
Patch to the Future: Unsupervised Visual Prediction

Jacob Walker, Abhinav Gupta, and Martial Hebert
Robotics Institute, Carnegie Mellon University
{jcwalker, abhinavg, hebert}@cs.cmu.edu

Abstract

In this paper we present a conceptually simple but sur-
prisingly powerful method for visual prediction which com-
bines the effectiveness of mid-level visual elements with
temporal modeling. Our framework can be learned in a
completely unsupervised manner from a large collection of
videos. However, more importantly, because our approach
models the prediction framework on these mid-level ele-
ments, we can not only predict the possible motion in the
scene but also predict visual appearances — how are ap-
pearances going to change with time. This yields a visual
“hallucination” of probable events on top of the scene. We
show that our method is able to accurately predict and visu-
alize simple future events; we also show that our approach
is comparable to supervised methods for event prediction.

1. Introduction
Consider the image shown in Figure 1. A reliable mod-

ern computer vision approach might at best recognize the
objects and regions in the image and list the corresponding
nouns — road, car, tree and grass. However, when we hu-
mans look at the same image, we can not only infer what
is happening at that instant but also predict what can hap-
pen next. For example, in the same image, we can predict
that the car on the bottom right is either going to go straight
or turn left at the intersection. Humans’ amazing ability
to visualize the future is primarily driven by the rich prior
knowledge about the visual world.

We believe the task of visual prediction is important for
two main reasons: (a) For intelligent agents and systems,
prediction is vital for decision making. For example, in or-
der to perform assistive activities, robots must be able to
predict the intentions of other agents in the scene. Even
a task as simple as walking through a crowded hallway re-
quires the prediction of human trajectories. (b) More impor-
tantly, prediction requires deep understanding of the visual
world and complex interplay between different elements of
the scene. Therefore, prediction can act as a way to define
“what does it mean to understand an image,” and the task of

(a) Original Image (b) Prediction Heatmap

(c) Predicted Path -1 (d) Predicted Path -2
Figure 1. Consider the scene shown in image (a). Our data-driven
approach uses a large collection of videos to predict the likely fu-
ture of an agent in the scene. The heatmap (b) shows the likely
locations the car can visit in the future (along with a few possible
trajectories.) (c) shows the hallucination of car moving straight
and (d) shows the hallucination of the car turning left.

visual prediction can act as the litmus test for scene under-
standing.

In this work, we take a step toward this goal of gener-
alized visual prediction — determining what is active in
the scene as well as how the activity should unfold. How-
ever, this leaves us with major questions. What do we pre-
dict? What does the output space of visual prediction look
like? Recent approaches have only focused on predicting
the movements and transitions of agents treated as a point
object [18] or optical flow of pixels [33]. In contrast, we hu-
mans can not only predict the motion but also how the ap-
pearances would change with that movement or transition.
This allows us to create mental images of prediction. In a
similar manner, we argue that the space of visual prediction
should be richer and even include prediction of visual ap-
pearances. For example, we can guess how a car will look
after it turns and how a book unfolds when opened. How-
ever, having a richer output space requires richer represen-

4321

tation (elements of reasoning) and lots of data to learn the
priors. Building upon the recent success of mid-level ele-
ments [28], we propose a new framework for visual predic-
tion which uses these mid-level elements as building blocks
of prediction. In our framework, we model not only the
movement and transitions of these elements in the scene but
also how the appearances of these elements can change. Our
new framework has the following advantages over previous
approaches: (a) Our approach makes no assumption about
what can act as an agent in the scene. It uses a data-driven
approach to identify the possible agents and their activities;
(b) Using a patch-based representation allows us to learn the
models of visual prediction in a completely unsupervised
manner. We also demonstrate how a rich representation al-
lows us to use a simple non-parametric approach to learn
a state-of-the-art visual prediction model; (c) Finally, be-
cause our approach exploits mid-level elements instead of
full scenes for creating associations, it allows for general-
ization and sharing across different instances.

1.1. Background
Prediction is a major component of intelligence [13],

found even in animals such as rats and pigeons [34]. Re-
searchers in neuroscience have found extensive support for
sensory prediction in the human brain [2]. While predic-
tion has been extensively studied in the realm of biologi-
cal vision [1], in the field of computational vision, most of
the research focus has been on understanding and inferring
semantic [7, 27, 32] and geometric [10, 14] knowledge of
what can be seen in an image or a video. Recently, some
researchers have started focusing on modeling static func-
tional interactions of humans with the scene [11, 15] and
objects [9, 31] which can be then be used to predict how
will humans interact with the scene. However, in this work,
we focus on the temporal aspect of forecasting, and our goal
is to predict what is likely to happen next.

There have been two classes of approaches for the tem-
poral aspect of prediction. The first is non-parametric.
In this case, instead of making any assumption about the
agents and the environment, these approaches rely on large
databases [33]. For instance, [33] retrieves videos similar
to the input scene and then builds a model of expected mo-
tion given the retrievals. However, since the matching is
done based on the scene, this requires extraordinarily large
amounts of training data because one needs to represent all
possible spatial and temporal configurations of objects in
the world explicitly. Therefore, recent approaches have fo-
cused on warping based approaches [20] to generate predic-
tions in case the retrievals are close but not identical.

On the other extreme is a parametric and modeling based
approach. Here, humans assume what are the active ele-
ments in the scene whether they may be cars or people.
Once the assumption is made, then a model is developed
to predict agent behavior [35]. Tracking based approaches

focus on modeling agent behavior at short time scales and
hence use linear models [17]. For longer term predictions,
models such as Markov Decision Process (MDP) [18, 35],
Markov Logic Networks [29], ATCRF [19], CRF [8], and
AND-OR graphs [12, 25] are used. Prediction inference in
these models involve approaches from planning and deci-
sion making [18, 35]. However, these methods have the fol-
lowing drawbacks: (a) they make strong assumptions about
the domain; (b) they are still dependent on semantic clas-
sification which still remains a difficult problem to solve;
and finally, (c) these approaches explicitly choose active
agents such as cars or humans. In most cases, one either
needs manual supervision or object detectors (which are ro-
bust) to train these models. Instead, we use a data-driven
approach and prediction framework based on mid-level el-
ements which are easy to detect and track. This gives us
an ability to train our prediction framework in a completely
unsupervised manner. But, more importantly, having a rich
visual representation gives us the capability to predict visual
appearances as well.

In this work, we present a conceptually simple but sur-
prisingly powerful method which combines the two ap-
proaches of modeling dynamic scenes. Our work builds
upon the recent success of mid-level discriminative patch
discovery [4, 5, 6, 16, 28] and proposes a prediction frame-
work based on these mid-level elements. Because the ba-
sic elements in our framework are based on these mid-level
patches, our approach scales and provides better general-
ization as compared to scene-based matching approaches.
However, instead of just matching patches to the train-
ing data, we learn a context-based Markov model over the
patches. Our approach not only models how these mid-level
elements move and change appearances but also learns a
context model (or reward function similar to [18]) which
captures the relationship between scene location and the
patch. For example, a car patch is less likely to move on
the sidewalk and receives a high cost for such a transition,
but a person patch will be likely to move on the sidewalk.
We build this scene-patch context model directly on im-
age features instead of an intermediate semantic layer. We
show our learning approach is robust to errors in tracking
and therefore can be learned in a completely unsupervised
manner.

2. Our Approach
Given an input scene, our goal is to predict what is going

to happen next — what parts of the image are going to re-
main the same, what parts of the image are likely to move,
and how they move. The central idea is that scenes are
represented as a collection of mid-level elements (detected
using a sliding window) where agents can either move in
space or change visual appearances. Each agent is predicted
independently assuming a static scene. We model the distri-
bution over the space of possible actions using a transition

matrix which represents how mid-level elements can move
and transition into one another and with what probability.
For example, an element that represents a frontal car can
transition to a patch facing right if the car turns. Given the
mid-level elements and their possible actions, we first de-
termine which is the most likely agent and the most likely
action given the scene. However, this notion of most likely
action depends upon goals and the context/scene around the
elements. For example, in Figure 1, the visual prediction of
a car not only depends upon the goal but also on the other
cars, pedestrians, and the sidewalk in the image. Therefore,
as a next step, we need to model the interaction between the
active element (agent) and its surrounding. We model this
interaction using a reward function ψi(x, y) which mod-
els how likely is it that an element of type i can move to
location (x, y) in the image. For example, a car element
will have high reward for road-like areas and low reward
for grass-like areas — without modeling semantics explic-
itly. Given a goal, our approach then infers the most likely
path using the transition matrix and computed reward (Sec-
tion 2.4). Finally, if the goal is unknown —which is the
case here, we propose to sample several goals and select the
most likely goal based on high expected reward.

During training, we need to learn: (a) the mid-level rep-
resentation; (b) the space and likelihood of transitions for
each element; and the (c) reward function ψi(x, y) for ev-
ery possible element. We propose to learn these from large
quantities of spatio-temporal visual data in an unsupervised
manner. We first create a state space of mid-level patches
that distinguish the domain from the rest of the visual world.
Within a domain such as videos of cars driving on roads or
pedestrians walking outdoors, we first apply the work of
[28] to extract mid-level elements. These elements are vi-
sually meaningful and discriminative HOG clusters trained
against a large set of general visual data. Each element can
act as an agent which can move. Instead of using domain
based assumptions such as agents being cars or humans, our
approach exploits data to decide which features are signifi-
cant and extract the agents. For example, in the case of the
VIRAT dataset [23], one of the elements groups two people
since the two people are likely to move together and hence
can be modeled as a single agent. Once we have extracted
the dictionary of mid-level elements for a given domain, we
use temporal information to find patch-to-patch transitions
as well as their spatial behavior on the image plane (Sec-
tion 2.1). We can use the statistics of the transition matrix
to determine which elements are the active agents in the
scene. Finally, we learn a reward function over the state
space which is combined with transition matrix to infer the
predictions (Section 2.2).

2.1. Learning The Transitions
Given the dictionary (Figure 3) of mid-level elements,

the first step is to learn a temporal model over these el-

Frame&t" Frame&t+1"

Figure 2. Illustration of patch mapping. Two frames are matched
using an estimated homography, and KLT features inside the
bounding boxes of detections in each frame direct patch move-
ments.

ements. The temporal model is represented using a tran-
sition matrix where element i can either move in one of
the eight directions (top, left, bottom, right, top-left, top-
right, bottom-left, bottom-right) or transition into another
element in the dictionary. How do we learn these transi-
tions? Given the training data, we extract pairs of frames
at least a second apart and detect mid-level patches in both
the frames. To learn the transition we need to obtain the
correspondence between the detections in the two frames.
We obtain this correspondence by counting the number of
common features tracked using the KLT Tracker [22] inside
the two bounding boxes.

We interpret the mapping as either an appearance or spa-
tial transition. If the patches are of two cluster types, then
the mapping is counted as a transition from one cluster type
to another regardless of spatial movement. For a patch to
be counted as a spatial movement on the image plane, the
mapped patches must be of the same type, and they must not
overlap (See the example in Figure 2). In order to compen-
sate for camera motion these movements are computed on
a stitched panorama obtained via SIFT matching [21]. For
each transition, we normalize for total number of observed
patches as well. This gives us the probability of transition
for each mid-level patch. Figure 3 shows some of the top
transitions for four mid-level elements.

2.2. Learning Contextual Information
A transition matrix captures the most likely action in ab-

sence of the contextual information. For example, a car fac-
ing right is most likely to move right. However, the actions
of agents are not only dependent on the likely transitions
but also on the scene and the surroundings in which they
appear. For example, if there is a wall in front of the car,
it is unlikely to move in that direction. Therefore, apart
from capturing the statistics of patch transitions, we need
information about how a patch may interact with its envi-
ronment. We model these interactions using a reward func-
tion ψi(x, y) which models how likely is it that an element
of type i can move to location (x, y) in the image. Because
each element is supposed to represent a different underlying

Figure 3. Top possible transitions learned from training data. On
the left are the original elements, and on the right are possible
transitions. Note each element can either change appearance and
morph into another element, or it can just move in space (arrowed
squares). The elements are shown as average images of top detec-
tions on the training data.

(a)

(b) (c)

Figure 4. A reward function (c) is propagated by taking texture
information from the destinations of observed moving patches in
training data (a). During test time (b), the area of the image with
the closest texture to the training textures is set as the highest re-
ward in the scene. Other areas of the scene (via graphcut seg-
ments) are scored according to the similarity to the chosen win-
dow. Warm colors indicate high reward; cooler colors indicate
low reward.

concept, we learn a separate reward function for the inter-
action of each element within the scene.

We use a non-parametric approach over segments to
model the reward function. To obtain the training data for
reward function of element type i, we detect the element in
the training videos and observe which segments are likely to
overlap with that element in time. For example, the car el-
ements are likely to overlap with road segments, and hence
those road segments act as instances of positive reward ar-
eas for car element. Using such instances, we build a train-
ing set for every element in the dictionary. Once we have the
training sets for every patch type i, we can use this to com-
pute the reward function at test time. Each segment in the

test image retrieves the nearest neighbor using Euclidean
distance over image features. We choose the top-N near-
est neighbors to label high reward areas in the image and
then propagate the reward function within the image based
on visual similarity — graphcut segments which look simi-
lar to high reward regions in the query image also get high
reward. Figure 4 shows an example of reward propagation.

2.3. Inferring Active Entities
Once we have learned the transition function and reward

function ψi(x, y) for every mid-level element, we can pre-
dict what is going to happen next. The first step of predic-
tion inference requires estimating the elements in the scene
that are likely to be active. Kitani et al. [18] choose the ac-
tive agents manually. In this work, we propose an automatic
approach to infer the likely active agent based on the learned
transition matrix. Our basic idea is to rank cluster types by
their likelihood to be spatially active. We assume the active
agents are the elements that are: (a) likely to move them-
selves; (b) likely to transition to patches that can move; (c)
in a scene that allows the element to move to high reward
areas in its neighborhood. In order to detect the top possi-
ble elements in a scene that satisfy these properties, we first
detect the instances of each element using sliding-window
detection. We then rank these instances based on contex-
tual information. The context-score for a patch i at location
(x, y) is given by ∑

d

pdi e
ψi(x+dx,y+dy) (1)

where d = (dx, dy) is the direction of the movement, pdi
is the transition probability in direction d and ψi(x+dx, y+
dy) computes the reward for moving the patch from (x, y)
to (x+ dx, y+ dy). In this paper, we discretize d into eight
directions.

Instead of predicting all the elements discovered, we
only predict the activities of elements that are likely to
change location either directly or by transition. We compute
the likelihood of changing location based on the transition
matrix. Therefore, the elements which have high movement
transition likelihood or transition to a element that has high
movement likelihood are selected.

2.4. Planning Actions and Choosing Goals
Once we have selected the most likely active agents, we

use the transition matrix combined with the reward function
to search for optimal actions/transitions given a spatial goal
in the scene. We first re-parameterize the reward function
ψi(x, y) such that if the state is s = (x, y, i) (patch i being
at location (x, y)), then the reward is φ(s). Each decision
a is quantified by the expected reward: i.e., the product of
the probability of the decision pa and the reward function
φ(s) in the new state. Note that the decision can either be a
movement or be a transition. In the first case, the location
(x, y) changes in the state while in the second case, we have
the same location by a new cluster type.

Our goal is to find the optimal set of actions/decisions
σ = (a1, ..an), such that these actions maximize expected
reward (minimize cost), and these actions reach the goal
state g. We formulate this as maximization of the reward
function

max
σ

∑
at∈σ

patφ(st+1) s.t. σ � s0 = g (2)

where s0 is the initial state and � operator applies a set of
actions to a state to estimate goal state. We then use Di-
jsktra’s algorithm to plan a sequence of optimal decisions σ
from an initial state to all given goal states by converting re-
wards to costs. Specifically, we create a graph where each
state is represented as a node in the graph. For example,
for a 100x100 image and dictionary size of 750 elements,
there will be 100x100x750 nodes in the graph. The edges
between the nodes represent the cost of transitioning from
state si to sj . This cost depends on the transition probabili-
ties and rewards. Given this graph, the initial state is repre-
sented as the source node in the graph, and the goal nodes
are considered to be along the edge of image. We then run
Dijsktra’s algorithm to get the optimal path. We select the
best path among different goals based on average expected
reward — normalized with respect to the total number of
decisions.

2.5. Implementation Details
KLT Tracker: We use the Kanade-Lucas tracking algo-
rithm on extracted SURF features [3] to track how detected
patches move in each scene. Given detected patches in two
frames, we track the SURF features which initially lie in-
side the bounding box of a given patch.
Reward Function: The distance metric for the reward
function is computed using 69-dimensional feature vector
based on RGB and a bag of words.
Other Details: The selected frames during transition ma-
trix learning were 4 seconds apart in the VIRAT dataset and
only one second apart in the car chase dataset due to faster
motion.

3. Experimental Results
Because there has been little work in the field of visual

prediction, there are no established datasets, baselines, or
evaluation methodologies. We perform extensive qualita-
tive and quantitative evaluation for path prediction, and we
provide detailed qualitative analysis for prediction of visual
appearances.
Baselines: There are no algorithms for unsupervised visual
prediction; therefore we compare against Nearest Neighbor
followed by sift-flow warping [20, 33] and the max-entropy
based Inverse Optimal Control (IOC) based algorithm of
Kitani et al. [18]. For the NN baseline, we use a Gist-
matching [24] approach similar to that of Yuen et. al. [33].
We then use the labeled path from the nearest-neighbor as

the predicted trajectory and warp it into the scene using Sift
Flow [20]. For Kitani et al. [18], we first learn a reward
function using IOC, and then given the initial agent we pre-
dict the most likely paths using a Markov Decision Process
(MDP).
Datasets: We perform experiments on two different
datasets: a Car Chase Dataset (collected from YouTube) and
the VIRAT dataset [23].
Evaluation Metric: We use the modified Hausdorff dis-
tance (MHD) from [18] as a measure of the distance be-
tween two trajectories. The MHD allows for local time
warping by finding the best local point correspondence over
a small temporal window (3 steps in our experiments). Each
algorithm will generate a collection of likely predicted paths
and therefore we will compute the distance between the top-
N generated predictions and the ground-truth path.

3.1. Car Chase Dataset
For our main experiments, we created a new dataset

by downloading videos from Youtube of aerial car chase
videos. In total we used 183 videos (from 48 different
scenes) that lasted from 5 to 30 seconds. We used 139
videos from 37 scenes for training and 44 videos from 11
scenes for testing. For extracting discriminative mid-level
elements, we used 1871 random frames from the training
set in addition to 309 outdoor scenes from Flickr as the dis-
covery dataset, and we use the MIT Indoor 67 [26] dataset
for the negative dataset. We manually annotated the trajec-
tories of the car in 44 test videos which were used as the
ground-truth to evaluate the algorithm.
Qualitative: Figure 5 shows some qualitative results. No-
tice how the reward function captures that the road is a high
reward region for the car patch. The bus in the top image
and the cars in the bottom image are the areas of low reward.
Similarly, sidewalk is also considered a low reward area.
Given this reward function, our inference algorithm gen-
erated the possible paths, and the marginalization of these
paths and some sampled paths are shown in the figure. Fi-
nally, notice the visual predictions in (d) and (h). Notice
how the car turns in the top image avoiding the bus and
how the car maneuvers between the two cars in the bottom
image. Figure 6 shows some more qualitative examples of
visual prediction generated by our algorithm.
Quantitative: In the first experiment, we compare the per-
formance of our approach with the NN-baseline when no
agents are given. In this way, we are measuring the ability
of our method not only to find the correct active entity in
the scene but also effectively predict its spatial activity. We
use our algorithm to identify top three active agents in the
scene and predict two paths per agent. We also allow the
NN algorithm to generate six paths using top-6 matches.
In order to compare path distance across test instances, all
query panoramas are resized to a canonical size where the
smallest dimension is 50 pixels. Table 1(top) shows the per-

(a) Original Image (b) Reward Function

(c) Distribution of Predicted Paths (d) Predicted Path

(e) Original Image (f) Reward Function

(g) Distribution of Predicted Paths (h) Predicted Path
Figure 5. Some qualitative predictions of our approach. The upper right images (b,f) represents a reward function for a given car patch over
the image. The lower left (c,g) shows a heatmap of possible locations where the agent can be and some of predicted trajectories, and the
lower right (d,h) demonstrates the visualization of one such trajectory.

formance of the approach. Considering the median error,
we show 35% improvement over the baseline. The ground
truth car was in the method’s top three active entities in 73%
of cases.

In the second experiment, we ask a different question:
given a manually selected agent, how well can we estimate
the overall distribution of possible actions? In this case we
can add [18] as a second baseline. The paths are ranked ac-
cording to the expected reward. Since the agent is given,
we compare the top paths in this case, not the entire distri-
bution of paths as in [18]. Table 1(bottom) shows the that
our approach again is superior to the NN-baseline and even

Experiment NN + Sift-Flow [18] Ours
No Agent Given
Mean Distance 22.34 - 14.38

Median Distance 16.68 - 10.91
Agent Given

Mean 27.55 37.94 21.55
Median 23.77 30.23 14.98

Table 1. Mean and Median of the error of closest path over 44
videos in the car chase dataset for no agent given, and Mean and
Median error of the top-ranked path for a given agent.

shows improvement over [18]. [18] in this case appears to
do poorly because of the underlying semantic features.

(a) Original Image (b) Prediction Heatmap (c) Predicted Path
Figure 6. Qualitative predictions for our approach. The far left shows the original image, the center shows a heatmap of possible paths, and
the right shows a visualization of one of those paths.

VIRAT Ours MDP (Our Reward) [18]
Mean 108.81 128.48 147.32

Median 77.79 99.05 150.24
Table 2. Mean and median of the error of top predicted path.

3.2. VIRAT Dataset
For our second dataset, we chose a subset of the VI-

RAT dataset corresponding to a single scene A used in [18].
Since VIRAT data consists of only one scene, we used
frames from the TUD-Brussels outdoor pedestrian dataset
[30] to extract mid-level elements. We trained our model
following the same experimental design in [18]. We use
3-fold cross validation and use a 15-step window for the
MHD as in [18]. We use the full pixel grid (359x634). We
find that our method is able to infer goals and paths on a
better than [18]. To demonstrate that our reward function
is meaningful, we also compare against MDP [18] but us-
ing our reward function instead of IOC. Table 2 shows the
performance of the approach. For this experiment, since the

(a) Original Image (b) Prediction Heatmap
Figure 7. Qualitative predictions for our approach on the VIRAT
dataset. The left shows the original image; the right shows a
heatmap of possible paths.

agent is given, we compare the top trajectory predicted by
each approach.

4. Conclusion
In this paper we have presented a simple and effective

framework for visual prediction on a static scene. Our pre-
diction framework builds upon representative and discrim-
inative mid-level elements and combines this visual repre-
sentation with a decision theoretic framework. This repre-
sentation allows us to train our framework in a completely
unsupervised manner from a large collection of videos.
However, more importantly, we can also predict how vi-
sual appearances will change in time and create a hallucina-
tion of the possible future. Empirically, we have shown that
our unsupervised approach outperforms even supervised ap-
proaches on multiple datasets. It is important to note that
this paper represents an initial step in the direction of gen-
eral unsupervised prediction; we only predict events assum-
ing the rest of the scene is static. Possible future work in-
cludes modeling the simultaneous behavior of multiple ele-
ments, predicting their possible coordinated action.

Acknowledgements: This work was supported in part by
NSF grant IIS1227495.

References
[1] M. Bar. The proactive brain: memory for predictions. Philo-

sophical Transactions of the Royal Society, 364(1521):1235–
1243, 2009.

[2] M. Bar, editor. Predictions in the Brain: Using Our Past to
Generate a Future. Oxford University Press, 2011.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In ECCV, 2006.

[4] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual
element discovery as discriminative mode seeking. In NIPS,
2013.

[5] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.
What makes Paris look like Paris? ACM Transactions on
Graphics (TOG), 2012.

[6] I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem. Learning collec-
tions of part models for object recognition. In CVPR, 2013.

[7] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008.

[8] D. Fouhey and C. L. Zitnick. Predicting object dynamics in
scenes. In CVPR, 2014.

[9] H. Grabner, J. Gall, and L. Van Gool. What makes a chair a
chair? In CVPR, 2011.

[10] A. Gupta, A. A. Efros, and M. Hebert. Blocks world re-
visited: image understanding using qualitative geometry and
mechanics. In ECCV, 2010.

[11] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3D
scene geometry to human workspace. In CVPR, 2011.

[12] A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understand-
ing videos, constructing plots learning a visually grounded
storyline model from annotated videos. In CVPR, 2009.

[13] J. Hawkins and S. Blakeslee. On Intelligence. Times Books,
2004.

[14] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial
layout of cluttered rooms. In ICCV, 2009.

[15] Y. Jiang, M. Lim, and A. Saxena. Learning object arrange-
ments in 3D scenes using human context. In ICML, 2012.

[16] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks
that shout: Distinctive parts for scene classification. In
CVPR, 2013.

[17] V. Karavasilis, C. Nikou, and A. Likas. Visual tracking by
adaptive kalman filtering and mean shift. In Artificial Intel-
ligence: Theories, Models and Applications. 2010.

[18] K. Kitani, B. Ziebart, D. Bagnell, and M. Hebert. Activity
forecasting. In ECCV, 2012.

[19] H. S. Koppula and A. Saxena. Anticipating human activities
using object affordances for reactive robotic response. In
RSS, 2013.

[20] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-
dence across scenes and its applications. PAMI, 2011.

[21] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[22] B. D. Lucas, T. Kanade, et al. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
1981.

[23] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T.
Lee, S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al.
A large-scale benchmark dataset for event recognition in
surveillance video. In CVPR, 2011.

[24] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. IJCV, 2001.

[25] M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with goal
inference and intent prediction. In ICCV, 2011.

[26] A. Quattoni and A. Torralba. Recognizing indoor scenes. In
CVPR, 2009.

[27] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. IJCV, 81(1):2–23, 2009.

[28] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery
of mid-level discriminative patches. In ECCV, 2012.

[29] S. D. Tran and L. S. Davis. Event modeling and recognition
using markov logic networks. In ECCV, 2008.

[30] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedes-
trian detection. In CVPR, 2009.

[31] B. Yao and L. Fei-Fei. Modeling mutual context of object
and human pose in human-object interaction activities. In
CVPR, 2010.

[32] B. Yao and L. Fei-Fei. Action recognition with exemplar
based 2.5D graph matching. In ECCV, 2012.

[33] J. Yuen and A. Torralba. A data-driven approach for event
prediction. In ECCV, 2010.

[34] T. R. Zentall. Animals may not be stuck in time. Learning
and Motivation, 36(2):208–225, 2005.

[35] B. D. Ziebart. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

