Efficient 3-D Scene Analysis from Streaming Data

Hanzhang Hu Daniel Munoz

Abstract— Rich scene understanding from 3-D point clouds
is a challenging task that requires contextual reasoning, which
is typically computationally expensive. The task is further
complicated when we expect the scene analysis algorithm to
also efficiently handle data that is continuously streamed from
a sensor on a mobile robot. Hence, we are typically forced to
make a choice between 1) using a precise representation of the
scene at the cost of speed, or 2) making fast, though inaccurate,
approximations at the cost of increased misclassifications. In
this work, we demonstrate that we can achieve the best of both
worlds by using an efficient and simple representation of the
scene in conjunction with recent developments in structured
prediction in order to obtain both efficient and state-of-the-art
classifications. Furthermore, this efficient scene representation
naturally handles streaming data and provides a 300% to 500%
speedup over more precise representations.

I. INTRODUCTION

We address the problem of scene understanding from 3-
D data (i.e., assigning semantic object categories to small
3-D voxels/points, as shown in Fig. 1) when the data is
continuously streamed from a sensor on a moving vehicle.
In order to obtain high performance predictions, it has been
shown that is necessary to use models that encode the struc-
ture/relationships of the predictions [1], [2], [3]. However,
in the streaming-data setting, the efficient use of these struc-
tured models is a challenging problem due to both theoretical
and practical issues. As these algorithms rely on analyzing
the entire scene, rather than individual points/voxels, it is un-
clear how to update the various components of the inference
process when 3-D points are being continuously streamed
from the sensor. For example, many approaches [4], [5],
[6], [7] rely on representing the scene with a segmentation
and analyzing the resulting groups/regions/segments instead
of points. When data is streaming from the sensor, it is
unclear how to efficiently insert new data into an existing
segmentation without having to recompute the solution from
scratch. Furthermore, structured prediction techniques rely
on analyzing the entire scene at once, and it is difficult to
efficiently update, rather than recompute, the joint solution
with the newly streamed data [8].

In practice, we are often forced to make a compromise in
the inference process for the sake of efficient predictions.
For example, instead of using a segmentation that obeys
object boundaries, we might choose a technique that is less
precise but more efficient. Additionally, instead of using

The authors are with The Robotics Institute, Carnegie Mellon University.
{hanzhang, dmunoz, dbagnell, hebert}@ri .cmu.edu

This work was conducted through collaborative participation in the
Robotics Consortium sponsored by the U.S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment W911NF-10-2-0016.

J. Andrew Bagnell Martial Hebert

[road B trunk N vee. [l pole I facade

Fig. 1: Screenshot from the supplementary video of classify-
ing streaming 3-D data. The white ball is the sensor location.

- car

expressive contextual models, we might limit ourselves to
less expressive models with efficient approximate inference
algorithms, or even use a simple classifier. In this work, we
demonstrate that we do not need to compromise efficiency
for performance, or vice versa, and that we can generate
state-of-the-art contextual classifications at a high enough
rate to handle streamed sensor data on a mobile robot.
Specifically, we demonstrate that a simple and efficient,
yet imprecise, representation of the scene, when used in
conjunction with the region-based scene analysis technique
from [4], [9], is able to efficiently predict state-of-the-art
classifications.

The descriptions of our approach are broken down as fol-
lows. In Sec. II, we summarize the scene analysis algorithm
and its requirements for processing 3-D data. In Sec. III, we
describe a data structure that will enable us to efficiently ex-
tract regions, perform contextual neighborhood searches, and
classify data over large regions of interest around the robot.
In Sec. IV, we describe our representations of the scene and
how they are used by the scene analysis algorithm. And in
Secs. V, VI, and VII, we thoroughly analyze the different
aspects of our approach and demonstrate its efficiency and
efficacy on real-world datasets.

A. Related Work

In contrast to techniques that perform efficient object
detection/classification from streaming 3-D data [10], [11],
[12], which often filter out a large portion of the data, we
address the problem of efficiently understanding entire 3-
D point cloud scenes. Related works [13], [14], [15] have

similarly focused on scene analysis for robot mobility; how-
ever, we address longer range scene understanding, which
is important for urban-scale semantic mapping. Additionally,
recent works [16], [17] have investigated efficient techniques
for classifying streaming point cloud data based on hand-
designed filters. The key difference of our work from all the
above is that we address the problem of efficient structured
prediction and can use context in our predictions from a rich
set of semantic object categories that would otherwise be
difficult to encode using only point cloud descriptors. This
work greatly improves upon our earlier work [18] on struc-
tured prediction from streaming data. We use a completely
different data representation and superior inference algorithm
based on our recent work [4].

II. 3-D SCENE ANALYSIS VIA ITERATED PREDICTIONS

Our approach is based on the iterative inference procedure
from [4], [9]. The following description summarizes the
method; however, the specific details are not necessary
to understand the rest of this paper. 3-D classification is
performed using a multi-stage inference procedure over a
hierarchical segmentation/representation of the point/voxel
cloud. A hierarchical segmentation of the 3-D data consists
of multiple segmentations, each of which is referred to
as a level in the hierarchical segmentation and consists
of regions of similar resolution/scale. Levels higher in the
hierarchy have coarser segments/regions than levels lower in
the hierarchy. The inference procedure operates by traversing
up and down levels in the hierarchical segmentation and, for
each level, predicting the distribution of semantic categories
contained within each region. The predictions for each region
are influenced by 1) region descriptors that capture the 3-D
statistics of the data, and 2) the predictions from the previous
level in the hierarchy and spatially neighboring regions,
similar to message passing in a graphical model. Predictions
from one level are passed to the next and the procedure
iterates. The last stage of the inference procedure ends on
the finest level of segmentation and the scene is classified
by assigning each point/voxel its respective region’s object
category of highest probability. One important property of
this algorithm, which we exploit in this work, is that the
technique explicitly models imperfect segmentations and is
trained to accurately predict the distribution of multiple
categories contained within a region.

The two key ingredients of this approach that affect its
implementation as an online algorithm are 1) the set of 3-D
operations that need to be performed on the point cloud,
and 2) the representation of the scene that is fed to the
scene analysis algorithm. We stress that the operations and
representation are essential and universal to any 3-D scene
analysis technique. First, in order to efficiently compute
feature descriptors from the point cloud, it is necessary
to have a data structure that can perform efficient range
search operations over a subvolume in the space. Example
standard descriptors, which we also use in our experiments,
that require this operation are spin images [19] and local
curvature statistics [20]. Second, many techniques use a

z
.
X

Fig. 2: Visualizations of our data structures. Left: the world
is sparsely quantized into infinitely tall pillars. Middle: each
pillar is sparsely quantized into coarse blocks. Right: each
block contains a linked list of its occupied voxels.

segmentation algorithm to analyze over 3-D regions, instead
of individual points [3], [6], [7], [4]. With our inference
algorithm, we use multiple (four) segmentations of the point
cloud to form a hierarchical segmentation as input. We
address these two topics for the streaming data scenario in
the following two sections.

III. DATA STRUCTURES FOR STREAMING DATA
A. Scrolling Grids

One of the prevalent data structures for classifying stream-
ing 3-D data is a scrolling grid representation [15], [13], [14].
Briefly, this data structure quantizes a pre-specified fixed
volume of space into a grid composed of n® small voxels
of prespecified resolution. When robot moves, the indices of
the voxels are shifted (scrolled) using a circular buffer. As
the size of the grid and resolution of the voxels are known,
it is straightforward to insert a point into a voxel inside
the grid. Similarly, determining the voxels that constitute a
queried subvolume of space can be computed by calculating
the min and max extrema voxels and iterating over the
subvolume. This data structure is efficient for querying small
subvolumes of space; however, when making long-range
queries, which is necessary to model contextual interactions
among physical objects in the scene, the queried subvolume
becomes computationally expensive to iterate over.

B. Sparse Global Grids

Because we need to randomly query very large subvol-
umes of space, most of which are sparse, we designed
a voxel-based data structure to handle this sparsity and
still enable efficient long-range query operations. Instead
of maintaining a subset of streamed data within a fixed
volume, we propose to store all streamed data in a sparse,
voxel-based global map. To classify a local map of interest
around the robot, we can efficiently query a large subvolume
of the space to process with the scene analysis algorithm.
Furthermore, as this local map is a subset of the data
structure, it still maintains the efficient range search oper-
ations necessary for local neighborhood operations needed
for feature computation.

Fig. 3: Example F-H [21] (left) and grid segmentations (right) with a random color per region.

In addition to large subvolume queries, we also require
efficient insertion of streamed data over time. Similar to
an octree, we consider multiple partitions of the 3-D space
to efficiently ignore empty space. Figure 2 illustrates the
following explanation. In this work, we use (0.25 m)? voxels
as the atomic unit which we assign object categories to.
We coarsely partition the 3-D space of voxels into cube-
shaped blocks, each of which is uniquely indexed based on
its global location and stored in a hash map. We can loop over
these coarse blocks and retrieve the voxels within to perform
queries over large subvolumes, skipping over empty blocks
which can reduce search time when the space is sparse. As
the block resolution will affect efficiency, we analyze this
parameter in Sec. V. We specify the block resolution as an
integer multiple of the voxel resolution.

As we want to classify potentially very tall structures in
the scene, we want to query local maps of infinite height
(z-axis) around the robot. Again, because the space is sparse
over large volumes of space, we further group the blocks into
pillars, each of which is a linked list of non-empty blocks of
the same x-y indices and is stored on a hash map. Thus we
can efficiently form a local map around a robot by looping
over pillars based on an x-y value to retrieve only the non-
empty blocks and, thus, the voxels within.

To summarize: each pillar contains a linked list of blocks
of the same x-y indices; each block contains a constant-sized
3-D array of voxels and a linked list of non-empty voxels
within the block; each voxel contains accumulated statistics
of the respective 3-D points that fell within the voxel. In our
implementation a global map contains a list of non-empty
voxels, a hash map of blocks, and a hash map of pillars.
Voxels, blocks and pillars are created and updated as needed
as new 3-D points are inserted into the global map.

IV. SEGMENTATION

The input to many scene analysis algorithms is a 3-D
segmentation. One of the most efficient ways to perform
this segmentation (in the batch setting) is the F-H graph-
based segmentation algorithm [21]. This algorithm is similar
to finding minimum spanning trees and has become prevalent
in 3-D applications [22], [23]; an example segmentation is
shown in Fig. 3. While F-H is efficient in theory and practice,
it does require non-negligible computational costs. First, the
algorithm relies on a graph representation, and constructing

edges among neighboring nodes in 3-D space relies on local
range searches which require non-trivial amounts of time.
Second, a notion of similarity between nodes is needed and
requires some form of feature computation. Third, in order
to incorporate context in predictions, many algorithms [3],
[4] rely on using contextual neighborhoods, i.e., adjacencies
between regions within some fixed radius. As illustrated
in Fig. 3, regions resulting from F-H can be irregularly
shaped, and accurately computing adjacent regions involves
additional range searches. Note that an expanded bounding
box approximation would be too crude as regions can be
non-convex and/or span extremely large areas of space.
Furthermore, filtering points that do lie within some radius
of any point within the free-form region may also be costly.
Finally, in the streaming data scenario, it is unclear how to
efficiently update the previous segmentation with each newly
inserted node without having to recompute the segmentation
from scratch!.

Instead of performing a precise segmentation that attempts
to obtain object boundaries, we use regions extracted from
fixed, gridded partitions of the 3-D space, as also shown in
Fig. 3. We refer to this gridded segmentation as a grid. This
simple approach addresses all of the previous computational
concerns: there are no associated setup/construction/feature
computations, contextual neighbors can be efficiently found
due to all regions having bounded shape, and newly inserted
points do not affect the existing segmentation.

When we arbitrarily partition the space, the resulting grid-
regions may contain more than one object and/or cut through
the boundary of another object. As the per-voxel classifica-
tion is generated from the finest level segmentation, there will
be unrecoverable errors if there exist multiple objects within
one region. To address this quantization artifact, similar to
how we use a hierarchical segmentation that consists of mul-
tiple segmentations at different resolutions in scale, we also
consider grids at multiple spatial displacements/offsets from
each other. That is, for a grid of fixed resolution, we create
multiple grids whose region boundaries are spatially offset
from each other in the following way. Suppose an initial grid
is constructed with [x [x [m® resolution regions and that

! Although there exists efficient data structures for modifying minimum
spanning trees that have complexity sublinear in the number of edges for
each online update [24], this would be impractical with streaming 3-D data.

L] L)
ol..ll" . s
g gia®® LY L

) - e 4 - L]
. *3 .. . *3 ..
ety 20 O ety 200 "N
e fogan, st L T P
.. s - L
wewee L wanee Yoo
TR :‘: N TR :": .y
a*s 8 's e
e e
- »

:" :"-

atE s

wsan wan

(a) (b) (d) (e)

Fig. 4: (a) An image of the scene. (b) A gridded segmentation of the scene, where each dot represents a voxel and regions
are colored. (c,d) Two grids spatially offset from (b). (¢) A multi-grid formed by the union of the (b,c,d), where the boundary
colors (red, blue, orange) indicate the respective originating grid.

we are considering Y — 1 different displacements. In the i’th
grid, for i € {0,...,y—1}, each of the 3 world coordinates
for any region corner has the value 0+ £ 4 kI, where o € R is
the choice of origin and k € Z specifies the corner. We refer
to the union of the regions from each grid as a multi-grid.
Although a multi-grid is not a proper “segmentation” due to
elements (voxels) being contained within multiple regions,
we refer to one multi-grid as a single segmentation in that it
is a set of (overlapping) regions. Finally, since a voxel may
be contained within multiple regions across displaced grids,
the voxel’s final label distribution is the unweighted average
over all the label distributions of the respective regions it
falls into. Figure 4. illustrates a multi-grid with y = 3.

V. EFFICIENCY ANALYSIS

In the remaining sections, we compare various perfor-
mance metrics with using F-H segmentation vs. simple
(multi-)grids. Our analysis is performed on the 3-D point
cloud datasets VMR-Oakland [4] and Freiburg [25].
Examples of classified scenes from each dataset are shown in
Fig. 5. For the computation analysis in this section, we use
the training and validation folds from the VMR-Oakland
dataset. For classification analysis, we evaluate voxel classi-
fication error and assign the ground truth label to each voxel
as the mode ground truth label from its respective points.
All timing results were obtained on an Intel 17-2960XM
processor using a maximum of 8§ threads.

A. Setup

For each segmentation algorithm, F-H and (multi-)grids,
we construct a 4-level hierarchy, from fine to coarse, by
varying parameters that affect scale. When constructing the
graph for F-H, we use a spatial neighborhood of 0.5 m
radius to create edges between two voxels, and we use the
Euclidean distance between two feature vectors that encode
local geometry and orientation [20]. The specifics of the grid
partitions are discussed in the following subsections.

We compute the same four types of region features over
the two different hierarchical segmentations. 1) A bag-of-
words representation through feature quantization using soft

Hierarchy Creation Time (s)

6 5
Block Factor

Fig. 6: Average region hierarchy construction time, on vali-

dation data, with respect to block factor (%)

k-means assignment [26] over two per-voxel descriptors:
a) 5x 5 spin images of (0.2 m)? cell resolution, b) local
geometry and orientation features computed over three local
neighborhoods of radii 0.5 m, 0.8 m, and 1.1 m, respectively.
2) Relative elevations using a 2.5-D elevation map. 3)
The shape of the region through spectral analysis of the
voxel coordinates that constitute the region, weighted by the
number of points that fell into the voxel [4]. 4) The region’s
bounding box statistics [4].

B. Block Resolution

Our global grid uses (0.25 m)? voxels as the atomic ele-
ment for classification. As previously mentioned, we perform
efficient range searches using coarse neighboring blocks to
skip over empty volumes of space. We select the resolution of
the blocks by analyzing the construction time of our region
grid hierarchy, which is a function of the range searches
needed to compute the feature descriptors and contextual
neighborhoods. In Fig. 6 we plot the average computation
time with respect to coarsening block resolution, which is
quantified by the ratio m% and is referred to as
a “block factor”. As expected, we observe a block factor
of 1, meaning iterating over every neighboring voxel, is

Fig. 5: Example classifications from the VMR-Oakland [4] (left) and Freiburg [25] (right) datasets.

the slowest. In contrast, we see computation time start to
increase when the block resolution coarsens to a factor more
than 5. Hence, we use a block factor of 5 in the remaining
experiments.

C. Finest Segmentation Resolution

The final voxel classifications are generated from the finest
level in the hierarchical segmentation. Ideally, we would
choose the finest segmentation so that each voxel is a unique
region in order to avoid any quantization artifacts; however,
this precision comes at the cost of more samples to classify
and increases inference time. On the other hand, using larger
regions runs the risk of grouping together different labels
within one region. To quantify this mixture of labels within
a region, we can compute the average ground truth label
entropies for regions with different sizes (from the training
set). This value directly relates to the misclassification rate
for assigning a single label to a region containing a mixture
of labels. In Fig. 7 we plot the trade-offs of entropies (a)
and number of generated regions (b) for different region
grid sizes. We observe an exponential drop in the number of
regions as the cell size increases, which is good for efficiency,
and an increasing entropy, which hurts performance. As a
compromise to balance efficiency and accuracy, we choose
(1.5 m)? as the grid region resolution in our finest level
segmentation. The resolutions of the three coarser segmen-
tations in the hierarchy are less sensitive as it is only the
finest level segmentation that assigns the per-voxel labels.
We use increasingly coarse regions of (3.5 m)3, (7.5 m)3,
(10 m)? resolution, respectively, for the remaining levels.

D. Multi-grid Configuration

A multi-grid is the union of multiple grids of the same
resolution with spatial displacement from each other. The
more grids we have, the more robust we are to arbitrary
quantization artifacts. However, this improvement in preci-
sion comes at the cost of having more regions in the scene
to analyze. In Fig. 8, we analyze, on the validation fold,
the behavior of using multi-grids (with various sizes) at
different levels in the region hierarchy. As our hierarchy
contains four levels, we specify the multi-grid configuration
of each level with a 4-tuple [yi,%,7%3, %], where ¥ is the
number of grids in the multi-grid of level ¢ in the hierarchy

0.16
[
O o014
o)
o)
o 0.12
£
@ 01
3
9 0.08f
-
“5 0.06f
>
Q 0.04f
)
P
=
C 0.02}
i
0o 05 1 15 2 25 3 35 4 45
Grid Region Cell Size (m)
(@)
12000 ‘
2]
c
.©10000-
>
o)
o
— 8000
)
>
)
—! 6000}
=
©
)
|
o 4000
)
Nl
o
© 2000
S
>
=z

o

0.5

o

1 15 2 25 3 35
Grid Region Cell Size (m)
(b)

Fig. 7: Analysis, on validation data, of region grid resolution
at the finest level. (a) Ground truth label entropy vs. region
size. (b) Number of regions vs. region size.

and ¢ =1 is the finest segmentation level. From Fig. 8-
a, we observe a large improvement in performance when
simply using 2 grids in the leaf level ([2,1,1,1]) vs. using
only one ([1,1,1,1]) multi-grid. Fig. 8-b shows that this
improvement in performance comes at an extra cost of 0.14
s when classifying a scene, on average. However, we also
observe diminishing returns in average/macro per-class Fj
performance as we increase the number of grids with respect
to computation time. Therefore, we use the [2,1,1,1] multi-
grid configuration in the remaining experiments.

The most costly computation in constructing the region

TABLE I: Decomposition of computations for constructing the hierarchical regions for a Grid and [2, 1,1, 1] Multi-grid.
regions | segmentation (s) | feature (s) | neighbor-context (s) total (s) neighbor-context %

Grid level 0 1862.6 0.0100 0.0138 0.0541 0.0779 69.45%
Grid level 1 426.7 0.0100 0.0100 0.0261 0.0461 56.62%
Grid level 2 107.3 0.0082 0.0088 0.0123 0.0293 41.98%
Grid level 3 63.6 0.0064 0.0084 0.0126 0.0274 45.99%
total 2460.2 0.0346 0.0410 0.1051 0.1807 58.16%
Multi-grid level 0 | 37483 0.0197 0.0277 0.0692 0.1166 59.35%
Multi-grid level 1 426.7 0.0105 0.0103 0.0264 0.0472 55.93%
Multi-grid level 2 107.3 0.0074 0.009 0.0125 0.0289 43.25%
Multi-grid level 3 63.6 0.0066 0.0085 0.0128 0.0279 45.88%
total 4345.9 0.0442 0.0555 0.1209 0.2206 54.81%

0.8

0.78f

e
3
=)

Macro F1

0.7
\:‘\\ \:\\ \:\\ \:\\ \:\\ q,i\\ ’L?/\
N e N e Q- 9’ Q!
R A A AR A

Multi-Grid Configuration
(@)

Classification Time (s)
o o o = =
o ® - N

o
o

o

NN SN SN TS\ SN)N
N Ns o

N NS U QU

\»’\:\’ Q’>« Q,:V \5‘:“ Q’Qf {):3/ {7:]/
Multi-Grid Configuration

(b

Fig. 8: Analysis, on validation data, of (a) classification per-
formance and (b) computation time with respect to different
multi-grid configurations.

hierarchy is determining the contextual neighborhoods for
each region. Typically, we perform very large range searches,
up to 10 m, in order to model long-range interactions. If we
consider the number of grids in a multi-grid, 7, the overall
computation time for determining neighboring context over
all regions is roughly raised by the number of additional
offset grids. To avoid this extra cost, when computing
contextual neighborhoods in multi-grids on the regions that
are offset by a relatively small distance, we perform the

Macro F1

1 2 3 4 5
Number of Rotations
Fig. 9: Average per-class F}, on validation data, with respect
to the number of times the training data is rotated.

following approximation. We know that regions that overlap
have some fixed, equally spaced offset from each other, and
that the offsets are small with respect to the context range.
Therefore, for regions that overlap each other, the contextual
neighborhoods cover essentially the same 3-D space. Hence,
instead of computing multiple neighborhoods for every offset
region, we compute one contextual neighborhood and share
it with its overlapping regions. In Table I, we decompose the
average timings for constructing a 4-level region hierarchy
using a grid and a [2,1,1,1] multi-grid segmentation. We
demonstrate that the use of the neighborhood approximation
achieves comparable timing as with using a single grid.

VI. CLASSIFICATION ANALYSIS
A. Addressing Quantization Artifacts

Because our grid representation uses a fixed partitioning
of the space, the segmentation is not invariant under rota-
tions/translations of the scene. Note that although precise
segmentation algorithms, such as F-H, are invariant to these
transformations, the quantized voxels may not be if they are
too coarse. We address this problem when training the mod-
els for both the F-H and (multi-)grid hierarchies. For each
training point cloud, we generate additional training scenes
by rotating the original scene around the z-axis with equally
spaced angles between [0, 77/2]. In Fig. 9, we quantify on the
VMR-Oakland validation set the performance with respect
to the number of times we rotate each training scene; we use
3 rotations in the remaining experiments.

3 -
251
K
(0]
g 1.5-
=
1k
0.5r
0 : —
Grid Multi—-grid
(a) VMR-Oakland
25 T
2 -
w15
(0]
=
= 1]
i i |
0 : —
Grid Multi—grid
(b) Freiburg
[l Hierarchy Inference [Jij F-H setup

Fig. 10: Average timings of each component during the entire
inference procedure. Hierarchy construction includes feature
computation time.

B. Classification Performance

We now evaluate, on the evaluation folds from each
dataset, the efficiency and classification performances of the
3 models trained on different hierarchical region representa-
tions: 1) F-H, 2) Grid, and 3) [2,1,1,1] Multi-grid.

In Fig. 10, we break down the computation for each model
on the two different datasets. We observe that the grid-based
model timings are inversely related with the F-H model. That
is, the grid-based region constructions are much faster than F-
H; however, F-H compresses the scene into a smaller number
of regions which results in a faster inference time. Overall,
we observe the average computation time with a multi-grid is
2.5-3x faster than using the more precise F-H segmentation,
per static scene.

In Fig. 11, we present the classification rates for the
different models, in terms of F scores for each class. We
observe that using a grid-based segmentation can exceed
the performance of using a precise F-H segmentation. This
follows from the property that the scene analysis algorithm
[9] is robust to imperfect segmentations due to explicitly
modeling the distributions of labels within regions. Addi-
tionally, we can further improve performance by using a

(a) VMR-Oakland

0.9r 1
0.81
0.7F

0.1F

linear ground foliage facade average

(b) Freiburg
B e Grid [l Multi-grid

Fig. 11: Per-class F; for the datasets. “average” is the mean
over the classes.

multi-grid to account for discretization artifacts from a single
grid. In conjunction with the previous timing information,
we conclude that this is an efficient and effective approach
to perform full 3-D scene analysis.

VII. STREAMING CLASSIFICATION

We demonstrate the practical benefits of using our efficient
representation in the streaming data scenario. Both datasets
contain sensor logs collected while the robot was moving.
The VMR-Oakland log was collected from a push-broom
laser scanner mounted on the side of a moving vehicle, and
the sequence is broken down into three smaller logs. The
Freiburg log was collected on a wheeled robot moving
in a campus environment. The sensor was a pan-tilt laser
that scans a 360° field of view, and data was collected in a
stop-and-go manner from 77 different scanning locations.

We process each log in the same manner: after inserting
the last 10,000 streamed 3-D points into the global voxel
grid, we construct a local map of 20 m L. radius, in the
x-y plane, centered at the mean coordinate of the newly
inserted 10,000 points. Due to the profile scanning pattern

TABLE II: Video sequence statistics

VMR-Oakland | Freiburg
Avg. Number of 3-D Points / Scene 44,198 452,330
Avg. Number of Voxels / Scene 10,904 34,031
Total Number of Classified Scenes 398 1,059
Total Distance Traveled (m) 2,950 723

I vuii-crio]
—

Classification
_ B

e
]
S

0.25

VMR-OAKLAND
Dataset

Freiburg

Fig. 12: Average classification time per scene using multi-
grid and F-H segmentation on streams of VMR-Oakland
and Freiburg datasets.

in the VMR-Oakland dataset, the resulting local map is
approximately 20 x 20 m?; however, it is a full 40 x 40 m?
in the Freiburg dataset. We refer to this local map as a
“scene” and then construct the region hierarchy and classify
the scene with our scene analysis algorithm.

In Table II, we break down the average number of 3-
D points and voxels contained within each scene for each
dataset, as well as the total number of classifications needed
to process each sequence and how far the robot traveled.
The supplementary video shows the processing of each log
using the multi-grid model. The video is screen captured
in real-time and demonstrates the ability of our approach
to efficiently process data for use on board mobile robots.
In Fig. 12, we compare the average classification time, per
scene, when using a simple multi-grid representation vs. F-
H segmentation. Using the F-H representation is 3-5x more
expensive than using the efficient multi-grid representation
and would greatly limit a robot’s speed in practice.

VIII. CONCLUSION

In this work, we described a simple approach for per-
forming 3-D scene analysis from streaming data. We demon-
strated that we do not need to make a compromise in
classification performance for the sake of efficiency and can
achieve the best of both worlds in practice. Specifically,
we showed that we do not need to rely on precise (and
computationally more expensive) representations of the scene
and can instead use a simple and efficient representation to
achieve state-of-the-art classifications.

[1]

[2]

[3]
[4]
[5]

[6]
[7]
[8]
[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

REFERENCES

D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative learning of markov random fields
for segmentation of 3d range data,” in CVPR, 2005.

D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert, “Contextual
classification with functional max-margin markov networks,” in CVPR,
2009.

H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, ‘“‘Semantic
labeling of 3d point clouds for indoor scenes,” in NIPS, 2011.

X. Xiong, D. Munoz, J. A. Bagnell, and M. Hebert, “3-d scene analysis
via sequenced predictions over points and regions,” in /CRA, 2011.
B. Douillard, J. P. Underwood, N. Kuntz, V. Vlaskine, A. J. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d lidar point
clouds,” in ICRA, 2011.

K. Lai and D. Fox, “Object recognition in 3d point clouds using web
data and domain adaptation,” IJRR, vol. 29, no. 8, 2010.

A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based recog-
nition of 3D point clouds in urban environments,” in /CCV, 2009.

P. Kohli and P. H. Torr, “Dynamic graph cuts for efficient inference
in markov random fields,” 7-PAMI, vol. 29, no. 12, 2007.

D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked hierarchical
labeling,” in ECCV, 2010.

A. Teichman and S. Thrun, “Tracking-based semi-supervised learn-
ing,” IJRR, vol. 31, no. 7, 2012.

C. Mertz, L. E. Navarro-Serment, D. Duggins, J. Gowdy, R. MacLach-
lan, P. Rybski, A. Steinfeld, A. Suppe, C. Urmson, N. Vandapel,
M. Hebert, and C. Thorpe, “Moving object detection with laser
scanners,” JFR, 2012.

M. Himmelsbach, T. Luettel, and H.-J. Wuensche, “Real-time object
classification in 3d point clouds using point feature histograms,” in
IROS, 2009.

J.-F. Lalonde, N. Vandapel, and M. Hebert, “Data structures for
efficient dynamic processing in 3-d,” I/RR, vol. 26, no. 8, 2007.

M. Bansal, B. Matei, B. Southall, J. Eledath, and H. Sawhney, “A
lidar streaming architecture for mobile robotics with application to 3d
structure characterization,” in ICRA, 2011.

C. Wellington and A. Stentz, “Learning predictions of the load-bearing
surface for autonomous rough-terrain navigation in vegetation,” in
FSR, 2003.

O. Hadjiliadis and I. Stamos, “Sequential classification in point clouds
of urban scenes,” in 3DIMPVT, 2010.

I. Stamos, O. Hadjiliadis, H. Zhang, and T. Flynn, “Online algorithms
for classification of urban objects in 3d point clouds,” in 3DIMPVT,
2012.

D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-d point clouds with learned high-order markov random
fields,” in ICRA, 2009.

A. E. Johnson and M. Hebert, “Using spin-images for efficient multiple
model recognition in cluttered 3-D scenes,” T-PAMI, vol. 21, no. 5,
1999.

G. Medioni, M. Lee, and C. K. Tang, A Computational Framework
for Segmentation and Grouping. Elsevier, 2000.

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” IJCV, vol. 59, no. 2, 2004.

J. Strom, A. Richardson, and E. Olson, “Graph-based segmentation of
colored 3d laser point clouds,” in IROS, 2010.

R. Triebel, J. Shin, and R. Siegwart, “Segmentation and unsupervised
part-based discovery of repetitive objects,” in RSS, 2010.

G. N. Frederickson, “Data structures for on-line updating of minimum
spanning trees,” in STOC, 1983.

J. Behley, V. Steinhage, and A. Cremers, “Performance of histogram
descriptors for the classification of 3d laser range data in urban
environments,” in /CRA, 2012.

A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks
in unsupervised feature learning,” in AISTATS, 2011.

