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ABSTRACT state trajectory, thus greatly reducing the linearizaéoors.

However, the computational cost of the batch-MAP estima-
tor grows unboundedly as the size of its state vector ineeas
- . linearly over time. Moreover, as the EKF and its variants
multiple most probable hypotheses. In particular, due t& mu . ’ ’
P P yb b the batch-MAP estimator can only track one of the poten-

timodal distributions arising in most nonlinear problems, ; ! .
employ a bank of MAP to track these modes (hypotheses}_'ia"y many modes of the posterior pdf. Even though multi-
ypothesis tracking algorithms, such as the multi-hypsithe

The key idea is that wanalytically determine all the pos- : .
terior modes for the current state at each time step, WhicEKF (MHEKF) [5], are available to track a set of different

are used to generate highly probable hypotheses for the e ypotheses, in ”.‘OSt cases the hypotheses_ are generated ran-
tire trajectory. Moreover, since it is expensive to solve th omly, thus wasting considerable computational resources

: ; : : To address the aforementioned issues, in this paper we
MAP problem sequentially over time by an iterative method. . . A
P guentiatly over 1 yan! v %troduce a bank of incremental MAP (B-iIMAP) estimation
a

such as Gauss-Newton, in order to speed up its solution, w . . . . . .
reuse the previous computations anctementally update the gorithm, V.Vh'Ch prowdes effectlve_ mqu-hypothgssdka
square-root information matrix at every time step, whileeha ing and efﬂmem mcremeqtal SO|UtIOI’lS.. In partlf:ular, we
relinearization is performed only periodically or as nektde propose an efficient _analy'ucal hypothe_3|s generatlonmehe
for MAP-based multi-hypothesis tracking. By transforming
Index Terms— Maximum a posteriori (MAP), QR fac- the nonlinear cost function of the one-step MAP problem

In this paper, we introduce an efficient maximum a pos
teriori (MAP) estimation algorithm, which effectively ths

torization, analytical solution, multi-hypothesis tréaug for the current state into polynomial form, and employing
algebraic geometry techniques [6], we determine all the pos
1. INTRODUCTION terior modesanalytically. Each mode is used to initialize a

new MAP in the bank, thus allowing to trackultiple most
Nonlinear estimation problems, such as target tracking, arprobable hypotheses of the trajectory. Note that in ourrprio
often addressed using linearized filters, e.g., extendéd&a work [7] we successfully applied this method of analytigall
filter (EKF) [1, 2]. The performance of these filters can beselecting hypotheses to the particular problem of randg-on
significantly degraded by large linearization errors ad el target tracking. Furthermore, when using the Gauss-Newton
the inability to track multimodal distributions (which aeiin  method to solve the batch-MAP problem, in general, it is too
most nonlinear estimation problems). To reduce lineddnat expensive to conduct the batch relinearization at everg tim
errors, the iterated EKF (IEKF) [2] is often used, which it- step. To speed up the batch solver, we reuse the previously-
erates the filter update till convergence by relinearizimg t computed Jacobians andly compute the one corresponding
measurement function at each iteration. Alternativelg th to the new available measurements, while relinearizagon i
unscented Kalman filter (UKF) [3] deterministically sanmple performed periodically or as needed in order to reduce the
the nonlinear models around the current state estimate (i.dinearization errors. Although similar idea was used in our
statistical linearization), thus improving the linear app-  recent work of robot localization and mapping [8], in this
mation. However, any linearization-based filtering apptoa paper we extend this methodology to a large class of nonlin-
marginalizes all but the current state, and hence is unable ear systems and integrate it within the analytically-geléc

refine past linearization points. multi-hypothesis tracking.
In contrast, a batch maximum a posteriori (MAP) esti-
mator [4] computes the estimates for the states at all time 2. THE PROPOSED ALGORITHM

steps using all available measurements. This allows batch
relinearization (i.e., recomputing the Jacobian) of théren Consider the following general nonlinear system:
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wherex;, denotes the state of the systam,is the control in-  residual vector. We employ QR-factorization [9] to solve th
put, andw;, is zero-mean white Gaussian process noise, i.eproblem of minimizing (5), i.e.,
wi ~ N (0, Wy); z, is the measurement, corrupted by mea-

surement noisey;, ~ A (0, V). We aim to estimate the en- min [|Adxo.; — b||* = HQ ﬁﬂ 0%X0. — bH2 =

tire state trajectoryx?, = [x§ x] --- x|, usingall o0k

available information. To this end, the batch-MAP estimato H {R} S0 — QTbH2 _. H [R] Sxo — {d} H2

is often employed to determine the entire trajectory eséma 0 ' 0 ' €

K. that maximizes the following posterior pdf: < min |[Réxo: — dl|? (6)
0:k

k where we have used the economic QRA0f9], since it in
p(oxlzok) o p(x0) [ [ pPOexlxs—1)p(24]%5)  (3)  generalistall, i.e.,
r=1

R R

wherep(xo) = N (X0, Pojo) is the prior distribution, and A=Q {0] = [Ql Q2] [0] = QiR ()
z1.; denotes all the sensor measurements in the time inter-
val [1, k]. In (3), we have used the fact of independent stat@nceéx0 .. is found by back substltut|on (6), the new state
and measurement noise and Markov system dynamics. Usirgtimate is updated ag(()fm) — 0 k\k + 6% (f)
the assumption of Gaussian noise, the maximization of (3) is
equivalent to the minimization of the following cost furaontt 2.1. Analytical hypotheses
c(xo:) = %”XO_)"(O'OH%D‘”_F (4)  Since in general it is computationally intractable to sdive

batch-MAP problem analytically [see (4)], we use the Gauss-
Newton iterative method to solve it at each time step. How-
ever, as mentioned before, any iterative approach only con-
verges to one local minimum, despite the fact that we often
where we have employed the notatidfa||3 = a” A~ 'a. have multimodal posterior pdfs. To address this issue, we
This clearly is anonlinear least-squares problem [see (1) Provide an effective way to generate multiple, most progabl
and (2)]. A standard iterative Gauss-Newton approach is ofdypotheses, each of which is tracked by a MAP estimator.
ten used for its optimization, which, however, is only algle t Toward this end, we relax the problem of minimizing (4) and
converge to one local minimum within the basin of attractionincrementally solve a one-step MAP problem analytically. A
of the initial estimate. Hence, this approach heavily dejsen time-stepk, by fixing the past state estimates; 1,1 (i-e.,
on the quality of the initial estimate. In particular, atthth ~ assuming they are optimal), we approximate (4) as follows:
Gauss-Newton iteration, a COI’I’GC'[IOFKO ;.» to the current

estlmate;“cgé,)clk, is computed by minimizing the second-order

-
=

k

1
HXH—&-l_f(Xmuﬁ)”%VN + 3 Z Hz,.@—h(x,{)H%,N
0 r=1

N | —

K

. 1 .
c(%0:k) =~ c(Rok—1k—1) + §||Xk - Xk|k—1||%’k‘k,1

Taylor-series approximation of (4), which can be written as i %sz B h(ka%k ®)
C(ié{z;)qk + 0X0u) 1\\5X0|\%U‘0+ () whereN (Xy5_1,Pys—1) is the Gaussian prior pdf for the
current new statey, and is computed by:
2 Z % ’(Ql“‘" K‘)’“’uﬁ) %1 = DXl + Rijk—1 = F(Rp—1jp—1, Uk—1) 9)
20 P11 =Pr1Pr_1p1®i_; + Wiy (10)
2 Z 1z = (%) ~ Hudxul[§, = [| A0 — bl Now the one-step MAP problem of minimizing (8) becomes

equivalent to solving the following one-step minimization
where we linearize the process and measurement models (Jroblem only for the new state estimate:
(2) at the current state estimate, with the system and measur

. R 1
ment Jacabian®, = 2-| = andH, = 2= o min 5Pk = Kifh-1l1By,, + 5|12k —h(xx) R, (1)
X =R, Flx,=% ok

respectively. We now have lanear least-squares problem In many cases (e.g., see Section 3), the optimality comditio
w.rt. 0xo.; (5), whereA is the Jacobian matrix obtained of (11) can be transformed into a polynomial system of equa-
by appropriately stacking and weighting all the system andions, which can be solved for all the local minima (corre-
measurement Jacobians, dmds the corresponding stacked sponding to all the modes of the posterior pdfiglytically
1Throughout this paper, the subscripj refers to the estimate of a quan- us_ln_g algebraic geomedry techniques [6] Once all the Ioca_l
tity at time-step, after all measurements up to time-stgpave been pro- MinNima are found, we use them along with the pa_st state esti-
cessedz denotes the estimate of a random variable mates as accurate initial estimates for the MAPs in the bank.




2.2. Incremental QR update equation is given by the following linear form:

When a new measurement, ;, becomes availabke we Xp =P 1Xp 1+ Gro1Wg 1 (13)
nged to recompute th(.a whole Jacob&nwhich is an expen- wherew),_, is zero-mean white Gaussian noise with covari-
sive operation in solving the batch-MAP problem. To save

. . .anceW,_q; and the state transition matri®,_,, and the
computations, we reuse the previously-computed JaCOb'a[ﬂocess noise Jacobia@,_;, depend on the motion model
and incrementally update the QR factorization directly. In re

ficul A (without tina it with th used [2]. We will make no further assumptions on these ma-
particuiar, we augme (without recomputing it) wi € trices other than that their values are known. In the caseavhe
new weighted measurement Jacolk®n,; [see (7)]:

a single sensor measures its distance to the target, the-rang
only measurement equation at time-steig given by:

_ A Q. 0
A = _1 = 1 12
leﬁH/ﬁJ [ 0 I} [kalHk+1] 42 2= (o, — 252 + (yr, —vs, )2 o (14)

) _ . . whereps, = [rs, ys,]T is the known sensor position ex-
We now aim to decomposa into triangular form (i.e., pressed in the global frame of reference, apds the zero-

square-root information matrix). Since was already factor- mean white Gaussian measurement noise with variafice
ized into the triangulaR, we only need to zero out the

nel/vl block row of the weighted measurement Jacob|ar§'1' Analytically selecting hypotheses (posterior modes)
V. 1Hgi1, in order to obtain the updated square-root in-

formation matrixR. This can be achieved efficiently, for

We now show how we solve (11) analytically in the case of
range-only tracking, whose solutions (posterior modes) ar

example, by Givens or Householder QR [9]. Similarly, the )
corresponding new vectdd, can be obtained by applying the used to generate the most probable hypotheses for the entire
ajectory. By observing that the range measurement depend

same Givens rotations or Householder reflections to the au%— o -
nly on the target position, as shown in [7], we can decouple

d Iy - .
mented residual vector, 1 R ] . ltis the target positiop, and the remaining statek, in solv-
. Vit (Zkﬂ - h(_xkfllk)_) ing (11). Hence, we hereafter focus on the following mini-
important to note that, although relinearization is notdeze  mijzation w.r.t. the target position, while the remaininates

at each time step when a new measurement becomes avaihn be directly inferred from the optimal solution of (15).
able, in order to reduce the linearization errors, we reliize

. 1 1
the ;ystem at the latest, and thus the best,. state_ es.t|rlrmtes P min §||ka —Dr ||%’ppk . 1+§||Z’“_h(ka)||§i (15)
riodically [8] or as needed (e.g., when the linearizatiompo Py, "

significantly deviates from the current state estimate). WherePppMki1 is the covariance matrix corresponding to the
target position, obtained by partitioning the covarianegrin
3. EXAMPLE: RANGE-ONLY TRACKING as:Py_1 = Pppk\kfl dek\’cfl . To solve (15) analyt-

Pdpk\k—l Pddk\k—l
In this section, we apply the proposed B-iIMAP presentedcally, by introducing a new variablg, = h(pr,), we have
in the preceding section to the particular problem of rangethe following equivalenconstrained minimization?
only target tracking. Consider a single sensor moving in a
plane and estimating the state (position, velocity, etcf) o
a moving target, by processing the available range mea-
surements. The target state at time-stejs defined as a st i = (@, —2n)* + (s, —yn)” pr 20 (17)
vector of dimensior2 N, where N — 1 is the highest or- We solve (16)-(17) by employing the method of Lagrange
der of the time derivative of the target position describednultipliers [10]. Specifically, without loss of generalityy

) 1 N 2 1 2
pg}r})k §||ka _ PTk\k—lanpkWﬁ §||Zk - pk||ag (16)

by a known stochastiq _motion mc_)del. It can incIude COm-assumingP;;Wq := Diag(s, s2), the Lagrangian func-
chments such as pOS.ItIOI'],.Ve|O(.3.Ity, apd acceleration, I-8%ion is constructed as follows:
X = [‘TTk yr, Im, Y, T1, YT, ']* where S1 R 5 82 . 5
Pr, = [:ch yT,JT is the target position, andy, := E(CCT;C,?/Tka,A):g(ITk—ITMH) +7(?/Tk—miH)

. . " . T . 2

lé7, Yn, @, i, ---] denotes all the higher-order (2 — pr) 2 B 2 B 9
time derivatives of the target position. + 202 + A (k= (ws, —om,)* = (ys, —yz,)*) (18)

We consider the case where the target moves randomiy——— — _ _ _
. L - Similar derivations of analytically solving (11) can be falin our pre-
but assume that the stochastic mo<_jel describing the mation Q.. < work [7], which are briefly described here for comphetss.
the target (e.g., constant acceleration or constant \gl[&) “We can always diagonaliz@gﬁ,k“ﬁ1 by applying a 2D rotational trans-
is known. In particular, the discrete-time state propageti formation, which does not affect the distance measureméstseover, we

here temporarily omit the positivity constraint pp, which will be used later
2The dynamic constraint (1) can be treated analogously asaurement.  for determining the feasible solutions.




where) is the Lagrange multiplier. Setting the derivatives of | =
L(-) w.r.t. the four optimization variables to zero, and per- . 4.
forming simple algebraic manipulations, we obtain: . B e
oL 181, , — 2\Ts,
oxr T s1— 2\ ( ) i
oL 82Uy ey — 2AYs, g,
—=0= = 20 -
ayT Yy, 59 — 2\ ( ) e e S
oL 2k (a) Sensor/target's trajectories  (b) Avg. root mean square errors
0 = (21)
Opk 14 205A
ar Fig. 1. Monte-Carlo simulation results show that the proposed

T 0=0=p;—(zs,—27,)>—(ys, —yr,)> (22)  B-iIMAP achieves better accuracy than the B-MAP [7].
We substitute (19)-(21) into (22) and multiply both sides _
of (22) with (1 + 2020)%(s; — 2)\)2(sy — 2\)%, to obtain a 33 Numerical results
fOLirth-orderumvanate polynomial inA, i.e.,0 = f(A) =  we validate the proposed B-IMAP in 100 Monte-Carlo sim-
> io @i\, Wherea;, i = 0,...,4, are the coefficients ex- ylations, as compared to the bank of MAP (B-MAP) §7].
pressed in terms of the known quantities s», zx, ok,  The B-MAP performs batch relinearization at every time step
1y, 1 ITys_1» TSy, aNdyg,. Since f(A) is quartic, we  with marginalization of old states every 25 time steps to re-
compute its roots in closed form. Although, in general, ¢her guce the computational cost. In contrast, the proposed B-
exist 4 solutions for\ and thus 4 solutions farr,, yr,, and  iMAP periodically relinearizes the system every= 10 time
pk, as they depend injectively oh[see (19)-(21)], we only  stepswithout marginalization. In both estimators, we prune
need to consider the pai(sr, , y7, ) that correspond to real oyt the least probable hypotheses based on the MAP costs
solutions forA and to a nonnegative, [see (17)]. Moreover, and keepn < 10 most probable hypotheses. In this test, we
since some of these solutions could be local maxima or saddjgjopt a zero-acceleration motion model [2] for the targes [s
points, the second-order derivative test [10] is employed tFig. 1(a)], and set the standard deviation of the measuremen
identify the minima. In fact, it was shown in [7] that there pojse equal to 10% of the sensor-to-target distance. Fiy. 1(
are at most 2 local minima for the problem (15). Once all theshows that the proposed B-iIMAP, in average, perfot9b
local minima for the target position are determined, we cafnore accurately than the B-MAP, which even comesGi%

accordingly compute the corresponding estimated{Qr7].  |ower cost. Specifically, the average CPU runtime (aveiggin
over all Monte Carlo runs and over all time steps) of our Mat-
3.2. Range-only tracking using the B-iIMAP lab implementation on a Core2 Quad CPU is 0.0416 sec for

Wh ving th d B-IMAP t v tracki the B-iIMAP, compared to 0.1217 sec for the B-MAP. This su-
en applying th€ proposed t-i 0 range-only trac’ I!1g’perior performance of the B-iIMAP is attributed to the effidie
the key |d_ea Is touse the_ analyﬂcally-computed local manim incremental update (see Section 2.2). This also implidsitha
at each time step as gwdance to find the most probable h):(folving a batch-MAP problem, marginalization can be substi
potheses of the target trajectory, and then to track them eﬁ{uted, or at least postponed, by the application of increaien

ciently by incremental QR-factorization. Specificallytiate- . L o
stepk—1, based on (9) and (10), we first propagate the curren?R update, while achieving better efficiency and accuracy.

state estimate corresponding to thé hypothesis and its co-
i 4. CONCLUSIONS

variance matrixfcgf]_”k_l andPE;]—l\k—l’i =12,....,m(m

is the number of estimators in the bank at t|me-s#.ep_1). In this paper, we have introduced a novel efficient multi-

Then, once a new range measurement becomes available, “Vpothesis tracking algorithm, i.e., the B-IMAP. The key

propagated state estimate and covariaﬁg%,_l andPE;Hk—l' “idea of this approach is to analytically determine the most

are used as the prior in (11). Next, we use the algebraigyropable hypotheses at each time step, which is attained by
geometry method described in Section 3.1 to determine al«ansforming the one-step MAP problem into polynomial
the local minima of (11) analytically, denoted li)[f], 1 < form. By reusing the previous computations, the incremen-
J < 2m. For each of these solutions, we incrementally uptal QR-factorization is employed to efficiently track alleth
date the QR factorization so as to efficiently solve for the enhypotheses. We have applied the B-IMAP to the particu-
tire trajectory estimatﬁg:],C .- Note that batch relinearization lar problem of range-only tracking and shown its superior
is performed periodically everytime steps to reduce the lin- performance in terms of both accuracy and efficiency.
earization Errors. In the end, We.Wi” have mul_tiple cantida 5As shown in [7], the B-MAP which also determines most probéiy-

of the MAP estimate, among which the one with the least CoSfotheses analytically, outperforms the standard muletiyesis tracking ap-

is selected as the best estimate for the global optimum. proaches, and thus we focus only on its comparison to theopempB-iMAP.
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