinging arm. In order to have the smallest impact force, 

this would ideally be when the robot has reached the highest point in its swing, and its kinetic energy is 

zero. In comparison, the two-link brachiator body plan must perform the grasping motion while 

swinging forward towards the branch, and since the gripper must approach from a specific angle, the 

time of contact cannot be augmented. Therefore, in the two-link body plan, the robot cannot wait to 

perform the grasp at the peak of the swing where there is zero kinetic energy, and any excess kinetic 

energy stored in the brachiator on contact would be absorbed by the gripper as a collision force. This 



would cause damage to the gripper if the collision forces are large, thus requiring more accurate energy 

control of the brachiator. 

2.4. Conclusion 

In this section we compared two brachiator body plans and two gripper configurations, and 

outlined the issues and benefits of each. The final robot configuration that was decided was a two-link 

brachiator with claw-type grippers. This configuration requires better control for a successful swing, but 

removes mechanical complexity and relaxes the specifications required by the joint actuators. Since the 

author of this thesis is not well versed in mechanical design, removing mechanical complexity was 

considered to be very desirable. 

 

 

 

 

 

 

 

 

 



Chapter 3 

Basic Mathematical Concepts 

3.1. Introduction 

Mathematical modeling of the brachiator consists of the forward and inverse kinematics, the 

dynamics, and modeling the energy of the system. The forward kinematics can be found using the 

Denavit-Hartenberg (DH) parameters, while the inverse kinematics of the two-link brachiator can be 

found geometrically. The dynamics can be found using the Euler-Lagrange equations, which also helps in 

modeling the energy.  

3.2. Kinematics 

3.2.1.  Forward Kinematics 

The forward Kinematics can be solved using Denavit-Hartenberg (DH) parameters. The 

parameters are generated as groups of four numbers for each joint. In order to generate the 

parameters, we must first attach coordinate frames to each joint such that the z-axis is aligned with the 

rotation of the joint. Details on this method can be found in the book Robot Modeling and Control 

(Spong, Hutchinson and Vidyasagar). 

Figure 3.1 shows the definition of the DH values. The DH table for revolute joints is then filled as 

follows: 

    the distance along    from    (the origin of the coordinate attached to joint  ) to the intersection of 

the    and      axis. 

    the angle between      and     measured about    . 

    the distance along       from      to the intersection of the    and      axis. 

    the angle between      and     measured about      . This is the variable that is modified to rotate 

the joint. 



 

Figure 3.1: The DH values for a linkage. 

The configuration of the DH table for the 2-link brachiator is as follows: 

Link             

1           

2           

 

In order to compute the forward kinematics, we must first compute a    matrix for each DH 

table row: 
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   (  )    (  )
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] 

The final combined   matrix is simply a multiplication of each   
    together, along with the 

previously mentioned transformation matrix   for the end effector: 

    
     

   
  

Finally, we extract the end effector rotation and position from     
 : 

      
 (       )        

 (     )  

Note that we can get the position and orientation of any link   in the snake by multiplying only the first 

    
    such that we get   

     
   

    
   . 

The forward kinematics allows us to determine the end effector position, which is necessary for 

determining if we have reached the target branch or not during a swing. 



3.2.2.  Inverse Kinematics 

The inverse kinematics of the two-link brachiator can be found geometrically (Spong, Hutchinson 

and Vidyasagar). 

 

Figure 3.3: The two-link brachiator 

If (     ) is our desired end effector position, we can find    using the cosine law: 

         (
  
    

    
    

 

      
) 

With    found, we can obtain   : 

       

       (     ) 

       (     (  )          (  )) 

This particular solution is one of two possible configurations representing “elbow down”. This 

solution is necessary for determining the joint angles that the brachiator must have when it is about to 

grasp the target branch. The actual   used in later calculations was defined as the angle from the 

vertical y-axis, so           
 

 
. 

3.3. Dynamics 

3.3.1.  Lagrangian 

The Lagrangian is useful in creating a simulated environment for the brachiator. We will use 

twists to solve for the Lagrangian, from which we can obtain the equations of motion. Since our 

manipulator is in 2D, the rotations of our joints are in the z-direction: 



    [
 
 
 
] 

Our joint positions at rest are: 

    [
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] 

The joint twists are given by: 

   *
  
  
+            

To each link we attach a frame    at the center of mass and aligned with the principle inertia axes of the 

link: 
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With this choice of link frames, the link inertia matrices are: 
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In addition, we need: 
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Where: 
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We also need the Jacobian at this particular configuration: 
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Therefore, we have: 
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Note that this Jacobian is for the initial configuration only. A general Jacobian can be computed from the 

  matrix from forward kinematics: 
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Where   
  is the third column of the rotation at that joint, or   

 (     ), and   
  is the position at the 

point, or   
 (     ).   

  is just [
 
 
 
]. 

Either Jacobian can be used for the computation of the inertial matrix. 
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And from our inertial matrix we can get our Coriolis matrix: 
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Finally, we need: 
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Where    is the potential energy of the manipulator: 

  ( )  ∑     ( ) 
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 ̂      ̂       ( )(   ) 

As a pair to the potential energy, the Kinetic energy is given by: 



  (   ̇)  
 

 
 ̇  ( ) ̇ 

Finally, they dynamics are computed using: 

 ( ) ̈( )   (   ̇) ̇   (   ̇)    

Solving this equation for  ̈( ) will provide us with the accelerations necessary to obtain motions 

using numerical integration. The dynamics allow us to simulate motions in Matlab to evaluate various 

swing strategies. The energy equations we obtain will also be useful in our swing controller. Details of 

this method can be found in the book A Mathematical Introduction to Robotic Manipulation (Murray, Li 

and Sastry). 

3.4. Conclusion 

In this section, we presented the methods used to solve for the forward and inverse kinematics 

of the two-link brachiator, and for the dynamics of its motion. The forward kinematics are useful to 

determine if the robot has reached the target branch during the swing, and the inverse-kinematics are 

important for solving the final brachiator position needed to make a grasp at the end of a swing. The 

forward kinematics and dynamics are needed for or simulation environments that would allow for 

testing. Finally, we obtain the energy equations, which are later necessary for our energy-based swing 

controller. 

 

 

 

 

 

 

 

 



Chapter 4 

Mechanical Design 

4.1. Introduction 

This chapter describes the mechanical assembly of the robot. The robot can be divided into two 

sections, the body and the grippers. The body consists of an aluminum skeleton and is actuated at the 

elbow. The grippers are 3D printed and are each driven by a DC motor. Since the author of this thesis 

does not have a mechanical background, a lot of the design decisions involved simple rapid prototyping 

to allow for testing of ideas and quickly swapping out ineffective solutions. 

4.2. Brachiator Body 

4.2.1.  Assembly 

The brachiator body consists of a skeleton made up of one inch aluminum tubes. At the elbow 

joint, two motor assemblies are coupled together to form the joint actuator. Figure 4.1 shows one 

assembly. A 3D printed motor clamp prevents the motor from rotating with respect to the clamp. This 

clamp is also attached to the arm bar, which in the figure would protrude vertically from the two one 

inch aluminum clamps. The motor’s rotor is attached to a 6mm to 1in adaptor, which leads to two one 

inch diameter bearings. The central shaft that connects the two motors would rotate through these 

bearings. Figure 4.2 shows the full elbow assembly.  



 

Figure 4.1: A single motor assembly. The arm shaft would extend vertically. The motor is held stationary 

relative to the arm by the black 3D-printed clamping hub. The motor’s rotor is connected to the central 

shaft, which is in turn connected to the other elbow motor’s rotor. 

 

 

Figure 4.2: The full elbow assembly, showing the two motor assemblies connected by the central shaft. 

 The vast majority of components are Actobotics components, which allow for rapid precision 

assembly and modifications at a low cost. 



4.2.2. Actuators 

The elbow joints are actuated by “PG71 Planetary Gearbox motors”, with the following 

specifications: 

Gear Ratio 71.164:1 

Stall Torque 22.5 Nm 

Speed 75 rpm 

Weight 0.9 kg 

 

Two motors are used, and they are connected through their shafts using a 1in diameter aluminum tube. 

This effectively doubles the speed of the elbow actuator to 150 rpm. The planetary gearbox was 

selected to reduce the effects of backlash that may affect accurate positioning. This is important since 

the encoder is mounted on the shaft of the motor and not the shaft of the gearbox, so we are unable to 

characterize any backlash errors. In addition, the coupling of the motor has a consequence of doubling 

the backlash, so it is desirable to have a reduced backlash to start with. 

Simulations also showed that at least 10Nm torque was required for successful and consistent 

swing up, and at least 3Nm torque was required for steady state positioning, which do not exceed the 

specifications of the selected motors. 

The motors are held in place using 3D printed clamping hubs. Each motor remains fixed relative to 

its respective arm, while the central shaft is free to rotate. 

4.3. Gripper 

4.3.1.  Assembly 

The gripper was 3D printed to allow for rapid prototyping of various designs. The final gripper 

design was a claw-type design made of a 3D printed shell that housed a DC motor. Two claws were 

driven by the motor through bevel gears. Figure 4.3 shows the gripper with some components made 

transparent. 



 

Figure 4.3: The claw-type gripper. 

The bevel gears are attached to their respective D-shafts using setscrews. The claws are attached 

to the shafts using clamping hubs.  

4.3.2.  Actuators 

“37D mm Metal Gearmotors” from Pololu were selected to drive the gripper based on their low 

cost. The motor specifications are as follows: 

Gear Ratio 131.25:1 

Stall Torque 1.765 Nm 

Speed 80 rpm 

Weight 0.235 kg 



 

The specifications of the motor allows for the claw to close in 180ms. The design of the claw allows for 

constant grasp without any torque input, but in implementation some torque was desired as the jerking 

of the robot during operation would make the gripper come lose otherwise. 

4.4. Inertial Matrix 

The weight and inertial matrix used for the two arm components are as follows: 

                 [
                                

                                
                                  

]  

                 [
                                

                                 
                                 

] 

Note that the masses are different due to the battery being positioned on one arm and not the other. 

4.5. Conclusion 

In this section we discussed the mechanical attributes of the brachiator robot. The two major 

mechanical components are the elbow assembly and the grippers. The structure of the robot is 

composed partially of aluminum Actobotics components, and partially of 3D printed parts made from 

ABS plastic. This allows for rapid prototyping and quick design modifications. 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Sensors, Electrical, and Embedded Design 

5.1. Introduction 

This chapter describes the sensors, electrical, and embedded design of the robot. The sensors 

used are encoders, an IMU, and current sensors, all of which contribute to sensing the robots internal 

status. Note that the sensors are only proprioceptive and not exteroceptive. Any information about the 

environment, such as the position of the next gripping location, is assumed to be constant and given. 

The overall design philosophy of the electrical section was for a focus to be on ease of implementation 

in order to reduce time spent on debugging. The embedded programming was done using the Arduino 

programming language and its purpose is collect and stream sensor data to the computer. 

5.2. General Circuit Diagram 

In order to simplify the electrical design, individual Arduino Duemilanove boards were used per 

motor. The computer is not attached to the robot, and instead controls all the peripheral components 

through a USB tether. This USB tether also provides power to the embedded components. An on-board 

12V battery pack is used to power the motors. A wireless relay is used to cut motor power in the event 

of unexpected behavior. Figure 5.1 shows the overall circuit diagram. 



 

Figure 5.1: The overall circuit diagram. 

 Initially, all the electrical components except for the motors were located on a base station, 

leaving only the motors on the robot. However, it was found that the tether was too heavy and 

negatively impacted swinging performance. In later iterations we moved all the electrical components 

onto the robot, leaving only the computer at the base station. The size of the tether was reduced to 

being a single USB cable. 



5.3. Sensors 

5.3.1.  Encoders 

The angular positions of the motors used in the robot are recorded by incremental quadrature 

encoders attached to each motor’s drive shaft. Two types of motors are used in pairs, one set for the 

elbow actuator and one for each gripper. The gripper encoders operate at 64 pulses per revolution. 

Coupled with a gearbox ratio of 131.25:1, this represents 8400 counts per revolution. The elbow 

encoders operate at 28 counts per revolution. Coupled with a gearbox ratio of 71.164, this represents 

1992.592 counts per revolution. Figure 5.2 shows the two types of encoders used. 

 

Figure 5.2: The motor encoders used in the brachiator. 

The encoders require 5V power, and are powered directly from the Arduino boards. Encoder 

decoding is done directly by an individual Arduino per encoder. During testing, it was found that the I/O 

read commands from the Arduino were not fast enough, and would sometimes miss encoder counts. 

Therefore, a faster “digitalWriteFast” library was used to replace the default I/O operations.  

An interrupt service routine was implemented on each Arduino to detect changes in encoder pin 

states. When a pin change is detected, the interrupt service routine uses the following truth table to 

evaluate the encoder count. This truth table is based on the encoder timing diagram shown in Figure 

5.3. 

Previous A Previous B Current A Current B Count 

0 0 1 0 +1 

0 0 0 1 -1 

0 1 0 0 +1 

0 1 1 1 -1 

1 0 1 1 +1 

1 0 0 0 +1 



1 1 0 1 +1 

1 1 1 0 -1 

 

 

Figure 5.3: The encoder timing diagram. 

There is no indexing performed, and the encoders are only zeroed when given a reset 

command. Therefore, it is necessary that reset commands are performed when the robot is a known 

rest position on boot up, such as hanging straight down. 

5.3.2.  IMU 

The angular position and velocity of the grasping arm with respect to the world co-ordinates is 

determined using a 9DOF Razor IMU. The custom firmware of the IMU was modified to allow for angular 

velocity readings and streaming of only relevant data to improve data throughput. For example, 

readings and mathematical operations in the IMU pertaining to compass readings were removed.  

During testing, it was found that the IMU performed poorly when reading for pitch, and 

produced inaccurate readings when flipped beyond 90 degrees. However, the roll readings were found 

to be correct and sufficient for the application. Figure 5.4 shows the IMU module. 

 



 

Figure 5.4: The Sparkfun Razor IMU. 

5.3.3.  Current Sensor 

The motor driver chip used contains a current sense output pin that produces a current 

proportional to the motor current:        
    

     
. The encoder Arduinos read this current through a 

1.5k sense resistor.  

 

5.4. Motor Control 

5.4.1.  DC Driver Circuitry 

A full-bridge motor driver chip VNH2SP30 was used to drive each motor. A custom PCB was 

fabricated to mount the chip. Figure 5.5 shows the PCB layout. 

 

Figure 5.5: The motor driver PCB. 



The motor speed is controlled by power modulation signals supplied by the Arduino, and the direction is 

specified using two control lines.  

5.5. Power and Safety 

5.5.1.  Battery 

A 12V 1600mAH NiMH Battery Pack was used to power the robot. The battery pack was selected 

for its size, weight, and its high discharge rate (10A). However, due to the small capacity of the battery, 

the robot needs to be recharged or swapped with a fresh battery pack after 15 minutes of continuous 

operation. The battery weighed roughly 8oz 

5.5.2.  Wireless E-Stop 

A wireless E-Stop shown in Figure 5.7 consisting of a heavy duty relay controlled by a smaller 

wireless relay commonly used in home automation systems was used as an E-stop to cut power to the 

motors in the event of unexpected behavior. Only the power to the motors is cut, power to the 

embedded systems remain unaffected to allow for debugging. 

 

Figure 5.6: The wireless E-stop. 

5.6. Conclusion 

In this section we discussed the electrical and embedded components of the brachiator robot. 

The electrical components consist of the sensors, motor drivers, embedded devices, and power 

distribution. The purpose of the embedded system is to monitor encoder, control the motors, and 

communicate with the computer. 

 



Chapter 6 

Modeling 

6.1. Introduction 

Simulation in software was used to help with the design process, both in evaluating different 

control strategies and for estimating desired motor specifications. The modeling consists of the Matlab 

model used for testing swing algorithms and producing continuous swing visualizations, the 

Solidworks/SimMechanics model used for computing masses and moments of inertias, and the Simulink 

model that simulates a more accurate single swing cycle. The Matlab model is built on the equations 

from Chapter 3, and is replicated in C++ to improve speed, which was necessary for training the Dynamic 

Programming Controller. 

6.2. Matlab/C++ Model 

The Matlab model consists of a simulation using the Euler-Lagrangian dynamics equations from 

Chapter 3 to solve for the joint accelerations given joint torques and a simple integrator to evaluate the 

joint velocities and joint positions. A 1ms time step was selected as a tradeoff between simulation speed 

and accuracy. Due to the time step and the simple integration strategy used, there were some errors 

between the Matlab simulation in comparison to the more accurate Simulink model. Figure 6.1 shows a 

comparison between a zero torque and zero friction swing from a horizontal starting position using the 

Matlab model and a Simulink simulation. Note that the Matlab model starts to lose total energy due to 

numerical errors, and would diverge from the Simulink output due to the chaotic nature of the motion 

at around 5s. The Matlab simulation loses roughly 2J of energy every 10s, or 0.2J per second. Since 

brachiation might have swings of up to 20J per second, this error only represents only 1% of error. 

 



 

Figure 6.1: A comparison between a zero torque, zero friction swing starting from a horizontal position. 

Note that numerical errors in the Matlab simulation cause a small decay in energy of 0.2J per second. 

The Matlab model closely matches the Simulink model up until 5s, where divergence occurs. 

 Figure 6.2 shows an energy comparison between the simulations with the brachiator starting 

from a neutral position, and applying a constant torque of 5Nm at the elbow joint. This causes the 

system to approximate a constant force spring-mass system, and it oscillates as expected. Note that 

since we are only concerned with the gravitational potential energy and the kinetic energy of the 

system, and not any energy stored torque on the elbow joint, the total energy swings up and down.  

 

 

Figure 6.2: A comparison between the Matlab and Simulink simulations with zero friction starting from a 

straight down position and with a constant torque of 5Nm. Note that the energy is not constant in this 

system as we are only looking at the gravitational potential energy and kinetic energies, not the stored 

spring energy caused by the constant torque. 



Figure 6.3 and Figure 6.4 show two simulations of random torques sampled at 20ms intervals 

ranging from -10 to 10Nm applied to the brachiator from neutral position. The same random torques 

are applied to both the Matlab and Simulink simulations. Note that due to the chaotic nature of the 

system and small differences in how the Matlab simulation computes the integration versus the 

Simulink simulation, the energies start to diverge after 5s of simulation. Some of these differences 

include the existence of an ode approximation in the Simulink simulation that was not present in the 

Matlab simulation. Other differences include the order of summation of the acceleration, velocity, and 

position terms, and when the torque was updated with respect to computing the dynamics. 

 

Figure 6.3: A comparison between the Matlab and Simulink simulations with random torque inputs 

sampled at 20ms. Divergence happens around 5s. Note the chaotic motion of the total energy. In this 

random example, energy was added to the system by pure chance. 

 

Figure 6.4: A comparison between the Matlab and Simulink simulations as in Figure 6.3, with a different 

seed for the random torque inputs. Again, divergence occurs at 5s.  

 The Simulink simulation is treated as the gold standard, but the Matlab simulation was easier to 

develop for and was simple to convert to a C++ version for faster computation. Since the two 



simulations are approximately equal up to 5s, using the Matlab/C++ version was considered adequate 

for our experiments. Note that all simulations would eventually diverge from a real world example due 

to modeling errors. 

6.3. SimMechanics Model 

6.3.1. Mass Analysis 

A model of the real world brachiator was constructed in Solidworks using the correct masses for 

each component. The overall weight of the robot is approximately 40N, with a length of approximately 

80cm. The Solidworks model was then imported into SimMechanics, allowing for an estimation of the 

inertial matrix. The real world linkages were measured using a scale, and a correcting factor was scaled 

to the inertial matrices to adjust for any errors. 

 

  

Figure 6.4: The real-world and Solidwork models of the robot. Note that this robot was using an older 

version of the gripper. The newer version has similar mass properties and size, so the model is still valid. 

 

Figure 6.6: The SimMechanics Model. Red is the grasping location, green is the grasping hand, and blue 
is the swinging hand. 



6.4. Simulink Simulation 

Two Simulink simulation models were used. The first was a simpler model consisting of two 

simple linkages with point masses at their centers and no friction. This allowed for testing and 

comparison with the Matlab simulation to test for errors in the Matlab simulation. Figure 6.7 shows an 

image of this model. The second Simulink model imported the inertial values from the SimMechanics 

model, as shown in Figure 6.8. This model was primarily used to test the Neural Network controller. 

 

Figure 6.7: The simple Simulink model with two linkages that have point masses at their centers. The 
green, blue and magenta blocks perform energy measurements, state measurements, and torque inputs 

respectively. The red blocks are the body components. 



 

Figure 6.8: The Simulink model with imported SimMechanics components. Red, green, and blue 
represent the 3 physical components from Figure 6.6 respectively. The cyan blocks monitor the outputs, 
while the orange blocks control for the torque input. There is also coulomb and viscous friction on the 

joints. 

6.5. Conclusion 

In this section, we have discussed the simulation strategy used. The Simulink simulations 

presented the gold standard for accuracy, and included the inertial masses, but were difficult to work 

with and slower. The Matlab only simulation was easier to work with but had small inaccuracies. 

However, it was easier to port to C++ for faster simulation, which was important in the learning step of 

the Dynamic Programming Controller. The SimMechanics model was used to generate inertial matrices 

for simulation and for computing the energies in the real-world robot. 

 

 

 

 

 



Chapter 7 

Swing Controller 

7.1. Introduction 

7.2. Dynamic Programming Controller 

7.2.1. Introduction 

Dynamic programming allows us to find globally optimal control laws for a one-step cost 

function. When applied to the brachiator, we can select our action-space and cost function such that we 

achieve the desired robot position to grasp the target branch while remaining within our torque 

constraints. However, the controller was found to be sensitive to modeling accuracy and noise, which 

made it unsuitable for implementation in the physical robot. In addition, the lengthy training time was 

undesirable. 

7.2.2. Setup  

We seek to use dynamic programming to design a swing controller. We start by converting the 

continuous time and continuous state brachiation problem into one that has discrete time and discrete 

states. The state and following state was represented by: 

  (       ̇   ̇ ) 

      (    ) 

The time slice selected was 0.02s, which was slower than the simulation time of 0.001s. This was 

because a large enough time step was needed between actions or else there would be no state change 

per action due to the coarse state discretization. Therefore, we query the controller for a new torques 

every 20ms while simulating at 1ms intervals. Figure 7.1 shows the effect of a larger time slice. 



 

Figure 7.1: A comparison between a smaller time slice and a larger one. If the time slice is too small, an 

action may not cause a change in state if the state quantization is too large.  

The state resolution selected was 100x100x100x100, as recommended by Atkeson et al 

(Chistopher and Chenggang) who found that lower state-resolutions failed to reveal solutions for two-

link systems with full control on both joints. Note that our control problem is more difficult in that we do 

not have full control of the system due to lacking actuation at the hand joint. The state resolution 

represented 100 million states per branch location, and required 100 million more states for each 

additional branch location. The target branch locations were selected from between 40-60cm from the 

current branch, at 5cm intervals.  

The action represented the elbow torque for each state, and the action space was continuous 

between the minimum and maximum allowed torque of 10Nm: 

 ( )         ( )     

The cost function selected was defined as: 

 (   )  (          )
  

Where the end effector position   was found using the forward kinematics described in chapter 3.2.1. 

The Q function used was defined as: 

 (   )   (   )    ( (   ))       

  represents the weighting factor between immediate and future rewards. If   is closer to zero, the 

controller would select for immediate rewards, while if it is closer to one the controller would select for 

future rewards. We set     because during swing up, the robot might need to move away from the 
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goal in order to swing back and forth and build momentum, and therefore we would want the controller 

to focus on the future rewards rather than immediate rewards.  

Finally, the Bellman update equation for the value at each state was defined as: 

 ( )       (   ) 

In typical dynamic programming training, the naïve trainer would provide a sample of possible 

actions for each of the 100 million states and evaluate the Bellman update equation to generate the 

value table for the next step. However, the time needed to produce enough value table updates for the 

state space we have is too large, and therefore a better training algorithm is needed. 

7.2.3. Random Action Dynamic Programming Algorithm 

Atkeson et al found that random action dynamic programming is fast and effective for training 

the value table. This algorithm is outlined in Figure 7.2. Convergence is defined as when  ( ) no longer 

changes, however in our implementation it was found that stopping at 1000 sweeps of random actions 

for each state was sufficient. At 1000 sweeps, less than 0.001% of the states are updated with new 

actions per sweep.  

The training time required per sweep of all the states was approximately 28s when 

implemented in C++ on an i7-3970x processor. Therefore, for 1000 sweeps the algorithm needed 8h per 

new branch position. For our 5 branch positions, which were located at 40, 45, 50, 55, and 60cm from 

the current branch with no change in y-position, this algorithm took 40h to complete. For every possible 

branch location, the policy  ( ) required a table with 100 million double values, representing roughly 

0.8GB per table in C++. Therefore, storing the policy for 5 branch positions requires 4GB of memory, and 

in an real-world scenario more branch locations would be needed requiring even more memory. 

 



 

Figure 7.2: The flow chart used for training the dynamic programming based controller.  

7.2.4. Swing-Up Simulation 

Figure 7.3 shows the both joint angles of a swing-up from a straight down hanging position 

attempting to grasp a branch located 56.8cm away from the current position. The control policy selected 

is whichever trained target branch policy is closest to this actual branch location. In this case, the 

controller selects the policy trained with a target branch distance of 55cm. Note that there was 

chattering during the first 4s. This was due to the dynamics of the swing motion around the manipulator 

singularity of being perfectly straight being more detailed than could be described by the state table due 

to the quantization into discrete values. Once it moved further from this position, it was able to perform 

swing up until it grasped the target branch. This chattering may be removed in future controllers with a 

coarser state grid near states where     , although the already large training time prevented more 

states from being added when preparing this thesis. 

At roughly 5.5s, the controller decided to rotate the elbow past the arm, performing an 

overhead swing. This is indicated by the transition of the joint angle from -180 degrees to +180 degrees. 
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Although this was valid in simulation, joint limits must be added before applying this to the real world as 

the physical robot cannot rotate the elbow past the arm. 

Figure 7.4 shows the both joint velocities of the same swing-up motion. There are large 

singularities in joint velocities as the robot snaps back and forth from the vertical singularity position 

during the first 4s. Since the controller was not trained to optimize for soft landings, there is still 

considerable angular velocity in the elbow joint as the robot makes contact with the target branch.  

 

Figure 7.3: The angular position of a swing-up from hanging straight down to a branch 56.8cm away 

from the current branch in the x-direction. There was chattering during the first 4s caused by dynamics 

that were lost due to the coarse state quantization when converting to discrete states. The controller 

performs an overhand swing at 5.5s, as indicated by the elbow joint moving from -180 degrees to +180 

degrees.  



 

Figure 7.4: The angular velocity of the swing-up motion. The controller does not optimize for soft 

landings, so there is a large elbow velocity when it reaches the branch at 5.5s. 

Figure 7.5 shows the energies of the swing-up motion. Note that very little energy was stored 

during chattering in the first 4s. Once it moved beyond the vertical position, energy accumulation 

begins. When the robot made the grasp, the robot had roughly the same potential energy as the 

minimum required energy, as expected. Any differences were caused by the target bar having a non-

zero diameter, which on contact with the end effector stopped the simulation. Therefore, the end 

effector did not need to hit the target point dead on, but had 2.5cm of leeway from the center. Finally, 

note that on impact there was considerable excess kinetic energy, leading to a large overshoot in total 

energy of roughly 15J. This would cause an undesirable impact force in a real system. 



 

Figure 7.5: The energies of the swing-up motion. During grasping at 5.5s, the robot had roughly the 

same potential energy as the minimum required energy, as expected. However, since it was not 

optimized for energy efficiency, it contained 15J of kinetic energy at impact. 

Figure 7.6 shows torque input calculated by the controller. Note that the torque is quite 

detailed. The real system would have to accurately control the torque in order to implement this 

controller. 

 

Figure 7.6: The torque input on the elbow joint for swing-up. It is extremely detailed and would be hard 

to implement in the physical robot. 



 The swing-up was successful, however we required a joint limit on the elbow joint that 

prevented it from rotating past the arm. Adding this joint limit produced a different swing-up motion. 

Figure 7.7 and Figure 7.8 shows the angular position and velocities respectively. There is still 4s of 

chattering as before, but the actual swing-up takes more time, grasping at 8s instead of 5.5s. However, 

there were no transitions of the elbow joint from -180 degrees to +180 degrees, as desired. 

Unfortunately, the final joint velocities were again non-zero, and were actually larger in this swing-up 

with a large hand angular velocity on impact. 

 

Figure 7.7: The angular position of a swing-up with joint limits that prevented the elbow from rotating 

past the arm. The 4s of chattering remained as in the previous swing. The swing-up took longer than in 

the swing-up without joint limits, taking 8s instead of 5.5s. 



 

Figure 7.8: The angular velocity of the swing-up with the joint limits. The joint velocities on impact at 8s 

were non-zero. 

 Figure 7.9 and Figure 7.10 show the energies and torques respectively of the swing-up with joint 

limits. As before, the potential energy is roughly the same as the minimum required energy, with 

differences caused by the target bar having a diameter. Again, there was undesirable excess energy on 

impact, and the torque is extremely detailed and not suitable for the real system. Note that the swing 

energy is identical to the swing energy as before until 5.5s where the previous controller was able to 

make the grasp. Due to the joint limits, the motion was hindered and energy was lost, requiring 

additional swings and time to perform the grasp. 

 



Figure 7.10: The energies of the swing-up motion with joint limits. As before, the potential energy was 

roughly equal to the minimum required energy, and there is an overshoot in stored energy on impact. 

 

Figure 7.10: The torque input on the elbow joint for swing-up with joint limits. Like before, it is too 

detailed for the physical robot to replicate. 

7.2.5. Brachiation Simulation  

Since we are performing continuous contact brachiating gait, we only need to demonstrate a 

single brachiation swing per iteration of the pervious and next branch positions. If this is possible, then 

every subsequent swing is simply a repeat of the demonstrated swings. Figure 7.11 and Figure 7.12 

show the brachiation swing using a ladder separation of 55cm. Note that the initial joint angles is an 

inverse of the final joint angles, with any differences caused by the target branch having a radius of 

2.5cm, and the simulation ending on contact with the edge of this circle instead of the center. Also note 

that the final grasp was performed while the robot had a negative hand angular velocity, indicating an 

overshoot in potential energy and the robot making a grasp as it fell backwards. This was undesirable 

since the physical claw needed to approach the target branch from underneath instead of from above or 

from the sides. 



 

Figure 7.11: The angular position of a single brachiation swing. Note that the initial joint angles mirror 

the final joint angles as expected. Any difference is caused by the target branch having non-zero 

diameter. 

 

Figure 7.12: The angular velocity of a single brachiation swing. Note that the grasp was made while the 

robot had negative hand angular velocity, indicating a grasp as the robot was falling away from the 

branch, grasping the branch with the end effector from above. This would be undesirable in the physical 

system as the claw must approach the target branch from below. 



Figure 7.13 and Figure 7.14 show the energy and torque of the swing respectively. Note that the 

final potential energy is approximately equal to the minimum required energy as expected. There was 

an overshoot in total energy as the kinetic energy on contact with the target branch was non-zero. It 

was found that modifying the torques by a constant value of ±10% would cause the controller to fail. 

Adding friction that was not trained for would also sometimes cause the controller to fail. Therefore, the 

controller was not robust. 

 

 

Figure 7.13: The energies of a single brachiation swing. The final potential energy was roughly the same 

as the final required energy as expected. There was undesirable excess kinetic energy on impact. 

 

 



 

Figure 7.14: The torques of a single brachiation swing. 

7.2.6. Conclusion 

The dynamic programming approach to brachiation allows for both swing-up and brachiation 

swings to be performed with and without joint limits. However, the controller suffers from a long 

training time, large memory requirements, chattering at the manipulator singularity, and non-optimality 

in energy. 

The training time can be alleviated in future implementations by using parallel threads to train 

for each target branch position. The state table updates in a single sweep can also be divided up into 

parallel tasks. This chattering may be removed in future controllers with a coarser state grid near states 

where      at a cost of longer training time, or with a bootstrap swing that moves the controller to a 

state away from the singularity. Non-optimality in energy on grasping the target branch, which would 

cause undesirable impact forces in the physical system, can be reduced by modifying the cost function 

such that energy on impact is considered in the cost equation. However, this would require additional 

experimentation since weighting for more energy efficiency might cause for the controller to focus less 

on positioning the end effector accurately, enough for it to not have the capability of grasping the target 

branch. This experimentation would be costly time wise due to the large training times and many 

possible cost functions. 



It was also found that adding friction that was not trained for would also sometimes cause the 

controller to fail. Therefore, the controller was not robust. This, coupled with complex input torques, 

makes it unsuitable for implementation in our physical robot. 

7.3. Torque Impulse Neural Net Approach 

7.3.1. Introduction 

Neural networks can be used as a non-linear controller to perform brachiation. We can also 

train the network to optimize for other higher-order properties of the swing such as the collision force 

on contact with target branch. Finally, we can modify the torque inputs to be an impulse, which would 

be easier to implement on the physical robot. However, like the dynamic programming based approach, 

the neural network controller was also sensitive to noise and required long training times. In addition, 

the controller does not include swing-up, and therefore cannot correct itself if it fails to reach the target 

branch. 

7.3.2. Training Strategy 

 

Figure 7.15: The torque impulse generated by the neural network was defined by 3 parameters, the time 

until the start of the pulse   , the amplitude  , and the duration of the pulse   .  

We desire a controller that would provide us with the required torque impulse given the initial 

starting position and the desired final position, while minimizing the resulting peak HRF impulse. Figure 

7.15 shows the parameters of the torque impulse used: the time from release until the start of the 

impulse, the amplitude of the impulse, and the duration of the impulse.  

It is possible to train such a controller with a neural network given a sample of the input and 

output data. However, without a controller in the first place, we cannot obtain the training data. The 

solution is to therefore try randomized swings and select the data from the randomized pool that agrees 

with our desired swing properties. 



 

Figure 7.16: A flow diagram outlining the training process for a neural network approach to brachiation. 

Figure 7.16 shows a flow diagram of the training process. We first simulated 165000 trials of 

randomized starting positions and input torques. From the trials, 32000 successful swings where the 

final y-position reached the initial y-position were retained. A binning process grouped the successful 

swings, and selected a portion of swing motions that represented reduced impact forces. Figure 7.17 

shows a slice of the training data, representing a target x-position of 44cm from the grasping location.  

The data-points represent the impact forces of randomized successful trials, and the red data-points 

represent the binned data used for training examples for this particular slice. Approximately 3000 data 

points were collected, ranging from a starting x-position of -60cm to -50cm, as shown in Figure 7.18, and 

an ending position of 40-60cm. Note that unlike the dynamic programming approach for which each 

target branch location’s value table contains all possible starting conditions, the neural network 

approach needs to be trained for all a sample of starting positions as part of the data set. 

 

 

Figure 7.17: A flow diagram outlining the training process for a neural network approach to brachiation. 



 

Figure 7.18: The possible initial starting positions for training, showing the furthest, the middle, and the 

closest starting branch locations that were trained. 

The training data was fed to a committee of 10 neural networks, each with a hidden layer size of 

20 neurons using sigmoidal output as shown in Figure 7.19. Each neural net has three linear output 

neurons that allow for the direct representation of output data. The training inputs are the initial and 

final x-positions, and the output is the corresponding torque impulse attributes:    ,   , and  . 

 

Figure 7.19: A diagram of the neural network used to solve for the torque impulse given the initial and 

final starting positions. 

Training was done with a 70:15:15 split of the training, validation, and test sets. After training, 

we tested the neural network’s response for various target x-positions from various starting x-positions. 

Training took a total of 12h to complete. We simulated the output torque impulse and examined both 

the resulting peak HRFs, and how close the target x-position was to what was desired. 

7.3.3. Brachiation Simulation 

Testing was done by selecting various starting branch positions at 1cm intervals from -60 to -

40cm from the current branch, and final positions from 40 to 55cm at 2.5cm intervals. Figure 7.20 shows 

a graph of the end positions given the target position and the starting position. The simulation shows 

that the controller performs well at a starting position of -55cm, where each simulation end position 

approximately equals the desired x-position. However, outside of this region the controller loses the 

ability to accurately target the desired x-position, as shown by the graph lines not being horizontal. 

Therefore, the controller was not robust to changes in the starting x-position, and is more applicable to 

the rope problem then the ladder problem. 



 

Figure 7.20: A diagram comparing the simulated end positions versus the desired end positions for 

various starting positions. At a starting position of around -55cm, the controller is able to match the end 

effector position to the desired x-position. However, outside this starting position the controller 

performs poorly. 

 

Figure 7.21: A simulation of the brachiator starting form -55cm and ending at various desired x-

positions. 

Figure 7.21 shows a simulation of the brachiator starting from -55cm and ending at various 

desired x-positions. Figure 7.22 and Figure 7.23 show the angular position and angular velocity 

respectively. Since the angular velocity at grasp is negative, the controller performs the grasp as the 

robot is falling away from the branch, which is undesirable. There is still residual velocity in the joints on 

contact with the target branch, and Figure 7.24 shows that there is an overshoot in total energy when 

colliding with the target branch. This indicates that while the controller tried to optimize for a soft 

impact, it was only slightly better than the dynamic programming approach. More training cases might 

be needed to better optimize for lower impact forces. 



Finally, Figure 7.25 shows the torque impulse. Note that the torque impulse was not exactly 

10Nm, but slightly less due to the continuous nature of the neural network output. Changing the initial 

time of the torque impulse by as small as 5% caused the controller to fail in its swing motion, showing 

that while the torques were simplified, they were very sensitive. The physical system has variability in 

the initial release time due to backlash on the grippers, making controlling for when to start the timer 

for the torque impulse difficult. Therefore, this controller is not suitable for the physical system.  

 

Figure 7.22: The angular positions of a single neural network swing. 

 

Figure 7.22: The angular velocities of a single neural network swing. 



 

 

Figure 7.23: The system energy of a single neural network swing. 

 

Figure 7.24: The torque impulse produced by the neural network. 

 



7.3.4. Conclusion 

The neural network produced good solutions for multiple target positions for a certain starting 

position of -55cm. In addition, a torque impulse is easy implement in the physical system. However, the 

controller was not robust to changes in starting position or noise in the torque impulse timings. In 

addition, like the dynamic programming controller, the neural network model also required long training 

times. Finally, the neural network approach lacked the ability to do swing-up and was essentially feed-

forward only, making it unable to recover from mistakes or unexpected disturbances. 

7.4. Energy Based Approach 

7.4.1. Introduction 

It is possible to perform brachiation from energy control alone by maintaining the total energy 

of the brachiator system at the same energy as the potential energy at the final grasping position. If we 

assume the proper grasping shape and obtain the desired energy, then assuming the frictional losses are 

small we will eventually swing to the desired final position at the peak of the swing. The difficulty with 

this approach is in making sure the correct energy and the correct position happens simultaneously. This 

approach does not require accurate torque values or timings, and primarily depends on the sign of a 

constant torque value, making it suitable for the physical system. It also allows for swing-up, and does 

not require any training time. 

7.4.2. State Machine 

The energy based approach uses a state machine in order to perform brachiation. The swing is 

initiated by first computing the final desired grasping shape of the brachiator using inverse kinematics. 

The energy of this final shape at rest,         , is then computed as the gravitational potential energy of 

the final position. Swing is then initiated, and at each time step the system’s total energy is evaluated as 

a sum of the systems kinetic and potential energies. This energy is compared to the desired energy, and 

if it does not exceed the desired energy then we inject more energy into the system. If it does exceed 

the desired energy, we move to the final brachiator shape if our end effector is approaching or near the 

target branch. Figure 7.25 shows the state machine flow diagram. 



 

Figure 7.25: The state machine for the energy based controller. 

7.4.3. Energy Computation 

From our dynamic analysis, we obtained a method for solving for the potential and kinetic 

energy of the system. The total energy is therefore: 
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Note that the kinetic energy does not depend on   , as is expected.  

7.4.4. Energy Injection 

In order to perform brachiation swing-up, we need to inject or remove energy into the system, 

which will be expressed as a change in energy    with respect to torque on the elbow. Assuming that 

there are no frictional losses, this can be expressed by the following equation for a simple two-link 

brachiator:         
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Since we only have control over the elbow torque  ̈ , we can ignore all summation terms that 

do not include this term. Subbing in masses of 2kg, lengths of 1m, and positioning the center of masses 

at the center of the linkages, our injected energy given a particular state defined by the joint angles and 

joint velocities is now defined as follows: 
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Therefore, for every time step we can use a torque      that is of the same sign as the bracketed 

components to add energy into the system, and a torque of the opposite sign to remove energy. To 

simplify the controller and make it less sensitive to errors in accurate torque control from the driver, we 

set the magnitude of the torque to be constant at 10 Nm, which was found to be effective in simulation: 
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Energy injection is done when                          , where the extra         energy 

accounts for frictional losses and unwanted changes in energy caused by transitioning to the final 

position. 

7.4.5. Final Positioning 

Using inverse kinematics, we obtain the desired final pose  . We can then obtain the final 

desired energy as the rest energy of the final pose: 
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After energy injection, if we find that         ( )          ( ), then the brachiator will have 

enough energy to grasp the next branch. In order to achieve the final pose, a simple PID controller is 

used on the elbow joint: 
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7.4.6.  Transition Algorithm 

In order to avoid hard switching, which may introduce un-modeled dynamics caused by the PID 

controller, an intermediate transition algorithm was designed to switch from energy injection to final 

positioning using the strategy used in the pole-cart problem analogue (Udhayakumar and Lakshmi). This 

is done by linearly transitioning between torques generated from      and       . Near   ( )  

        ( ) we use       . If the difference among         ( ) and   ( ) is larger than            , we 

use      . In between, we use: 
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This allows us to switch between the two joint controllers smoothly. 

 The transition algorithm is used when the brachiator’s end effector is near or approaching the 

target branch. Here, approaching is defined as  ̇ and  ̇  being positive. 

7.4.7. Energy Injection Simulation 

The energy injection algorithm was tested in simulation. First, the simulated environment was 

set up to measure system energy. Figure 7.27 shows the total system energy in green as a function of 

time. The system energy decreases due to viscous friction. Note that the rate of energy loss is greater 

when the brachiator has higher kinetic energy, as expected due to the viscous friction being a function 

of joint velocities. 

 



 

Figure 7.26: The system energy as a function of time with no torque inputs showing the loss of energy 

due to viscous friction. 

Figure 7.27 shows the system energies with the same friction but with energy injection. In this 

example, no joint limits are imposed on the elbow joint, and it is free to rotate continuously. The 

algorithm is able to track the desired energy, but it violates the joint constraint as it continuously rotates 

the elbow. 

 

Figure 7.27: The system energy with energy injection, showing the controller is able to track the desired 

energy. However, no joint limits are imposed in this example. 



  Figure 7.28 shows the same system, but this time with joint limits. When joint limits are about 

to be exceeded and the algorithm requests a torque that would continue to move the joint towards the 

limit, a large reduction in the applied torque is made. If the joint reaches the joint limit, the joint velocity 

is zeroed. The figure shows how these joint limits affect the ability to control energy. Whenever the 

elbow joint approaches its maximum rotation threshold, which corresponds to the highest potential 

energy of the system, it approaches the joint limit and the algorithm is unable to inject any more energy, 

causing the stored energy to decay.  

 

Figure 7.28: The system energy with energy injection and joint limits. Hitting the joint limits causes 

disturbances in the stored energy. 

Figure 7.29 shows the change in system energy due to the PID pose controller, without any energy 

injection. The change in pose causes unwanted energy to disturb the total stored energy. This unwanted 

disturbance in energy adds additional noise to the stored energy on top of the disturbances generated 

by the joint limits. 



 

Figure 7.29: The system performing pose control only, showing the disturbance in total energy caused 

by switching to pose control. 

7.4.8. Swing-Up Simulation 

From the energy injection simulations, it was found that pose disturbances caused changes in 

energy of up to 7J. In order to account for these variations, the algorithms desired energy target was 

made to be higher than the actual energy needed. Figure 7.30 shows the combined energy injection and 

pose control applied to swing-up, followed by a successful grasp to the target branch at around 6s. In 

this figure, green represents when the energy injection state dominates, and magenta represents when 

the pose control dominates. The transition between the two states is not shown. The cyan line 

represents the required energy, while the black line represents this energy plus a buffer. Note that while 

hard to see, there is a small magenta portion at the very end when the controller makes the grasp 

indicating that the grasp was made during the pose control state as expected. 

The large dips in energy are caused by failed grasp attempts, and they follow a magenta pose 

control state. These failed attempts are caused by not having enough energy at the final grasp position, 

as shown by the total energy ending below the black required energy line. This miscalculation is caused 

by the combined disturbances in total energy caused by the joint limits and from switching to pose 

control. These disturbances can also inject too much energy into the system, as show as the occasional 

spike in total energy which also occurs during the switch into pose control. Finally, note that the final 

energy is greater than the required energy. This energy would be dissipated as an undesirable impact 



force in the physical manipulator, and is a consequence of using the energy buffer. However, the total 

overshoot in energy is lower than in both previous controllers. 

 

Figure 7.30: The system energy. The total energy is represented in green and magenta, with the colors 

representing the energy injection state and the pose control state respectively. Deviations in the total 

energy from the tracked energy are caused by switching to the pose controller. 

While the dynamic programming approach suffered from chattering, its actual swing up took 

less than 2s once it stopped chattering. Its speed could be improved with a bootstrap to cause some 

motion away from the singularity position. The energy injection based controller on the other hand, 

does not chatter but fails to grasp the branch several times, making it slower.  

Figure 7.31 shows the angular position of both joints, and shows that we do not violate the joint 

constraints since    does not exceed ±180 degrees. Figure 7.32 shows the angular velocity of both 

joints. The singularities occur when the elbow is straight, causing a whip-like effect on the kinematic 

chain. The non-singularity velocities remain below 900 degrees/s, which is around 150 RPM. Note that 

the physical robot uses two motors connected by their shaft to achieve this RPM. 



 

Figure 7.31: The angular position of the system during swing-up. Note that the joint limits are not 

violated. 

 

Figure 7.32: The angular velocity during swing-up. Although there are asymptotic peaks when the 

brachiator is near the singularity of     , most of the non-asymptotic velocities fall below 900 

degrees per second, which is possible to achieve in the physical robot. 

Finally, Figure 7.33 shows the swing-up torque. The dark regions are when the controller 

switches the torque rapidly when the desired energy approximately equals the tracked energy. This can 

be removed by a smoothing filter, and it would average to 0Nm. Otherwise, the torques required are 



simpler than in the dynamic programming controller, with all of the energy injection torques being 

±10Nm. Most curves in the torques are caused by the joint limiting which doesn’t have to be exact in the 

physical system. Other curves are caused by the PID pose controller, which also does not need accurate 

torque control.  

  

Figure 7.33: The torques required for swing-up.  

7.4.9.  Brachiation Simulation 

Figure 7.34 show energies and states of a single brachiation swing. Figure 7.35 shows the swing 

at roughly 100ms time stamps, starting at roughly 50ms. Note that the system starts with some initial 

energy since it is grasping the previous branch. The following branch is at the same height, and should 

therefore require roughly the same energy, as shown by the black line. However, due to the extra 

energy buffer, the system starts to inject energy until the stored energy reaches the target energy 

marked in cyan. At 180ms, the system decides to switch to the pose control, however the disturbance in 

energy caused by the pose control causes an energy loss that switches the system back into energy 

injection. Still swinging forward, the system injects energy by applying torque, and reaches a second 

pose control state, where it is able to successfully grasp the branch. All of this occurs in a single forward 

swing, with no backswing. The final energy is only slightly higher than the required energy, but it is less 

than in the previous controllers, representing only the excess buffer energy. 



 

Figure 7.34: The energy of the system during a single brachiation swing. 

 

Figure 7.35: Snapshots at roughly 50ms intervals of a brachiation swing. 

Figure 7.36 and Figure 7.37 show the angular position and velocities respectively, and shows 

that the required elbow velocity remains below 900 degrees/s, or 150 RPM. Additionally, the velocities 

during grasping are very close to zero, indicating a soft impact. 



 

Figure 7.36: The angular position of a brachiation swing. 

 

Figure 7.37: The angular velocity of a brachiation swing. Note that the swing ends at almost zero angular 

velocity on both joints. 



 

Figure 7.37: The torque required for a single brachiation swing. 

 

 

Figure 7.39: A brachiation swing that requires excess energy. 

 



Figure 7.38 shows the torques required for a single brachiation swing. The dark region occurring 

at roughly 0.1 seconds is due to the controller switches the torque rapidly when the desired energy 

approximately equals the tracked energy. This is a characteristic of sliding-mode controllers, which this 

controller is somewhat a type of except we are controlling for energy instead of dynamics. The curved 

regions represent pose control torques. In the physical system, pose control can be performed using the 

encoders, and not the torques, so we do not have to accurately control for these regions. The energy 

injection torques are simple max-min driving torques, which is easy to replicate in the physical system. 

The controller was found to be able to do brachiation even when the max torque values were changed 

by ±10%. This is because the controller only cares if enough torque is available to inject or remove 

energy into the system that is greater than the losses of energy due to friction or other dynamics. The 

controller was also able to handle various coulomb and viscous friction additions. 

Figure 7.39 shows the combination of a forward swing and a swing up. The target branch is 

positioned too high for a single forward swing, and therefore energy injection occurs causing a 

backswing and another forward swing, at which enough energy is stored to complete the grasp. 

7.4.10. Conclusion 

The energy injection controller sometimes fails to grasp the target branch during swing-up due 

to disturbances in energy caused by pose control and joint limits, but it is able to switch back to energy 

injection after a failed grasp for another attempt. The controller does not require accurate control of the 

torques, only switching between positive and negative saturation on torque based on the current joint 

velocities and the elbow position. The modifications to the torques due to joint limits or pose control do 

not need to be as accurate.  Additionally, the controller produces grasps with low final joint velocities, 

meaning the impact forces would be reduced in the physical system. This is desirable since it prevents 

damage to the 3D-printed claws. Finally, the controller was able to handle changes to the applied 

torques and the addition of friction. 

7.5. Conclusion 

We have shown three controllers that can perform brachiation. The dynamic programming 

approach produced a controller that could perform swing-up and brachiation, but the torques required 

were too complex to be reproduced by the physical system and the training time was too long. The 

neural network approach produced simpler torques, but required tight timings and was not robust to 

noise. It also could not perform swing-up and was entirely feed-forward. The energy based approach 



offered a fast and simple control algorithm that would sometimes fail to grasp the target branch, but 

was able to recover and continue swinging. It also had the lowest overshoot in energy on impact out of 

the three controllers, making it have the softest landing during grasping. 

The following table shows a summary of the comparisons between the three controllers for 

brachiation swings. Note that the average torque magnitude of the energy based approach is higher 

than in the dynamic programming approach, which has an average torque magnitude that can be 

reduced further by adding a cost on the applied torque. While the average torque does not directly 

relate to energy, the torques applied require current to generate with our DC motors, and therefore the 

larger the average torque magnitude the more energy we use for brachiation. It is expected that the 

energy based approach have a higher value similar to the Neural Network approach because we are 

driving the torques at the maximum and minimum values. The other metrics presented favor the Energy 

Based method that made it appropriate for implementation in the real world controller. 

 Dynamic 

Programming 

Neural Network Energy Based 

Residual Kinetic 

Energy 

7J 5J 1J 

Average Torque 

Magnitude for 

Brachiation 

5.99Nm (3.33Nm with 

torque cost limit) 

9.83Nm 8.07Nm 

Training Time 8h Per Branch 12h None 

Problem Scope Swing up and ladder Rope Swing up and ladder 

Robustness Not robust to friction 

or torque offsets 

Not robust on changes in 

x-position or the torque 

impulse 

Robust to 10% torque 

offset and the addition 

of friction 

Torque Complexity Complex Torque impulse ±Max torque 

 

 

 



Chapter 8 

Real World Testing 

8.1. Workspace 

 

Figure 8.1: The ladder used for testing. 

 A ladder consisting of rungs of one inch diameter aluminum tubes placed an adjustable distance 

50-60cm apart was built, as shown in Figure 8.1. The exact positions of the rungs and the initial position 

from the robot were given to the controller during testing.  

8.2. Swing Up 

 Modifications were made to the simulated swing-up algorithm for the real-world test. The first 

modification included a hysteresis in changing the torque direction to prevent chattering during the 

initial swing from zero velocity. An additional bootstrap was added that applied a 3N torque in one 

direction for 800ms as an additional measure to prevent chattering by bringing the robot further from 

the initial zero velocity position. Finally, a modification was made to the pose-control so that it is only 

initiated if the robot was far from the target branch, but moving towards it. This prevented the gripper 

from colliding with the branch before it was in position. 



 It was also found that when switching to the PID controller for pose control, the robot would 

constantly overshoot in energy if the PID pose control was made while the robot was swinging towards 

the target branch. This was caused by a combination of the robot having roughly 15% more mass than in 

simulation, resulting in higher stored energies than expected. Also, the specifications of when we 

started our pose control caused pose control happen as the robot was swinging forward, and therefore 

as we move to the final pose we also swung forward, injecting extra energy into the system. Therefore, 

the desired energy was reduced to 25% below the actual required energy, allowing for pose control to 

happen sooner and supplement the missing 25%. This further helped prevent collision of the robot with 

the previous branch, as the robot would not have enough energy before pose control to swing high 

enough to collide with it. Figure 8.2 shows the swing-up process. 

 

  



 

Figure 8.2: The swing-up process. 

 

 

8.3. Brachiation 

 It was found that the robot would take around 200mS to 300mS to fully open the gripper start 

the swinging process, so an additional time delay of 400mS was added before any torques were applied 

to the motors to prevent the robot from initiating swing too soon. Figure 8.3 shows the brachiation 

process. 

 

Figure 8.3: A single brachiation swing. 



8.4. Inclination 

It was found that as the gripper released, the robot would droop downwards due to the slack in 

the grippers before actual swinging would start, this would cause the robot to start brachiation with a 

center of mass position lower than what it would be in an ideal scenario. This loss in initial potential 

energy before brachiation along with any frictional losses that were not modeled made it more difficult 

to swing to a higher branch than compared to simulation. The maximum inclination angle where 

successful single-swing brachiation occurred was roughly 10 degrees.  

8.5. Sensor Noise 

It was found that noise in the IMU used made it hard to determine when the brachiator reached 

the peak in its swing, which made it difficult to determine when the gripper should close. It was found 

that the gripper had a window of roughly 200ms long to close correctly. The window was shorted due to 

the gripper bouncing off the target branch due to excess injected energy, making the contact time even 

shorter. Due to sensor noise, sometimes the gripper closed too soon and sometimes it closed too late, 

leading to failures in brachiation swing. Future designs should include either a larger gripper to increase 

the window for closure, a better IMU, or a proximity sensor in the gripper to determine if a branch is 

within the claws. 

8.6. Conclusion 

Swing-up and brachiation were demonstrated by the real-world brachiator. However, due to 

physical limitations such as gripper slack and friction, the highest angle of inclination we were able to 

achieve for single-swing brachiation was 10 degrees.  

 

 

 

 

 

 

 

 



Chapter 9 

Future works 

9.1. Future works and Concepts 

9.1.1. Introduction 

There are several possible improvements future research can work on, particularly to the 

mechanical design including reduced overall weight, improved actuators, and improved gripper design. 

Modeling the transition between energy injection and pose control and estimating the change in energy 

would also help remove the 25% overshoots in energy used. 

9.1.2. Overall Weight 

The robot weighs around 4kg, which presents significant stress on the gripper and elbow 

motors. A reduction in weight would greatly improve performance. Most of the weight is caused by the 

motors, with the elbow motors contributing nearly 50% of the overall weight and the gripper motors 

contributing 12.5% of the weight. The elbow motors also reduce performance in that their substantial 

weight is centered on the elbow, reducing the momentum generated from swinging the free arm. 

Future work should select for smaller motors to reduce weight. 

9.1.3.  Actuators 

Initially, the Pololu brand “37D mm metal DC motors” were used as the joint motors. However, 

it was found that these motors were prone to failure, either from overheating or from chipped gearbox 

gears, so they were later repurposed as gripper motors. Unfortunately, when used as gripper motors 

they do not perform well as applying a constant gripping torque would also cause them to overheat, 

necessitating frequent cooling periods between test trials. Finally, these motors had significant backlash 

that impacted positional accuracy. Future designs should aim for using an alternative motor, such as a 

higher rating DC motor or a stepper motor that can lock in place.  

9.1.4.  Gripper Design 



The 3D printed grippers posed significant difficulty in that stresses on the grippers warped the 

3D printed parts overtime. In addition, the bevel gears used in the gripper design were prone to 

becoming loose, and would develop more and more backlash overtime. The bevel gears were chosen for 

their cost ($6 each) however future works should focus on better gearing. 

9.1.5. Pose Control Energy Change 

Future works should examine the change in energy from transitioning between energy injection 

and pose control. This energy can be estimated as a change instantaneous potential energy from moving 

between the two positions. The change in kinetic energy may be estimated by doing course simulation 

time-steps into the future. Estimating this energy would prevent large overshoots or undershoots in 

total energy when switching between energy injection and pose control, which can help remove the 

25% overshoot energy that was used in simulation. 

9.2. Conclusion 

We have developed an energy based brachiation controller and compared it to two other 

possible controllers. This controller does not require fine torque control as it only uses the maximum 

torque based on the sign of a function using the angular positions and angular velocities of the system, 

making it suitable for the physical robot since the physical robot’s motors do not have good torque 

control. Our controller was able to track the desired energy in simulation, which included an overshoot 

factor. This overshoot factor was caused by errors in modeling the transition between energy injection 

and pose control. However, in nature, gibbons do overshoot their energy when performing continuous 

contact brachiation (Usherwood and Bertram). Since the controller only requires a computation of the 

total energy, its derivative, and forward and reverse kinematics, it is easily generalizable to other 

brachiation robots. Finally, we have demonstrated the controller in action on a real-world brachiator 

robot. 
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