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Abstract

Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or
innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social
networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social
networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a
challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization
(PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in
signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the
signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that
the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm
can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks.
Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation
algorithm for solving the PRIM problem outperforms state-of-the-art methods.
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Introduction

Online social networks such as Twitter, Facebook and Google+
have developed rapidly in recent years. They support social

interaction and information diffusion among users all over the

world. These online sites present great opportunities for large-scale

viral marketing. Viral marketing, first introduced to the data

mining community by Domingos and Richardson [1], is a cost-

effective marketing strategy that promotes products by giving free

or discounted items to a selected group with high influence, in the

hope that through the word-of-mouth effects, a large number of

users will adopt the product. Motivated by viral marketing,

influence maximization emerges as a fundamental problem

concerning the diffusion of products, opinions, and innovations

through social networks [2].

Influence maximization has been formulated as a discrete

optimization problem by Kempe et al. [3]. Given a social network

modeled as a graph G, find k nodes, such that by activating them

initially, the expected number of nodes activated by these k seed

nodes is maximized under a certain diffusion model. Diffusion

models are used to explain and simulate the spread of information

in social networks. Two widely used diffusion models are the

Independent Cascade (IC) model and Linear Threshold (LT)

model. Based on these diffusion models and their extensions,

influence maximization problem have been extensively studied

[2,4–9], where improved greedy algorithms and scalable heuristics

are proposed to solve the problem. All the above works consider

influence maximization in unsigned social networks which only

have positive relationships between users (e.g. friend or trust).

Actually, however, the polarity of relationships in social networks

is not always positive. There are also signed social networks

containing both positive relationships and negative relationships

(e.g., foe or distrust) simultaneously. Influence maximization in

signed social networks is a key problem that has not been studied

and it is the focus of this paper.

Signed social networks can be divided into two categories:

explicit networks and implicit networks. In the explicit networks,

users can directly tag the polarity (positive or negative) to the

relationship between two users. For example, participants on

Epinions can explicitly express trust or distrust of others; users on

Slashdot can declare others to be either friends or foes. In the

implicit networks, users do not directly mark the polarities of

relationships. However, the relationship polarities can be mined

from the interaction data between users. For example, in Twitter,

a user u may support some of users he follows (positive) and be

against the others (negative). So the relationship of "following"

between users in Twitter can have polarity. The problem of

turning unsigned social networks to signed social networks has

been studied by several works, such as [10,11].

For influence maximization in signed social networks, ignoring

the relationship polarity between users to treat the signed social

networks as unsigned ones and applying traditional influence

maximization methods may lead to over-estimation of positive

influence in practical applications. Here, we take Figure 1 and the
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application of viral marketing as an example to illustrate this

problem of over-estimating influence. In Figure 1, three colors of

nodes denote three states of users in social networks: positive,

negative and inactive, which can be understood as promoting,

opposing and not caring about the product in viral marketing

application. Blue means positive state, yellow means negative state

and brick red means inactive state. On the edges, "+1" means

positive influence relation between two nodes while "-1" means

negative influence relation. For a node set, we define its positive

influence as the number of nodes activated to be positive by this

node set, and negative influence as the number of nodes activated

to be negative by this node set. In signed networks, there are both

positive and negative relationships. The initially selected nodes

(e.g., node 1 in Figure 1(b)) can activate other nodes to be either

positive state or negative state, and thus have positive and negative

influence simultaneously. In contrast, in unsigned networks, all the

relations between users are positive. Therefore, the selected nodes

(e.g., node 1 in Figure 1(a)) can only activate other nodes to

positive state and only have positive influence. If a signed social

network is roughly treated as an unsigned social network, both the

positive influence and negative influence will be mistakenly

counted as positive influence. As shown in Figure 1(a) the number

of nodes positively influenced by selecting node 1 will be estimated

to be 5 while the actual number is 3 (as shown in Figure 1(b)). In

this way, in the viral marketing, if we select the users who have

large negative influence (mistaken as large positive influence) to

promote the product, as a result, a lot of users will be influenced to

dislike and oppose the product.

To fill the gap in the research of influence maximization in

signed social networks, we propose the polarity related influence

maximization (PRIM) problem. The purpose of the PRIM

problem is to find the node set with maximum positive influence

or maximum negative influence in signed social networks.

Traditional influence maximization studies are mainly based on

several classical diffusion models, such as IC model and LT model,

which are only applicable to unsigned social networks but not

adequate for signed social networks. Therefore, in this work, we

extend the classic IC model to signed social networks. In this

paper, we make the following contributions:

N We propose a novel Polarity-related Independent Cascade (IC-

P) diffusion model for signed social networks. The new IC-P

model incorporates the social principles that "the friend of my

enemy is my enemy" and "the enemy of my enemy is my

friend".

N We propose the polarity related influence maximization

(PRIM) problem for the signed social networks. The PRIM

is divided into two sub-problems: positive influence maximi-

zation (PIM) problem and negative influence maximization

(NIM) problem.

N We prove that the influence functions of the PIM problem and

NIM problem under the IC-P model of information diffusion

are monotone and submodular, which allows a greedy

algorithm to achieve an approximation ratio of 1-1/e.

N We conduct experiments on Epinions and Slashdot datasets.

The comparison results with closely related work indicate the

superiority of our method.

This paper is organized as follows: In Section 2 we discuss the

related work. In Section 3 we introduce the proposed IC-P

diffusion model, define the PRIM problem, prove that the

influence functions of the PIM and NIM problems under IC-P

diffusion model are monotone and submodular, and presents the

greedy algorithm. In Section 4 we present experimental results

that validate the effectiveness of our method. Finally, in Section 5

we present our conclusions and outline avenues of future research.

Related work

In this section, we review the related work from three aspects:

influence maximization problem, signed social networks, and

competitive influence maximization.

Influence maximization (IM) problem
Domingos and Richardson were the first to consider the IM

problem as an algorithmic problem [1,12], where they model the

social networks as markov random fields. Kempe et al. first

formulated the problem as a discrete optimization problem in [3].

The authors proved that the optimization problem of selecting the

most influential nodes is NP-hard, and presented a greedy

approximation algorithm which is applicable to the IC model

and LT model. However, the greedy algorithm in [3] is not

scalable.

Several recent studies aimed at addressing this scalability issue.

Kimura and Saito proposed shortest-path based influence cascade

models and provided efficient algorithms under these models [13].

In [4], Leskovec et al. presented an optimization in selecting new

seeds, which was referred to as the "Cost-Effective Lazy Forward"

(CELF) scheme. The CELF optimization used the submodularity

property. Chen et al. proposed a scalable heuristic called LDAG

for the LT model [6]. They constructed local directed acyclic

graphs (DAGs) for each node and considered influence only within

it. More recently, Chen et al. proposed Prefix excluding Maximum

Influence Arborescence (PMIA) heuristic to estimate influence

spread under the IC model [5].

Goyal et al. proposed an alternative approach which, instead of

assuming influence probabilities are given as input, directly uses

the past available data [7]. Liu et al. and Chen et al. studied the

time constrained influence maximization problem [2,14]. Nar-

ayanam and Narahari proposed a new way of solving these

problems using the concept of Shapley value which is a well known

solution concept in cooperative game theory [15]. However, the

above works do not consider the influence maximization for signed

social networks.

Signed social networks
The signed social networks containing both positive relation-

ships and negative relationships have attracted increasing atten-

tion. Brzozowski et al. studied the positive and negative

relationships that exist on ideologically oriented sites such as

Essembly, with the goal of predicting outcomes of group votes

rather than the broader organization of the social network [16].

Figure 1. Examples of unsigned and signed social network
graph.
doi:10.1371/journal.pone.0102199.g001
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Kunegis et al. studied the friend/foe relationships on Slashdot, and

computed global network properties [17]. They also studied signed

spectral clustering methods, signed graph kernels and network

visualization methods in signed graphs [18]. Leskovec et al.

connected their analysis to theories of signed networks from social

psychology [19]. Another study of Leskovec et al. used signed

triads as features and constructed a logistic regression model for

predicting positive and negative links [20]. Ye et al. adopted the

transfer learning approach to leverage the edge sign information

from the source network for predicting the positive and negative

links [21]. Yang et al. studied the problem of turning an unsigned

acquaintance network (e.g. Facebook, Myspace) into a signed

trust-distrust network [10]. Facchetti et al. analyzed the structural

balance in large signed networks. They concluded that most on-

line networks available today exhibit structural balance [22]. Fan

et al. extended the Susceptible Infected Recovered (SIR) model

from epidemiology to signed networks, to model the process of

opinion diffusion in signed networks [23]. However, none of above

works deal with the problem of influence maximization in signed

social networks.

Competitive influence maximization
Here, the extant literature researches [24–28] usually extend the

classical diffusion models, such as IC model and LT model, to the

situation where two or more competitive messages spread in the

social network simultaneously. They study how to select a fixed

number of nodes that maximize influence for different competitive

messages. However, all these works are limited to unsigned social

networks. In contrast, we extend the IC model to signed social

networks, and study influence maximization problem in signed

social networks based on the proposed diffusion model.

Materials and Methods

In this section, we first introduce how to model a signed social

network as a directed and signed graph, and then propose the

diffusion model on the directed and signed graphs. Next, we define

the polarity related influence maximization (PRIM) problem, and

prove properties of the influence function in PRIM problem. At

last, we propose greedy algorithm to solve PRIM problem.

Modeling Signed Social Networks
An unsigned social network can be modeled as a directed graph

�GG~(V ,E,A), where V is the set of nodes, and E is the set of

directed edges. Nodes and edges in the graph correspond to users

and relationships between users in the social networks, respective-

ly. A is a non-negative weighted adjacency matrix with Au,vw0 if

and only if the edge (u,v)[E, with Au,v as its weight. Different from

unsigned social networks, in this paper, we model a signed social

network as a directed and signed graph G~(V ,E,A,P), where V ,

E, A are defined exactly as in the graph �GG. Additionally, P is a

matrix whose element Pu,v is the sign of edge (u,v) in the graph.

Note that in the directed and signed graph G, the relations

between nodes are asymmetric, i.e. Au,v=Av,u and Pu,v=Pv,u.

Here we take Figure 2 as an example to explain the modeling

process of signed social networks. Figure 2(a) shows an example of

a signed social network which contains three users (Jack, Tom and

Lucy) and two relationships among them. Figure 2(b) presents the

graph model of the signed social network in Figure 2(a). Three

nodes v, u and w are corresponding to user Jack, Tom and Lucy

respectively. The edges in the graph correspond to social

relationships among the three users. Here, we should note that

the direction of an edge in the graph is the opposite of social

relationship in the social network. For example, the social

relationship is from Jack to Tom in Figure 2(a), while the

corresponding edge is from u to v in Figure 2(b). This is because

the graph we modeled is a influence diffusion graph, and the

direction of influence spreading between users is opposite to that of

the social relationship between them. If there is a relationship from

Jack to Tom, influence spreads from Tom to Jack, which means

Jack is influenced by Tom, so the edge should be (u,v) but not

(v,u) in the graph. Finally, the signs of edges in the graphs

correspond to polarities of social relationships between users. In

Figure 2, Jack trusts Tom, so Pu,v~z1; Jack distrusts Lucy, so

Pw,v~{1; there is no relationship between Tom and Lucy, so

Pu,w~0. The values on the edges in Figure 2(b) are the signs but

not weights of edges. In the context of influence diffusion, the

weight Au,v can be considered as the influence diffusion probability

from u to v, which can be calculated based on interactive data

between users or assigned by some weight models [3,5,6].

Polarity-related Diffusion Model
We first describe the standard Independent Cascade (IC) model

for information diffusion in [3] used in unsigned social networks.

In the IC model, each node in the graph has two states, active or

inactive. For a node u, the active state can be considered as the

state where the corresponding user in the social network adopts

the information (e.g., product or idea) spreading in the network.

Inactive state of u can be considered as the state where the

corresponding user does not adopt the information. The diffusion

process starts with an initial set of active nodes S, and unfolds in

discrete steps according to the following randomized rule. In the

step t, any node u activated at step t{1 is given a single chance to

activate each of its currently inactive neighbors v; it succeeds with

a probability Au,v independently. If u succeeds, then v will become

active in step tz1. But whether or not u succeeds, it can not make

any further attempts to activate v in subsequent rounds. The

process runs until no more activations are possible. If node v has

multiple newly activated neighbors in a time step, their activation

attempts are sequenced in an arbitrary order.

In this paper, based on the social principles that "the friend of

my enemy is my enemy" and "the enemy of my enemy is my

friend", we propose Polarity-related Independent Cascade (named

IC-P) diffusion model which incorporates the polarity of relation-

ship between users in signed social networks. The IC-P model is an

extension of the IC model to signed social networks. In the IC-P

model, the active state of nodes is divided into positive state and

negative state. Therefore, each node in the IC-P model has three

states: positive, negative, or inactive. For a node u, positive state

means that, in the social network, the corresponding user adopts

and then supports or trusts the spreading information. Negative

state of u means that the corresponding user adopts but then

Figure 2. An example of modeling a signed social network.
doi:10.1371/journal.pone.0102199.g002
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opposes or distrusts the information. Inactive state of u means that

the corresponding user does not adopt the information. We use

S(u) to denote the state of node u, and values 1, 21, 0 of S(u) to

denote u’s positive state, negative state and inactive state,

respectively.

In the IC-P model, the diffusion process starts with an initial set

of active nodes S. S can contain both positive nodes and negative

nodes. All other nodes not in S are inactive in the graph. The

process unfolds in discrete steps according to the following

randomized rule. For a node u activated in time step t{1, it

will become positive or negative state in time step t. Then this

node u will have a single chance to activate each currently inactive

neighbor v in time step t. For a node v, we define Nt
active(v) as the

neighbor set of node v who become positive or negative in time t.

In time t, each node u[Nt
active will activate v successfully with the

probability Av,u in an arbitrary order. Once the node v is activated

by a node in Nt
active, other nodes in Nt

active(v) can not activate node

v any more. In the proposed IC-P model, a node v can only be

activated once in a time step, which is different from standard IC

model.

For a newly activated node v, its state S(v) is related to the state

of the node u that activated v and the polarity of relation between

node u and v, that is, S(v)~S(u)|Pu,v. Therefore, if node u is

positive and the relation between u and v is positive, then the node

v will become positive. If node u is negative and the relation

between u and v is positive, then the node v will become negative.

If node u is positive and the relation between u and v is negative,

then the node v will become negative. If node u is negative and the

relation between u and v is negative, then the node v will become

positive. Once a node becomes positive or negative, it will not

change its state any more. The process continues until there is no

newly activated node.

In the IC-P model, once a node becomes positive or negative, it

will not change its state in the future. So our model is not a

susceptible-infected-susceptible (SIS) type diffusion model, in

which the susceptible node could be infected and become

susceptible again later. Here, we explain why we do not design

our model as SIS type. In a SIS type diffusion model designed for

signed social networks, there would be a situation like this: u is an

initial seed node, it is positive (support an opinion or a product) at

the beginning, then u will try to activate its neighbors to be positive

or negative. After some time, u becomes susceptible but some of

his neighbors are still infected, then its neighbor may attempt to

activate u to be negative conversely. So u may be activated to be

negative in the end. That is, u supports the opinion or product at

the initial time but opposes it in the end. This does not meet

practical scenarios. For example, in the application of viral

marketing, the company pays some initial users to let them support

its product. If we adopt a SIS type model, some paid initial users

may become to oppose the product in the end of diffusion process,

which is illogical. The SIS type models are more suitable to

simulate epidemic diffusion than information diffusion. Because,

epidemic diffusion is undirected: epidemic can spread between two

linked users for many times. Differently, information diffusion is

directed: an active user tries to activate inactive user, and the

activated user should not attempt to activate the user who activates

him. Current diffusion models used for solving influence maximi-

zation problem are mainly independent cascade model, linear

threshold model and their various extensions [2,3,6,26,28]. All

these models are not SIS type. Our model can be considered as an

extension of traditional Independent Cascade model. SIS type

diffusion models are rarely used in research of influence

maximization problem.

To demonstrate the rationality of our model, we discuss in more

details the applicability of the proposed model to real processes.

Here we take the opinions promotion and viral marketing as

examples for discussions. In the opinions promotion application,

political candidates try to find supporters for their political

opinions. Given a signed social network about political relations,

positive relations represent political allies and negative relations

represent political enemies. In our proposed model, when a person

supports a political opinion, his political allies will also support the

political opinion, and his political enemies will opposite the

political opinion, and the political enemies of his political enemies

will support the political opinion. In the viral marketing

application, companies try to find early adopters to promote their

products. Given a signed social network about production, positive

relations represent trust people and negative relations represent

distrust people. In our proposed model, when a person adopts a

product, people who trust him will also adopt the product, and

people who distrust him will not adopt the product, and people

distrusting the people who distrust him will adopt the product.

Our model is not perfect currently, it only focuses on the impact

of polarity social relation on information diffusion, and does not

consider the polarity of information content. So, our model is

content-independent. Applications such as political struggle and

product adoption are also actually more complicated than the

simulation process of our model. In political struggle, a politician

may support his enemy’s opinion for political benefits. In product

adoption, a user may not care what product is adopted by his

distrusted user. Our work is the first attempt to model information

diffusion over signed social networks, and we will improve it for

more accurate simulation of the real world.

PRIM Problem Definition
Influence maximization is the problem of finding a small subset

of seed nodes in a network graph, given a diffusion model, that

could maximize the spread of influence. Current studies [3–6,13],

only focus on unsigned social networks which only have positive

relationships. However, Influence maximization in signed social

networks containing both positive relationships and negative

relationships is still a challenging problem that has not received

much attention. Therefore, based on the IC-P diffusion model we

proposed, we propose the polarity-related influence maximization

(PRIM) problem which takes the polarity of relations in signed

social networks into account, and can achieve more competent

result in viral marketing.

Let sz(:) be the positive influence function. Given an initial

node set S, sz(S) returns the positive influence of S, and the

returned value is the expected number of nodes activated to be

positive by S based on the IC-P diffusion model. Similarly, s{(:) is

defined as the negative influence function and s{(S) returns the

negative influence of S, and the returned value is the expected

number of negative nodes activated by S based on the IC-P

model. Besides, we also define s(:) as the non-polar influence

function, and s+(:) as the net positive influence, i.e., for the node

set S, s(S) = sz(S) + s{(S), s+(S) = sz(S) 2 s{(S).

Given the graph of a signed social network G and a non-

negative number k, based on the IC-P diffusion model, the PRIM

problem is to find a set S of k seed nodes such that the expected

number of positive nodes sz(S) is maximized or the expected

number of negative nodes s{(S) is maximized. Without loss of

generality, all seed nodes in the initial set S are assumed to be

positive. Therefore, based on above definition, the PRIM problem

can be divided into two sub-problems, positive influence maximi-

zation (PIM) problem and negative influence maximization (NIM)

problem.

Influence Maximization in Signed Social Networks
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PIM problem is to find the node set with maximum positive

influence, which can be formalized as,

Sz~ arg max
S(V ,DSD~k

sz(S), ð1Þ

NIM problem is to find the node set with maximum negative

influence, which can be formalized as,

S{~ arg max
S(V ,DSD~k

s{(S): ð2Þ

The studies of the PIM and NIM problems have extensive

application scenarios. PIM can be applied to viral marketing, and

companies or individuals can use it to promote their products,

services and innovative ideas. NIM can be combined with the

study of PIM for the situation where more than one competitive

information spread in the social networks simultaneously. For two

competitive information A and B, if we want to support A but

oppose B, we can choose the node set selected by PIM to promote

A, and choose the node set selected by NIM to promote B.

Without loss of generality, all seed nodes in the initial set S are

assumed to be positive in the PIM and NIM problem. This

assumption is designed based on the particular application

scenarios of our proposed problem. We take the PIM problem

and its application of viral marketing as an example. PIM problem

applied in viral marketing is to find the node set with maximum

positive influence to promote one product in a signed social

network. In this application scenario, the initial seed node set has

two options. The first one is only containing positive nodes, and

the other one is containing both positive and negative nodes. The

later option means that the company chooses some people and

pays them to release negative opinion about its product for

promoting. This is unreasonable. Therefore, the second option is

not applicable to this application scenario. We will explore

appropriate application scenarios for the second option in future

work, and illustrate our proposed IC-P model in those contexts. In

the PIM problem we defined, though all initial seed nodes are

positive, there are negative relations in signed social networks and

they will lead negative opinions happen.

Properties of the Influence Function
We first prove that influence function sz(:) in PIM problem

and influence function s{(:) in NIM problem has the properties of

monotonicity and submodularity. Then, based on the research of

Nemhauser et al. [29,30], we adopt the greedy hill-climbing

algorithm to solve the PIM and NIM problems. For monotone and

submodular functions, the greedy hill-climbing algorithm of

starting with the empty set, and repeatedly adding an element

that gives the maximum marginal gain approximates the optimum

solution within a factor of (1{1=e). The proofs for two influence

functions are similar, so we state the details for PIM.

Theorem 1 In the PIM problem, the positive influence function
sz(:) is monotone and submodular for an arbitrary instance of the
IC-P model.

For influence function sz(:) and node set S, T , if

sz(S)ƒsz(T) whenever S(T , then sz(:) is monotone. sz(:)
is said to the submodular if it satisfies a natural "diminishing

returns" property: sz(S|fvg){sz(S)§sz(T|fvg){sz(T),
for all nodes v and all pairs of sets S(T , i.e., the marginal gain

from adding a node to a set S is at least as high as the marginal

gain from adding the same node to a superset of S.

In order to prove Theorem 1, for arbitrary sets S and node v,

we have to firstly get the increase in value of function sz(:) when

we add v to the set S, i.e., the increase of expected number of

positive nodes. However, the influence diffusion in the graph

under the IC-P model is a stochastic process, and the increase of

positive influence is difficult to analyze directly. Kempe et al. [3]

constructed the live-edge process, which is equivalent to diffusion

process, for proving the monotonicity and submodularity of

influence function. Here, we follow a similar approach to prove

Theorem 1.

The live-edge process constructed by Kempe et al. [3] is as

follows: they view an event of a newly activated node u attempting

to activate its neighbor v and succeeding with probability Au,v as

flipping a coin with bias Au,v. From the point of view of the

process, it clearly does not matter whether the coin is flipped at the

moment when u tries to activate v, or if it was flipped at the

beginning of the whole process. The edges where the coin flip

indicated an activation will be successful are declared to be live;

the remaining edges are declared to be blocked. Once the

outcomes of the coin flips are fixed, a node v is active in diffusion

process if and only if there is a path from some nodes in initial

node set consisting entirely of live edges.

Different from live-edge process for IC model, in our live-edge

process, the edges where coin flip is successful are only candidate-

live but not live. This is because that, in the diffusion process under

standard Independent Cascade (IC) model, a node can be

activated for more than one times in a time step. Correspondingly,

in the live-edge process, a node can have more than one live edges,

and all edges where the coin flip is successful can be as viewed live.

However, in the diffusion process under our proposed IC-P model,

a node can only be activated for at most one time in a time step

and in the whole diffusion process, the edges which are live in the

live-edge process for IC model are only candidate-live (means if

the start node of this directed edge were to be activated, it may

succeed in activating its neighbor) in the live-edge process for IC-P

model. For a node, if it has more than one candidate-live edges, we

uniformly at random select one of them as the live edge, the other

candidate-live edges are blocked.

Once we fix the outcomes of the coin flips, select live edge for

each node and initially set all nodes in the seed set S to be positive,

it is clear how to determine the full set of positive nodes at the end

of the cascade process:

Claim 1 A node x ends up positive if and only if there is a path
from one node in S to x consisting entirely of live edges, and the
polarity of the path is positive. We define that
path(n1,nk)~(n1,n2, � � � ,nk) is the live-edge path from n1 to nk,

and the polarity of the path(n1,nk) is Pk{1
i~1 P(ni,niz1).

We prove that, for a node v, the probability of v activated to be

positive in diffusion process is the same as the probability of v
determined to be positive by the live-edge process. We define

Nactive(v) = Npositive(v)
S

Nnegative(v)
S

Nfail(v) as all the active

neighbors of node v which will try to activate v, Npositive(v) as v’s

neighbors which will activate v to be positive, Nnegative(v) as v’s

neighbors which will activate v to be negative, Nfail(v) as v’s

neighbors which will fail to activate v. DNpositive(v)D~k1,

DNnegative(v)D~k2, DNfail(v)D~k3.

In the diffusion process under the IC-P model, the nodes in

Nactive(v) try to activate v in random order, so there are totally

(k1zk2zk3)! activation order choices for all nodes in Nactive(v).
We define P(z) as the front-most position of all nodes belonging

to Npositive(v) in the activation order, P({) as the front-most

position of all nodes belonging to Nnegative(v) in the activation

order. If P(z)vP({) in the activation order, the node v will be

activated to be positive. There are

Influence Maximization in Signed Social Networks
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Ck1zk2
k1zk2zk3 � C1

k1 � (k1zk2{1)! � k3! activation order choices

satisfying P(z)vP({), so the probability of node v being

activated to positive state is

Ck1zk2
k1zk2zk3 � C1

k1 � (k1zk2{1)! � k3!

(k1zk2zk3)!
~k1=(k1zk2): ð3Þ

On the other hand, in the live-edge process, for node v, there

are (k1zk2) candidate-live edges. If we randomly select one from

the (k1zk2) edges as live edge, the probability that the start node

of the live edge belongs to Npositive(v) is k1=(k1zk2). So, the

probability of v reached via positive live path is k1=(k1zk2), the

probability of v becoming positive is k1=(k1zk2) which is equal

to the probability (Equ. (3)). Thus we can conclude that the live-

edge process is equivalent to the diffusion process under the IC-P

model.

Proof of Theorem 1 In live-edge process for the IC-P model,

after coin flipping events and live edge selecting events, each edge

will have a outcome (live or blocked). Consider the probability

space in which each sample point specifies one possible set of

outcomes for all the edges, let X denote the set of outcomes of

edges. Because we have fixed a choice for X , sX
z(:) is in fact a

deterministic quantity, and there is a natural way to express its

value, as follows. Let Rz(u,X ) denote the set of all nodes that can

be reached from u on a path consisting entirely of live edges, and

the polarity of the path is positive. By Claim 1, sX
z(S) is the

number of nodes that can be reached on live-edge paths from any

node in S, and so it equals to the cardinality of the union

|u[SRz(u,X ).

Firstly, we prove the influence function is monotone. Obviously,

|u[SRz(u,X )5|u[S|fvgR
z(u,X ), we can get

sX
z(S|fvg)wsX

z(S), so sX
z(:) is monotone.

To see the submodularity, let S and T be two sets of nodes such

that S(T . sX
z(S|fvg){sX

z(S) is the number of elements in

Rz(v,X ) that are not already in the union |u[SRz(u,X ), it is at

least as large as the number of elements in Rz(v,X ) that are not in

the bigger union |u[T Rz(u,X ), we can get

sX
z(S|fvg){sX

z(S)§sX
z(T|fvg){sX

z(T): ð4Þ

sX
z(:) satisfy the condition of submodular. The number of positive

nodes is the weighted average over all outcomes.

sz(A)~
X

outcomeX

Prob½X �sX
z(A): ð5Þ

A non-negative linear combination of submodular functions is also

submodular, and hence sz(:) is submodular.

Theorem 2 In the NIM problem, the negative influence
function s{(:) is monotone and submodular for an arbitrary
instance of the IC-P model.

Proof of Theorem 2 is similar with that of Theorem 1. Here, we

only present the Claim 2 connecting diffusion process with live-

edge process for proof, omit other details.

Claim 2 A node x ends up negative if and only if there is a path
from one node in S to x consisting entirely of live edges, and the
polarity of the path is negative.

Greedy Solution for PRIM
We have proved that the influence functions sz(:) and s{(:)

are monotone and submodular. Therefore, in this section, we use

the greedy hill-climbing algorithm [29] to solve the PIM and NIM

problem. Algorithm 1 presents the details of the greedy algorithm

for solving the PIM problem, Greedy(k,sz(:)), which approxi-

mates to the optimum within a factor of (1-1/e). In the algorithm

Greedy(k,sz(:)), we select one node each time which provides the

largest marginal increase in the function value. For the NIM

problem, the greedy algorithm Greedy(k,s{(:)) is similar with

Greedy(k,sz(:)).

In [29], Nemhauser assumed that the greedy algorithm can

evaluate the underlying function exactly. However, the number of

X is very large in Equ(5), so it is very hard to calculate the

influence value of sz(:) and s{(:) given a seed set. To mitigate

this, we employ Monte Carlo simulation for estimating sz(:) and

s{(:) with high probability. In this case, the approximation ratio

of Greedy algorithm drops to 1{1=e{, where is small if the

number of simulations is sufficiently large. In our experiments, we

simulate 20000 times for each candidate seed node set.

Since the simulations are expensive, we adopt the CELF

algorithm of Leskovec et al. [4] to reduce running time. CELF

optimization utilizes submodularity such that in each round the

incremental influence spread of a large number of nodes do not

need to be re-evaluated because their values in the previous round

are already less than that of some other nodes evaluated in the

current round [31]. CELF optimization has the same influence

spread as the original greedy algorithm but is much faster.

Experiments

In this section, we conduct experiments on two real-world

explicit signed social networks. The proposed algorithm is

evaluated and compared with a number of state-of-the-art

algorithms adopted in signed networks. The results show that

the proposed algorithm under the proposed IC-P model can find

the seed node set with maximum positive or negative influence

more accurately than the greedy algorithm under standard IC

model and other heuristic algorithms.

Experiment Setup
Datasets. We use two large online signed social networks

Epinions and Slashdot, where each relationship between users is

explicitly labeled as positive or negative. Both of these two

networks are downloaded from Standard Large Network Dataset

Collection (http://snap.stanford.edu/data/index.html). We model

the two signed social networks as two signed graphs. Since the

original graphs are too large, similar as the previous well-known

work [21], we select two subgraphs of original data. We will

evaluate the effectiveness of our method on original graphs, and do

dense experiments on subgraph datasets.

Algorithm 1 Algorithm Greedy(k,sz(:)).

1: Initialize S~60
2: For i~1 to k do

3: select u~ arg maxv[V \S (sz(S|fvg){sz(S))

4: S~S|fug
5: End for
6: Output S
7: End

Influence Maximization in Signed Social Networks
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N Epinions. This is a product review site where users choose

whether to trust or distrust one another based on their ratings

and reviews of products. This original network has 131,828

users and 841,372 relationships, and the subgraph network has

11567 users and 93204 relationships.

N Slashdot. This is a technology news site where users can rate

each other as friend or foe. We treat those as positive and

negative relations. This original network has 77350 users and

516575 relationships, and the subgraph network has 10966

users and 44356 relationships.

Table 1 shows the statistics on the two signed network graphs.

By comparing the statistics of original graphs with those of

subgraphs, we can see that they do not have much difference. In

particular, the clustering coeffcients of the original graphs are

nearly equal to those of subgraphs in both two datasets. We can

also see that Epinions graph has a larger number of nodes, edges,

average out degree, average positive out degree and clustering

coefficient, while Slashdot graph has a larger number of average

negative out degree. The proportion of negative relationships in

Slahsdot are much higher than that in Epinions. Note that,

although we use two explicit signed networks as the experiment

datasets, our algorithm is also applicable to implicit signed

networks where polarity of the relationship can be mined from

interactive data between users.

Generating influence probabilities. Because we can not

get the data to compute the influence diffusion probability (edge

weight) Au,v for each edge (u,v) in graph G, here, we adopt three

models, proposed in [3,5,6], to generate these diffusion probabil-

ities.

N Weighted Cascade (WC) model. In this model [3], Au,v

for an edge (u,v) is 1=d(v), where d(v) is the in-degree of v.

N TRIVALENCY model. On each edge (u,v), this model

randomly selects a diffusion probability from the values

0:1,0:01,0:001, which correspond to high, medium, and low

influence diffusion probabiltiy, respectively.

N uniformly (UN) model. All edges are uniformly assigned

same probability. We will test five diffusion probabilities: 0.01,

0.02,0.03, 0.05 and 0.08.

Comparison methods. We compare our method called IC-

P greedy with IC greedy algorithm under standard IC model and

several heuristic algorithms. Following lists the algorithms we

evaluate and compare in our experiments.

N IC-P Greedy. This is our presented method.

N IC Greedy. We use the original greedy algorithm under the

standard IC model with the lazy-forward optimization [4] in

the network graph where edges polarities are neglected, to get

the seed node set of size k with maximum influence (non-

polar).

N Out-Degree. This is a heuristic algorithm that selects k nodes

with the largest out degrees, which is also evaluated in [3,5].

N Positive Out-Degree. This is a heuristic algorithm that

selects k nodes with the largest positive out-degree. This

algorithm is used as a baseline for the PIM problem in our

experiments.

N Negative Out-Degree. This is a heuristic algorithm that

selects k nodes with the largest negative out-degree. This

algorithm is used as a baseline for the NIM problem in our

experiments.

N Random. This method randomly selects the k random nodes

from the graph, which is also evaluated in [3,5].

To obtain the positive or negative influence of these seed node

sets selected by IC Greedy and heuristic algorithms, for each seed

node set, we run the simulation using our IC-P diffusion model in

the signed graphs for 20000 times, then take the average all these

simulations. On the original graphs, the selected number k is set to

be 20. We compare their positive influence with different sizes of

seed node set, ranging from 1 to 20. On the subgraphs, the

selected number k is set to be 50. We compare their positive

influence or negative influence with different sizes of seed node set,

ranging from 1 to 50. All the experiments are implemented on a

server with 2.40GHz Six-Core Intel Xeon E5645 and 24G

memory.

Experiment Results
In this section, we summarize our experiment results involving

different algorithms with different diffusion probabilities on two

real life datasets. In this paper, the dataset we mention means

subgraph dataset. When we use original datasets, we will

particularly emphasize what we use are original graph datasets.

Results of the PIM problem. Figure 3 shows the perfor-

mance concering the PIM problem, using five different algorithms

(IC Greedy, Out-Degree, Positive Out-Degree, Random and IC-P

Greedy) with three kinds of diffusion probability (WC model, UN

model, TRIVALENCY model) on the Epinions dataset.

Figure 3(a) and Figure 3(b) present the positive influence of the

seed node sets selected by five methods with WC model and

Table 1. Statistics on two signed network graphs.

Dataset Epinions (original) Epinions (subgraph) Slashdot (original) Slashdot (subgraph)

Nodes 131828 11567 77350 10966

Edges 841372 93204 516575 44356

Average Out-Degree 6.38 8.06 6.68 4.04

Maximal Out-Degree 2070 429 2532 243

Average Positive Out-Degree 5.44 7.23 5.12 2.99

Maximal Positive Out-Degree 2070 428 2502 225

Average Negative Out-Degree 0.94 0.83 1.56 1.05

Maximal Negative Out-Degree 1562 182 495 123

Clustering Coefficient 0.1279 0.1269 0.0549 0.0583

doi:10.1371/journal.pone.0102199.t001
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TRIVALENCY model. The size of seed node set ranges form 1 to

50. For UN model, we compare the performance of above five

algorithms with five different probabilities(0.01, 0.02, 0.03, 0.05

and 0.08). The results show that, excluding the proposed method,

the positive out degree method get the best performance.

Therefore, in Figure 3(c), we present the performance of our

proposed IC-P Greedy and the Positive Out-Degree with UN

model and the size of the seed node set is set to be 10, 30 and 50,

respectively. As we can see in Figure 3, our proposed method has

the best performance while the random baseline is the worst,

indicating that a careful seed selection is indeed important for

effective viral marketing results. Compared to IC Greedy, Positive

Out-Degree and Out-Degree methods, our method is 6.0%,

10.9% and 14.9% better with WC model, and is 27.8%, 3.4% and

8.4% better with TRIVALENCY model. With UN model, our

method outperforms Positive Out Degree by 3.4% when the

influence probability is set to be 0.08.

Figure 4 presents the experiment results on Slashdot dataset.

Similarly, the proposed method performs best and the random

baseline performs worst. Compared to IC Greedy, Positive Out-

Degree and Out-Degree, our method is 8.1%, 9.8% and 11.6%

better with WC model, and is 6.2%, 4.7% and 11.3% better with

TRIVALENCY model. With UN model, our method is 3.3%

better than Positive Out-Degree when the influence probability is

set to be 0.08.

From Figure 3 and Figure 4, we can see that our proposed IC

Greedy algorithm performs better than Positive Out-Degree with

WC model, but performs worse than Positive Out-Degree with

TRIVALENCY model and UN model. In contrast, our method

can constantly achieve the best performance among all the

compared methods on both datasets with three kinds of diffusion

probability, which indicates that our method is more stable than

the others. In WC model, the diffusion probabilities are calculated

based on the in-degree of nodes in graphs while in TRIVA-

LENCY model and UN model the diffusion probabilities are

randomly assigned. Therefore, obviously, the WC model is more

reasonable and accurate than the other two models. By comparing

the performances of our method in conjunction with these three

kinds of diffusion probability, we can see that our method

performs best on WC model. This result illustrates that if our

method is applied to the graph fed with more accurate diffusion

probability, it can achieve better performance for the PIM

problem, which also confirms the rationality of the proposed

method.

For the PIM problem, we also do experiments on original

graphs of Epinions dataset and Slashdot dataset. Figure 5 shows

the performance concerning the PIM problem, using five different

algorithms with WC model as diffusion probability on the original

graphs of both the two datasets. To quantify the extent of

fluctuations around the average, we also compute standard

deviations and draw standard deviation bar for each influence

plot. We can see that the results on original graphs are similar with

those on subgraphs. Our method performs best among five

methods. Therefore, we can consider that the experimental results

on subgraph datasets can support the conclusion of our paper

reasonably.

Results of the NIM problem. Figure 6 and 7 show the

performance concerning the NIM problem, using five different

methods (IC Greedy, Out-Degree, Negative Out-Degree, Ran-

dom and IC-P Greedy) with three kinds of diffusion probability

Figure 3. Results on Epinions dataset for PIM problem.
doi:10.1371/journal.pone.0102199.g003

Figure 4. Results on Slashdot dataset for PIM problem.
doi:10.1371/journal.pone.0102199.g004
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(WC model, UN model, TRIVALENCY model) on the Epinions

and slashdot datasets. As can be seen, our method achieves the

best performance and random baseline method obtains the worst

on both the datasets. On the Epinions dataset, comparing to IC

Greedy, Negative Out-Degree and Out-Degree, our method is

81.6%, 3.9% and 81.5% better with WC model, and is 26.0%,

3.7% and 29.6% better with TRIVALENCY model. With UN

model, our method is 2.7% better than Negative Out-Degree

when the diffusion probability is set to be 0.08. On the Slashdot

dataset, compared to IC Greedy, Negative Out-Degree and Out-

Degree, our method is 26.7%, 13.5% and 50.4% better with WC

model, and is 31.6%, 7.2% and 30.0% better with TRIVA-

LENCY model. On UN model, our method is 7.6% better than

Negative Out-Degree when the diffusion probability is set to be

0.08.

Above results show that, similarly with in the PIM problem, our

method also achieves the best performance in solving the NIM

problem. Therefore, in a word, our method can give better

solution for both the PIM problem and the NIM problem

compared with the baseline methods. Besides, from the results in

either the PIM problem or the NIM problem, we can see the seed

node set in Epinions dataset has larger influence than that in

Slashdot dataset. This phenomenon is caused by the higher

average out degree and clustering coefficient of the Epinions

dataset.

Results Analysis. The seed node set has both positive

influence and negative influence. In the PIM problem, we try to

find a seed node set with maximum positive influence, but do not

consider its negative influence. In the NIM problem, similarly, we

do not consider the positive influence of the seed node set. Here,

taking the PIM problem as an example, we explore the relations

between positive influence and negative influence of the seed node

sets selected by different methods.

PIM problem is to find the seed node set with maximum

positive influence. Different methods pick out different seed node

sets for solving the PIM problem. Figure 3 and Figure 4 presents

the positive influence of the seed node sets selected using five

different methods (IC Greedy, Out-Degree, Positive Out-Degree,

Random and IC-P Greedy). Here, we also do experiments for

getting non-polar influence, negative influence and net positive

influence of these seed node sets selected in the PIM problem. For

a certain seed node set, its non-polar influence is the sum of its

positive influence and its negative influence, and its net positive

influence is its positive influence minus its negative influence. In

Figure 5. Results on original datasets for PIM problem.
doi:10.1371/journal.pone.0102199.g005

Figure 6. Results on Epinions dataset for NIM problem.
doi:10.1371/journal.pone.0102199.g006
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the experiments, we adopt WC model on the Epinions and

Slashdot datasets.

Figure 8 and Figure 9 show the non-polar influence, negative

influence and net positive influence of the seed node sets selected

by the five methods on the two datasets. For some applications of

the viral marketing, the best solution may be to select the node set

with largest positive influence and lowest negative influence. Since

we have demonstrated the competent performance of our method

on obtaining the largest positive influence in Figure 3 and

Figure 4, here, we first focus on the negative influence of our

method compared with the others. On Epinions dataset, as shown

in Figure 8(b), the negative influence of seed node set selected by

our method is 45% lower than that by IC Greedy, 32.3% lower

than that by Out-Degree and is close to that by Positive Out-

Degree. On Slashdot dataset, see Figure 9(b), the negative

influence seed node set selected by our method is 80.5% lower

than that by IC Greedy, 51.9% lower than that by Out-Degree

and is slightly higher than that by Positive Out-Degree. Another

measurement which can give the most straightforward evaluation

is the net positive influence. Form Figure 8(c) we can see, on

Epinions dataset, compared to IC Greedy and Positive Out-

Degree, our method is 23.9% and 12.9% better in terms of the net

positive influence. And on Slashdot dataset, Figure 9(c), compar-

ing to IC Greedy and Positive Out-Degree, our method is 38.0%

and 9.7% better. From Figure 8(a) and Figure 9(a), we can see that

the non-polar of the seed node set selected by IC Greedy is higher

than that of our method. But our method can find the seed node

set with higher positive influence and net positive influence. In

many applications of viral marketing, maximizing non-polar

influence may not be the goal. Our results indicate the proposed

method is the best solution for viral marketing with different

objectives (like maximize positive influence or net positive

influence) among all the compared methods.

Note that the solution for the net positive effect is not the

optimal solution. Net positive influence maximization (NPIM)

problem is a very interesting and important problem. Because the

objective function of this problem is not monotone and not

submodular under our IC-P model, so we did not use greedy

algorithm to solve the problem. In live-edge process for the IC-P

model, after coin flipping events and live edge selecting events,

each edge will have an outcome (live or blocked). Based on Claim

1, when a new positive node v comes, some shortest live paths

whose polarity is positive may reach some nodes, and these nodes

will be activated to be positive. Some other shortest live paths

whose polarity is negative may reach some other nodes, and those

nodes will be activated to be negative. We can not measure

whether the number of new positive nodes is larger than new

negative nodes, so the objective function of net positive influence

maximization problem is not monotone under IC-P model.

Similarly, this situation also exists in the proof of submodular.

This paper mainly focuses on the PIM problem and NIM

problem. For NPIM problem, we only propose it and do

preliminary study on it. The specific diffusion model and proof

for the NPIM problem are remained as further work.

At last, we discuss the size setting of the seed set. In current

studies including our work, the size of seed node set is set between

20 and 50. All these works did not study the impact of seed set size.

For deeper studies on influence maximization, it is worth to

investigate in more detail about the impact of seed size, so it would

be a good direction to look into more. In this paper, because of the

Figure 7. Results on Slashdot dataset for NIM problem.
doi:10.1371/journal.pone.0102199.g007

Figure 8. Results on Epinions dataset.
doi:10.1371/journal.pone.0102199.g008
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efficiency limitation of our proposed greedy algorithm, we do not

investigate this problem in our method currently. Here, we study

the impact of seed set size using two methods, out-degree and

positive out-degree, for PIM problem on Slashdot and Epinions

datasets. The size of seed node set is set to be 1000. Then we

analyze the positive influence with different sizes of seed node set,

ranging from 1 to 1000.

Figure 10 shows the performance concerning the PIM problem,

using out-degree and positive out-degree with WC model on two

datasets. We can see, with the size growth of seed node set, the

positive influence increases, but the increase rate slows down. In

the application scenarios, the size of seed node set is the cost and

positive influence is the gain. The size of seed node set should be

set by considering both the limitation of cost and the expectation

of gain. Currently, we only do a preliminary study about this

problem in this paper, and we will do deeper research along this

direction in further work.

Conclusion

In this paper, we have studied influence maximization in signed

social networks, and proposed the polarity-related influence

maximization (PRIM) problem which aims to find the node set

with maximum positive influence or maximum negative influence

in signed social networks. We divided the PRIM problem into two

sub-problems, positive influence maximization (PIM) problem and

negative influence maximization (NIM) problem. To address these

problems, we first extended the standard independent cascade

model to the signed social networks, and proposed a new polarity-

related Independent Cascade diffusion model (IC-P model). Then,

we proved that the influence function of the PIM and NIM

problem under the IC-P diffusion model is monotone and

submodular, This implies that a greedy approximation algorithm

can solve the PIM and NIM problem within a ratio of 1-1/e.

Finally, we demonstrate the superiority of our algorithm compared

with the IC greedy based on standard IC model and other

heuristic algorithms through simulations on two online signed

social networks.

Several challenges and future directions remain. One challenge

is to improve our greedy algorithm to further reduce its running

time. For today’s large scale social networks, even this solution is

computationally expensive. Therefore, reducing running time is

necessary. The methods used for improving the original greedy

algorithm for unsigned social networks in the literature are of great

Figure 9. Results on Slashdot dataset.
doi:10.1371/journal.pone.0102199.g009

Figure 10. Results for PIM problem (seed node set size is 1000).
doi:10.1371/journal.pone.0102199.g010
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use for reference. Another future direction is to study influence

maximization in signed social networks under other diffusion

models, such as the Epidemic model and the Linear Threshold

model.
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