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Abstract—In this paper, we present offer generation methods
for negotiation among multiple agents on multiple issues where
agents have no knowledge about the preferences of other agents.
Most of the existing literature on non-mediated negotiation
consider agents with either full information or probabilistic
beliefs about the other agents preferences on the issues. However,
in reality, it is usually not possible for agents to have complete in-
formation about other agents preferences or accurate probability
distributions. Moreover, the extant literature typically assumes
linear utility functions. We present a reactive offer generation
method for general multiagent multi-attribute negotiation, where
the agents have non-linear utility functions and no information
about the utility functions of other agents. We prove the con-
vergence of the proposing method to an agreement acceptable
to the agents. We also prove that rational agents do not have
any incentive to deviate from the proposed strategy. We further
present simulation results to demonstrate that on randomly
generated problem instances the negotiation solution obtained by
using our strategy is quite close to the Nash bargaining solution.

I. INTRODUCTION

In multi-attribute negotiation, two or more parties (or
agents) with limited common knowledge about each others
preferences want to arrive at an agreement over a set of
issues when they have possibly conflicting preferences over
the issues. During negotiation, there are both cooperative and
competitive objectives that drives the behavior of an agent.
On the one hand, agents would prefer to reach an agreement
rather than the negotiation breaking down. On the other hand,
an agent would like to reach an agreement that is most
beneficial to herself. Over the years, different models with
diverse objectives have been developed for negotiation. Some
models try to explain human behavior in negotiation. Other
models are for designing autonomous software agents for
application in negotiation support systems and/or distributed
decision making in autonomous multiagent systems. We study
the negotiation problem from the perspective of designing
systems of autonomous intelligent agents.

The extant literature on mathematical study of negotiation
can be divided into two broad classes, namely, mediated
negotiation and non-mediated negotiation. In mediated negoti-
ation, the presence of a non-biased mediator is presumed and
agents interact with each other through the mediator. In non-
mediated negotiation agents interact with each other directly.
In this paper, we are considering non-mediated negotiation.

Within the non-mediated negotiation literature, researchers
make different assumptions about the number of negotiating
agents, the number of issues they are negotiating on, and the
knowledge that an agent has about the preferences of other
agents (modeled using utility functions). Most work to date has
focused on two party, single issue negotiation, although there
has been some work on two-player, multi-issue negotiation
(e.g., [15]) or with multi-player, single issue negotiation (e.g.,
[4]). Furthermore, computational modeling of multi-attribute
negotiation has either assumed (a) complete knowledge of
the preference structure of the opponents (i.e., the utility of
the agents are assumed to be known, e.g., [32]) or (b) a
probability distribution over the preferences of the agents is
known (e.g., [21], [6], [28]). Most of the literature also assume
linear additive utility functions for the agents.

When the utility function is assumed to be linear and
information about the opponent’s utility function is known,
monotonic concession strategies and Zeuthen strategies [11]
have been proposed for negotiation. For probabilistic knowl-
edge about opponent, rational strategies that correspond to
sequential equilibrium of a game has been proposed (e.g.,
[13]). However, these strategies cannot be used if there is no
knowledge about opponents utility functions and the utility
functions are nonlinear. In general, the negotiation may involve
multiple agents and multiple issues, the utility functions of
the agents may be nonlinear and the agents may not have any
knowledge about the utility of the other players. A fundamental
open question in multiagent negotiation in such a general
setting, that we study in this paper, is the following: Is it
possible to design negotiation strategies for agents so that they
come to an agreement given that they have no prior knowledge
about the utility functions of other agents?

More formally, we consider m (≥ 2) agents negotiating on
a set of N (≥ 1) issues. We assume that the agents propose
sequentially in a pre-specified order (that may be decided
before negotiation begins). When there are two agents, the
agents propose alternately. Each negotiator has a (strictly)
concave nonlinear private utility function (known only to
them). Each agent also has a private reservation utility, and
any offer that gives a utility less than the reservation utility is
not acceptable to that agent. We allow the agents to negotiate
with package offers (instead of issue by issue negotiations).
In package offers the agents negotiate on multiple issues
simultaneously, and the value of an offer is not simply a sum
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Fig. 1. Illustrative sketch of the offer space of 3 agents, A, B, and C,
negotiating on 2 issues. The 3 curves denote the set of all offers with value
equal to the reservation utility of the agents (i.e., their reservation curves).
The convex sets bounded by the three curves are the feasible offer sets (e.g.,
O

′
A is a feasible offer for agent A). The zone of agreement is the common

intersection of the three sets which is the hatched region.

of the values of the individual issues. Although issue by issue
offers are more convenient mathematically, packaged offers
have the advantage that they allow agents to make trade-offs
over different issues, which is a realistic features of many
negotiations [14].

Figure 1 gives a geometric view of the offer space for three
agents negotiating on two-issues. The zone of agreement (the
hatched region in Figure 1 is the set of offers that is acceptable
to all agents. Any point within the zone of agreement is called
a satisficing agreement. Thus, the objective of the agents is to
find a satisficing agreement. Note that the agents do not know
the other agents’ utility functions, and therefore, the zone
of agreement is unknown to any agent. Thus, geometrically
speaking, in negotiation, the goal of the agents is to find a
point in the zone of agreement, under the assumption that
none of the agents have any explicit knowledge of the zone
of agreement. Note that if the zone of agreement is empty, no
agreement can be achieved.

Let us consider two agents negotiating on a single issue
(e.g., a buyer and a seller negotiating on the price of a
house). Here, if the zone of agreement is non-empty (i.e.,
if the lowest price at which the seller is willing to sell is
less than the highest price the buyer is willing to pay), there
will always be an agreement reached in the negotiation. This
is because an offer of an agent with utility equal to her
reservation utility is acceptable to the other agent. Even for
multi-issue negotiation where the agents (with linear additive
utility functions) negotiate issue by issue and have a different
reservation price1 for each issue (e.g., [13]), an agreement
can be reached trivially by one of the parties proposing
offers corresponding to her reservation price for each issue.
However, for packaged multiagent multi-attribute negotiation
with nonlinear utility functions, it is non-trivial for an agent
to find an offer acceptable to other agents. Even if she makes
an offer that is on her reservation utility, it may still not be
acceptable to the other agent. Figure 1 shows that although the

1Note that we use price here to be consistent with the literature [13].

offers OA, OB , and OC gives the agents A, B, C, their least
possible utilities (i.e., they concede as much as they can), OA,
OB , and OC do not lie in the (unknown) zone of agreement
and hence is not acceptable to the other two agents.

In this paper, we present a class of strategies called sequen-
tial projection strategies for generating offers and prove that
the agents following such strategies will reach an agreement.
The sequential projection strategies consists of two steps: (a)
A concession step in which the agents reduce the utility of
offers that are acceptable to them (unless they have reached
their reservation utility) (b) An offer generation step in which
they use the previous offers of their opponents to generate a
new offer with utility equal to their current acceptable utility.
Note that in step (a), although the agents will concede, the
amount by which they concede (or the rule by which they
decide on the amount to concede) is not specified. Thus, there
is a degree of freedom in the choice of concession rule (or
concession strategy). We show that the convergence holds for
general concave utility functions irrespective of the specific
concession strategy the agents adopt (as long as the agents
concede up to their individual reservation utilities). This class
of sequential projection strategies is a generalization of the
alternate projection heuristic that was proposed in the literature
for two agents [25], [39].

The concession step is always present (either directly or
indirectly) in non-mediated negotiation strategies where the
agents take turns to make offers. It is assumed that the utility
agents obtain from reaching an agreement decreases with time.
There are two rationales given for this assumption. The first is
that the value of an outcome may be time-sensitive and may
decrease with time, The second is that in negotiations with
deadlines, the agents must be willing to propose an offer with
their reservation utility at the deadline, since any agreement is
better than no agreement. Furthermore, the agents also want to
maximize their own utility and thus they should start at their
maximum utility and concede as time progresses. A common
feature of the concession strategies in the literature [25],
[39] is that they are assumed to be properties of the agents
themselves and not reactive to the concession strategies of the
other agents. Hence it was not clear whether the agents had
any incentive to concede. Although in real life negotiations,
negotiators do concede with time, the concession behavior
is seen even in negotiations where the utility of issues do
not decrease with time or there are no hard deadlines for
negotiation. This is because negotiators do want to come to
an agreement and know that if others realize that they are
not conceding then there is a chance that the negotiation may
stall and one party may walk off. Here, we design concession
strategies for negotiation without that conform to this intuition.
In other words, we show that during negotiation, concession
is rational even without hard deadlines or issues where utility
does not decrease with time. We prove that if the agents use
a reactive concession strategy, i.e., each agent concedes by an
amount equal to her evaluation of the amount of concession
of her opponents, then the agents have no incentive to deviate
from the concession strategy.

To the best of our knowledge, for non-mediated negotiation,
this is the first paper that gives negotiation strategies with
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guaranteed convergence to a satisficing solution for general
multi-attribute, multilateral negotiation with agents having
nonlinear utility functions and no knowledge about other
agents preferences. We also demonstrate the performance of
the reactive sequential projection strategy through simulations
for two agent negotiation as well as the more general multia-
gent negotiation.

The remainder of this paper is organized as follows. In
Section II we give an overview of the related literature. In
Section III we outline the framework of automated negotiation
and state the problem that we are studying more formally.
In Section IV we show our convergence proof of the the
sequential projection strategy that we develop here. Thereafter,
in Section V we prove that it is rational for the agents to use a
reactive concession strategy in the absence of any knowledge
about the utility functions of other agents. In Section VI, we
present simulation results on randomly generated negotiation
instances. Finally in Section VII, we summarize our contribu-
tions and outline avenues of future work.

II. RELATED LITERATURE

The literature on negotiation can be divided into two broad
categories, namely, mediated negotiation and non-mediated
negotiation [38]. In mediated negotiation, it is assumed that
there is an unbiased mediator who collects the agents pref-
erences and propose offers to the agents [25], [5], [29]. In
non-mediated negotiation agents interact with each other and
exchange their offers and preferences directly. In this paper, we
are concerned with non-mediated negotiation and therefore we
will restrict our literature review to papers that do not assume
the presence of a mediator.

Earlier papers in negotiation or bargaining focused on
two-agent single-issue negotiation. In a complete information
setting, different axiomatic solution concepts were proposed,
including, Nash bargaining solution [32], Kalai-Smorodinsky
solution [24], egalitarian solution [23], pareto-optimal solu-
tion. However, the process by which agents should arrive at
such a solution was not detailed. It is usually difficult for
agents to arrive at the solutions mentioned above, especially in
the absence of information about the other agents’ preferences.
In such settings the notion of a satisficing solution has been
used (see [31] where the authors use the notion of a satisficing
solution for solving a distributed planning problem). In this
paper, we assume that agents have no information about other
agents’ preferences. Hence, we will be using a satisficing
solution as our solution concept.

To model the iterative negotiation process, the alternating-
offer game (or protocol) was proposed by Rubinstein [33].
The alternating offer protocol is one of the most popular
negotiation protocols for bilateral single-issue setting. Work
in economics using the framework of the alternating-offer
game often focus on single issue problem. In the original
alternating-offer game in [33], as well as subsequent liter-
ature (e.g., [30]), the two players (or agents) with complete
information have incentive to concede because it is assumed
that the utility of the negotiation outcome decreases with time.
Transaction cost of bargaining is another reason for the players

to concede (see [8]). Some studies (e.g., [10], [7]) consider
outside options as an alternative incentive for the players (or
agents) to concede over time. These studies also extend the
alternating-offer game to the setting where the two players
have incomplete and asymmetric information, i.e., they are
uncertain about the opponent’s type [17], [10], [9]. In [35], the
author proves that for single issue negotiation with deadline,
the rational strategy is to wait for the deadline and make
an offer corresponding to ones reservation utility. Note that
in this case, there is always an agreement. In other words,
in single issue negotiation continuous concession is not a
rational strategy. In single issue negotiation there is always
an agreement and in the presence of hard deadline and private
information waiting is the best strategy even for risk averse
agents [35]. However, for multi-attribute setting, one cannot
guarantee that an agreement will be reached using the above
strategy (as illustrated by Figure 1). In our setting, the agents
have no information about the opponent’s utility structure or
type, and the utility of negotiated agreement do not decrease
with time. In our setting, the players concede as a part of the
search process to achieve a possible agreement in the absence
of any information about the opponent’s utility.

The literature using AI methods focus on developing
tractable heuristics for negotiating agents to generate offers.
Although there is a large body of automated negotiation
literature [38], most prior work assumes either full information
or commonly known random distributions. The alternating-
offer game has also been extended to multi-agent or multi-
issue negotiation (e.g., [14] , [15], [4]). They usually assume
that there are two issues in the negotiation and that the agents
utility functions are linear and additive on the values of the
two issues (e.g. [2], [26]). In the presence of incomplete
information, Bayesian learning has been proposed in agents’
negotiation strategy [27]. A classification method for learn-
ing an opponent’s preferences during a bilateral multi-issue
negotiation using Bayesian techniques is developed in [34].
However, the Bayesian updating rule is only applicable when
the agents are of certain set of types.

A common feature of the concession strategies in the
literature is that they are assumed to be properties of the agents
themselves and not reactive to the concession strategies of the
other agents (notable exceptions being [1], [36]). In [11], the
necessity and difficulty of setting up a monotonic concession
protocol is discussed. The author proposes several definitions
of multilateral concession and analyzes their properties. How-
ever, all of these definitions are in the framework of complete
information. In [36], the author proposes a reactive tit-for-tat
negotiation strategy and [1] proposes an extension of contract
net protocols to negotiations. Empirical work where reactive
strategies for agents have been proposed include [3], [16].
Experimental comparisons of human negotiation vs automated
negotiation have been made in [16] and it was shown that
reactive concession strategies performed much better than non-
reactive strategies. Therefore, we present a reactive strategy for
the agents to concede and prove that it is a rational strategy.

Mathematically, our work is most closely related to [22],
[25], [39]. In [22] presents a constraint decentralized proposal
method for multi-agent negotiations under the assumption
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of quasi-linear utility function with a neutral coordinator.
Our paper, by contrast, theoretically addresses incomplete
information and does not need the presence of a mediator.
In [39], the authors consider more than two agents negotiating
on multiple issues assuming neither prior information of agents
nor linearly additive utility functions. However, they restrict
their setting to be with three agents and two issues, and their
analysis about the convergence is solely via simulations. In our
work, we provide a general theoretical proof of convergence
of the sequential projection protocol that is valid for any
number of agents and issues. This paper extends our previous
work [40] on bilateral multi-issue negotiation.

III. THE NEGOTIATION FRAMEWORK

We consider m self-interested agents i ∈ {1, 2, ...,m},
negotiating on a set of issues j ∈ {1, 2, ..., N}. Let [0, 1]
denote the unit interval in R and [0, 1]N be the unit hypercube
in RN . We assume that the issues take on continuous values
and the negotiation domain for each issue is Ωj = [0, 1]
with 0 and 1 corresponding to the extreme values of the
issues. Any point within the unit hypercube is a package offer
or simply an offer. We assume that the utility function of
agent i, ui (x), i = 1, 2, ...,m, is continuous and concave
∀x ∈ [0, 1]

N . Without loss of generality, we can normalize
the range of the agent i’s utility function to [0, 1]. Each agent,
i, has a reservation utility, rui. Any offer with utility less
than its reservation utility is not acceptable to that agent.
The set of all feasible offers that an agent i can accept is
Ai = {x ∈ [0, 1]

N |ui (x) ≥ rui}. The set Ai is strictly
convex for each i. The zone of agreement, Z , is defined as the
common intersection of the feasible offer sets of all agents, i.e.,
Z = ∩mi=1A

i. Since the zone of agreement is the intersection
of a finite number of convex sets, it is a convex set []. Any
offer (i.e., point) within the zone of agreement is acceptable
to all the agents. From the above definitions, it follows that
for a solution to exist to any negotiation problem, the zone
of agreement has to be non-empty. Any point within the zone
of agreement is acceptable to every agent and we call such
a solution a satisficing solution to the negotiation. Note that
the zone of agreement is fixed by the utility functions and
reservation utilities and cannot change during a negotiation.

There has been different definitions proposed for a proper
negotiation solution. Axiomatic solution concepts has been
proposed for bargaining games (e.g., Nash bargaining solu-
tion [32], Kalai-Smorodinsky solution [24], egalitarian so-
lution [23], pareto-optimal solution). The set of points that
satisfy these different solution requirements are all subsets of
the zone of agreement. However, computing them requires that
all the agents know each others utility functions. Since an
agent does not know the utility function of her opponent, we
use a satisficing solution as our solution concept. A satisficing
solution is any agreement that gives the negotiators a utility
greater than or equal to their reservation utility. The use of
a satisficing solution in this very general setting where the
agents have no information about their opponents is in the
spirit of Herbert Simon [37].

A key issue in designing negotiating software agents is to
choose a protocol for negotiation. For two agent negotiation,

we will assume that the agents use an alternating-offer pro-
tocol [33], where an agent proposes its offer and the other
agent responds to the offer by accepting it or proposing a
new offer. For general multi-agent negotiation, we will use
a generalization of the alternating offer protocol, namely,
a sequential-offer protocol. In a sequential-offer protocol,
each agent proposes an offer in a fixed sequence. We use
a sequential protocol in the multi-agent setting and assume
that the agents propose their offers in a given order. An agent
computes her own offer using the latest offers of all the other
agents (including herself) and either proposes a new offer or
accepts the current offer, if the offers made by the previous
agent is within her acceptable offer set. When all agents accept
the current offer the negotiation ends. Given the negotiation
protocol, the problem in designing a negotiating agent is to
compute a strategy for generating offers, which is stated more
formally below.

Problem Statement: Given m agents negotiating on n
issues where (a) each agent, i, has a strictly concave private
utility function, ui, and (b) the zone of agreement has a
nonempty interior, find a method for computing the offer an
agent should propose such that it is guaranteed that the agents
will follow the offer generation method and eventually reach
an agreement.

A. Overview of Solution Approach

Informally speaking, a negotiating agent not only wants
to reach an agreement with the other agent but also may
want to obtain as much utility as possible. Thus, when agents
start out in a negotiation, they want to propose offers that
have the highest utility for them and gradually move towards
offers with lower utility. However, they will neither propose
nor accept any offer with utility lower than their reservation
utility. This intuition implies that, during negotiation, agents
gradually reduce the utility of offers acceptable to them (which
is very often seen in practice). Thus agents use a concession
strategy to determine their current utility at time t (denoted
by si(t)). This concession continues until an agent reaches
her reservation utility. In other words, si(t) is a monotonically
decreasing function of t and si(t) ≥ rui,∀t.

In the literature the concession strategy is usually assumed
to be non-reactive. It is assumed that there is a decay parameter
for the utility and this decay parameter is just a property of
the agent and does not depend on the other agents concession
behavior (e.g., [12]). In contrast, we assume a reactive strategy
of concession, where an agent concedes according to her
perception of how much the other agents present in the
negotiation concede. For agent i, let Ai

t be the set of all
offers that have utilities higher than si(t) at time t. The set,
Ai

t = {x ∈ [0, 1]
n |ui (x) ≥ si(t)}, is called the current

feasible offer set of agent i. For all t, Ai
t is a convex set

and Ai
1 ⊆ Ai

2 ⊆ · · · ⊂ Ai. The boundary of the set Ai
t is

called the indifference surface (or curve) of agent i at time t.
Agent Strategy: The negotiation strategy that we will use

consists of two steps [25]. When it is the turn of agent i to
make an offer, she accepts the current offer if it is satisficing.
Otherwise, agent i uses the last two offers of every other agent
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j to compute the difference in the utilities of the offers to
her (we denote this by ∆uij . The amount by which agent i
reduces her utility to compute her current utility is equal to the
minimum ∆uij computed over all the other agents j. She then
generates an offer on the indifference surface corresponding to
her current utility by projecting the mean of all the other agents
latest offers to her current indifference surface. Note that this
method generates an offer that is satisficing to the agent and
closest (in terms of Euclidean distance) to an average offer
made by the other agents.

In the next section, we will first present the sequential
projection method for computing offers for an agent and then
give a convergence proof for the method. For presentation
purposes, we will first assume that agents use some strategy
for concession without making any assumptions of what
the strategy is. We will show that under this very general
assumption the sequential projection method ensures that the
agents converge to an agreement. We will then restrict our
attention to the class of concessions strategies that ensures
that the agents reach their reservation utility in finite time.
We will show that in these conditions, the agents can reach
an agreement in finite time. Finally, we will show that agents
using a reactive concession strategy is a rational strategy since
it allows the agents to determine if any of the other agents stop
conceding. Although the results in this paper on multiagent
negotiation is applicable to two agent negotiation, we will
discuss the two agent negotiation separately since this problem
is important by itself. For the presentation of the proofs we
will present the proofs for the general multiagent case.

IV. OFFER GENERATION METHOD

We now present the sequential projection method for an
agent to generate her offer, given the latest offers of all the
other agents. As stated before, the agents make their proposals
in a fixed pre-determined sequence. We assume at period t =
0, each of the agents propose an offer maximizing her own
utility. After initialization, the agents proposes sequentially,
such that at time t = 1, agent 1 proposes, at time t = 2, agent
2 proposes and so on. Let xj

t be the standing offer (i.e., the
last offer the agent j made) of agent j in period t. let PA[x]
be the projection of point x on the set A with P being the
projection operator. If a proposal by an agent i is not the same
as the standing offers made by all the other agents in period
t, agent i+ 1 proposes her own offer at time t+ 1. The agent
determines her offer by projecting the convex combination of
all of the agents’ standing offers to her current indifference
surface in period t+1. More specifically, agent i+1 at period
t + 1 proposes

xi+1
t+1 = PAi+1

t+1

[ m∑
j=1

ai,jt xj
t

]
(1)

where Ai+1
t+1 is the set of acceptable offers for agent i + 1 at

time t + 1, the weight that agent i puts on the standing offer
of agent j is ai,jt and

∑m
j=1 a

i,j
t = 1.

In order to understand the working of the offer generation
method, let us first look at the two-agent case. In this case,
as stated below, we can choose the weights ai,jt such that the

agent uses only the last offer of her opponent to determine
her offer. This method was presented in [25] and we call
it the alternating projection method. Figure 2 presents an
example of the alternating projection proposing method for
two agents negotiating on two issues. In this example, the
solid indifference curves belong to agent 1 and the dashed
indifference curves belong to agent 2. In period t − 4, agent
1 proposes an offer x1

t−4. Agent 2 rejects this offer and both
agents update their indifference curves. In period t− 3, agent
2 identifies x2

t−3 on her indifference curve such that x2
t−3

is the projection of x1
t−4 to her indifference curve. Agent 2

offers x2
t−3, agent 1 rejects this, and both agents update her

indifference curve. In period t − 2, agent 1 identifies x1
t−2

by projection of x2
t−3 to her current indifference curve and

proposes it to agent 2. The process continues until an offer is
accepted or the deadline is reached.

𝑥𝑡
1 

𝑥𝑡−1
2  

𝑥𝑡−2
1  

𝑥𝑡−3
2  

𝑥𝑡−4
1  

issue2 

issue1 

Fig. 2. The alternating projection protocol for two issues and two agents

For general multiagent negotiation, to simplify the nota-
tions and presentation, we assume ai,jt = 1/m for i, j ∈
{1, 2, · · · ,m} , t ≥ 0 (although the discussion and results
below holds for general values of ai,jt satisfying

∑
ai,jt = 1).

Therefore, agent i + 1 at period t + 1 proposes an offer
according to xi+1

t+1 = PAi+1
t+1

[
1
m

∑m
j=1 x

j
t

]
, where xj

t is the
newest offer proposed by agent j until period t. For notational
convenience, we define wt := 1

m

∑m
j=1 x

j
t . Figure 3 illustrates

the sequential projection method for three agents negotiating
on two issues. At time t − 1, it is agent 1’s turn to make
an offer. The standing offers at period t − 1 from agent 2 is
x2
t−1 = x2

t−3 since agent 2’s previous proposal was at time
t− 3. Similarly, the standing offer of agent 3 is x3

t−1 = x3
t−2.

Agent 1 combines the most recent offers of every agent, i.e.,
x1
t−4, x

2
t−3, x

3
t−2 to compute the point wt−2 and project onto

her indifference surface at t − 1 (the solid curve which is
obtained using her concession strategy). Similarly, at time
t, it is agent 2’s turn to offer and she computes her own
offer by projecting the point wt−1 (computed by averaging
x1
t−1, x

2
t−3, x

3
t−2) and the negotiation proceeds.

A. Convergence of Offer Generation Method
In this section, we prove that if the agents follow a sequen-

tial projection strategy along with a concession strategy for
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Fig. 3. The sequential projection method for three agents negotiating on two
issues.

offer generation the agents can converge to an agreement if the
zone of agreement is non-empty. For multi-issue negotiation
with private utility function, the agents don’t know the non-
empty zone of agreement, even if one exists. Therefore, the
existence of non-empty zone of agreement cannot guarantee
that agents will reach an agreement, even if they are given
enough time. Thus, we need to examine whether the negoti-
ation strategy is convergent or not. The convergence results
are valid for any concession strategy and we will not make
any assumption about the rate of concession. This implies
that our results hold even if each agent in the negotiation
can have a different concession strategy. Since the alternating
projection strategy for two agents is a special case of the
multiagent sequential projection strategy, it also implies that
the alternating projection strategy for two agent negotiation is
a provably convergent strategy.

We will now state the main convergence theorems and
lemmas required to prove the results. The proofs of all the
theorems and the lemmas are presented in Appendix A. We
will first need a classical result from convex geometry [].

Lemma 1: Let A be a nonempty closed convex set in
[0, 1]

N . Then for any x ∈ [0, 1]
N
, y ∈ A, we have the

following:

(PA [x]− y)
′
(y − x) ≤ −‖PA [x]− y‖2 , (2)

‖PA [x]− x‖2 ≤ ‖x− y‖2 − ‖PA [x]− y‖2 . (3)

Proof: See Appendix A.
Lemma 1 is a classical result from the convexity of the

set that will be used for proving our main results. Theorem 1
states that the offer generation method ensures that the distance
between the new offer generated by an agent and the mean of
all the previous offers never increases. This fact is used in
proving our main claim in Theorem 2

Theorem 1: Let xi
t be the offer of agent i at time t and

wt be mean of the standing offers at time t from all agents.
Then the sequence {

∑m
i=1

∥∥xi
t − wt

∥∥2} is monotonically non-
increasing with t.

Proof: See Appendix A.

Theorem 2: If the zone of agreement has a non-empty inte-
rior, the sequential projection proposing protocol will always
converge to an agreement.

Proof: See Appendix A.

B. Finite Time Convergence of Offer Generation Method

In the previous subsection, we did not make any assump-
tions about the time an agent takes to concede to the reserva-
tion utility. In theory, an agent can adopt a concession strategy
such that the reservation utility is reached asymptotically (or
in infinite time). However, for practical purposes, we can
assume that agents will use a concession strategy such that
they reach their reservation utility in finite time. We now
study the finite time convergence properties of the sequential
projection method for offer generation.

To understand finite time convergence properties of a
method for computing offers, we study the following question:
Given that the concession strategies of the agents are such that
all the agents reach their reservation utilities in finite time,
say T0, do the agents converge to an agreement in finite time
(provided the zone of agreement has a non-empty interior)?
Note that here also, we do not make any assumptions about the
specific concession strategy used by the agents. The answer to
this question is yes in general and we prove this in Theorem 3
below.

Theorem 3: For m agents negotiating on N issues, if the
agents use concession strategies such that they reach their
reservation utility in finite time, then they can reach an
agreement in finite time (assuming that the zone of agreement
has a non-empty interior).

Proof: See Appendix A.
Theorem 3 is an immediate result from Theorem 1 and

Theorem 2. Intuitively speaking, as we can guarantee the
convergence of the sequence {

∑m
i=1

∥∥xi
t − wt

∥∥2} using the
fact that the sequence is non-increasing (by Theorem 1) and
that the sequence has finite sum (shown in Theorem 2) , we
have ∀ε > 0, ∃T > 0, s.t., ∀t > T ,

∑m
i=1

∥∥xi
t − wt

∥∥2 < ε.
In words, the distance between the offers generated by an
agent and the mean of the current offers of all the agents will
decrease to zero (within a numerical error tolerance ε) in finite
time.

V. INCENTIVE OF AGENTS TO CONCEDE

In the previous sections, we described a class of convergent
negotiation strategies for automated agents. We proved that if
agents use any strategy from the class of conceding sequential
projection strategies then it is guaranteed that the agents will
reach an agreement provided the zone of agreement is non-
empty. As stated earlier, any concession strategy in the class
consists of determining the utility of the offer that an agent
should propose and choosing one offer from all the alternatives
with the same utility. We first note that if an agent i concedes,
there is no incentive for her to propose an offer on the
indifference surface that is not the projection of the convex
combination of other agents’ offers. This is because all points
on the indifference surface of agent i have the same utility
and by proposing another point she may decrease the chance
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of reaching an agreement (since the convergence proof holds
only for projections). However, it is not clear what should be
the choice of the concession rate, i.e., a choice of concession
rate that doesn’t leave the agent vulnerable to be exploited by
other agents who may be using different concession rates. Here
we show that if the agents use a reactive concession strategy,
then the agents are not vulnerable to exploitation.

We prove that there is a reactive concession strategy,
namely, conceding by an amount equal to the minimum of the
perceived change in utility of the other agents’ offers that is
rational. More precisely, we prove that if any of the agents do
not concede, it is possible for the other agents to determine this
within a finite number of rounds and hence stop conceding.
This combined with the fact that an agent does not know other
agents’ utility provides the threat of the negotiation coming to
a stall, even if the zone of agreement is non-empty. Since the
utility of a negotiated agreement is not worse than the utility
for breakdown, it is rational for an agent to concede.

We now prove that if agent i stops conceding, and all
other agents use a reactive strategy, the negotiation can stall.
As shown in Figure 4, let agent i propose xi

t at time t. If

𝒖𝒊 𝒙 = 𝒖𝒊 𝒙𝒕
𝒊 = 𝒔𝒊 𝒕  

𝒙𝒕
𝒊 

𝒙∗𝒊,𝒋 

𝒖𝒋 𝒙 = 𝒖𝒋 𝒙𝒕
𝒊  

𝒖𝒋 𝒙 = 𝒖𝒋 𝒙
∗
𝒊,𝒋  

𝒖𝒋 𝒙 =𝒔𝒋 𝒕  

𝒖𝒋 𝒙 =𝒔𝒋 𝒕 + ∆ 

Note: ∆= 𝒖𝒋 𝒙∗𝒊,𝒋 − 𝒖𝒋 𝒙𝒕
𝒊  

Fig. 4. Figure for proving that there is an incentive to concede

agent i stops to concede from time t, all offers proposed by
agent i after time t are on the indifference curve ui (x) =
ui

(
xi
t

)
= si (t). Let x∗i,j be the point on the indifference sur-

face ui (x) = si (t) such that uj (x) = uj

(
x∗i,j
)

is the highest
possible perceived utility by agent j. Therefore, without loss of
generality, the minimum of the perceived utility improvement
from other agents’ offers (including agent i) for agent j would
be smaller or equal to ∆j = uj

(
x∗i,j
)
−uj

(
xi
t

)
. Thus,if agent

i stops conceding, using the reactive strategy agent j would
concede by no more than ∆j . If ∆j < sj (t) − uj

(
x∗i,j
)
,

where sj (t) is the current utility level of agent j at time
t, the negotiation will stall (see Figure 4 for the two-issue
case), as there would be no agreement between agent i and
agent j. Since agent i has no knowledge about the utility
function of other agents, she is uncertain about whether ∀j,
j ∈ {1, 2, · · · ,m}, j 6= i, the largest possible perceived utility
improvement from agent i’s offers, ∆j = uj

(
x∗i,j
)
− uj

(
xi
t

)
,

is larger than sj (t) − uj

(
x∗i,j
)
. Thus, agent i is not sure

about whether there will be an agreement or not if she stops

to concede at any time t. Since an agreement would provide
higher utility than her reserved utility for no agreement, agent
i would not stop conceding. Therefore, all of the agents would
keep conceding through the negotiation process.

VI. SIMULATION RESULTS

In this section we present simulation results depicting the
practical performance of our reactive negotiation strategy. We
evaluate our solution with respect to the Nash bargaining
solution [32]. An alternative is to evaluate the solution by
measuring its distance from the Pareto optimal solution set.
However, in higher dimensional settings that appear in general
multilateral multi-attribute negotiation, there are no known
efficient algorithms to compute the Pareto optimal set. Hence,
we use the Nash solution, which is also Pareto optimal. The
Nash solution maximizes the joint utility (i.e., the product of
the utilities) of the agents. For the class of (strictly) concave
utility functions that we consider, the Nash solution can be
obtained by solving a convex optimization problem and hence
we can easily find this solution irrespective of the number of
negotiating agents or number of negotiation issues.

For the utility function of the agents we have assumed a
very general hyperquadric function [20]

uk(x) = 1−
Q∑
i=1

|Hi(x)|ni ,

where x is the n-dimensional proposal vector, Hi(x) =∑N
j=1 aijxj , ni = li/mi, li,mi ∈ Z+; f(x) is strictly concave

if 1 < ni < ∞. Hyperquadrics are a very general class of
functions used in computer graphics [20] and can model a
wide range of convex functions. The feasible set of offers
for an agent k at time t is the intersection of the unit n-
dimensional hypercube [0, 1]N with uk(x) ≥ sk(t). Popular
convex functions for modeling utilities in economics like the
Cobb-Douglas functions can be shown to be special cases
of the hyperquadric function. The sole reason for using this
function is that it is possible to generate a wide variety of
preference structures for the agents with these functions.

0
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Fig. 5. Sequence of offers made by 5 agents without a final agreement in
a three-issue negotiation scenario using the alternating projection algorithm
with agent 1 stopping conceding during the negotiation.
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TABLE I
PERFORMANCE OF THE SEQUENTIAL PROJECTION ALGORITHM WITH

REACTIVE CONCESSION STRATEGY.

Number of Number of rounds Ratio of Joint Utility
agents Mean SD Mean SD

2 72.07 10.30 0.9278 0.0874
3 86.39 15.57 0.8825 0.0865
5 94.68 7.49 0.8819 0.0851
7 95.46 6.74 0.8846 0.0740
9 96.72 5.17 0.9023 0.0691

The perceived utility of agent i for agentj’s offer, xj is
ui(xj). Thus the minimum perceived utility change from all
other agents’ offers by agent i at round t is

∆ui(t) = min
j

∣∣∣ui(x
[−1]
j )− ui(x

[−2]
j )

∣∣∣ (4)

where x
[−1]
j and x

[−2]
j denote the last two offers proposed by

agent j. The current utility of agent i in round t is given by
si(t) = si(t − N) − ∆ui(t), where si(t) is the acceptable
utility of agent i at time t. Figure 5 shows a simulation
where the agent 1 stops conceding after reaching half of its
reservation utility. Since all other agents are reactive, they
realize within a few steps that agent 1 is not conceding and
they also stop conceding. Hence the agents do not reach an
agreement, as the concession of the agents stop, although their
zone of agreement is nonempty. Thus, in the results that follow,
we do not allow any agents to stop conceding, since that may
result in no agreement.

Table I shows the performance of the algorithm when
the adjusted time-dependent concession strategy is used. The
reservation utility of the agents are assumed to be 0.2 here. The
number of agents are varied between 2 and 9. The results are
averaged over 100 random runs for each row of the table. The
numerical tolerance used for convergence is 0.001. As can be
seen from Table I (second and third columns), the number of
rounds required for convergence are fairly constant. The fourth
column gives the ratio of our solution to the Nash solution.
For randomly generated instances, the solution obtained is
quite close to the Nash bargaining solution (fourth and fifth
columns).

In order to check the robustness of the algorithm, we
check the sensitivity of the algorithm to the number of issues
and the reservation utility of the agents. Table II shows the
performance of the algorithm for 9 agents negotiating on
different number of issues. The results in Table II shows the
number of rounds is quite stable if we increase the number
of issues. Table III shows the performance of the algorithm
for 5 agents negotiating on 5 issues with different reservation
utilities. The results in Table III shows the number of rounds
is quite stable if we increase the reservation utilities of the
agents as long as the zone of agreement is non-empty.

VII. CONCLUDING REMARKS

In this paper, we propose a class of sequential projection
strategies for general multilateral multi-attribute negotiation
where agents have no knowledge about the other players’
utility functions. We prove that the method is guaranteed

TABLE II
PERFORMANCE OF THE SEQUENTIAL PROJECTION ALGORITHM WITH 9

AGENTS NEGOTIATING ON DIFFERENT NUMBER OF ISSUES.

Number of Number of rounds Ratio of Joint Utility
issues Mean SD Mean SD

2 79.00 4.67 0.9162 0.0653
3 89.00 4.06 0.9267 0.0247
4 91.56 5.46 0.9377 0.0348
5 94.60 4.16 0.9014 0.0539

TABLE III
PERFORMANCE OF THE SEQUENTIAL PROJECTION ALGORITHM WITH 5

AGENTS NEGOTIATING ON 5 ISSUES WITH DIFFERENT RESERVATION
UTILITIES.

Reservation Number of rounds Ratio of Joint Utility
utilities Mean SD Mean SD

0.1 77.70 6.60 0.8546 0.0717
0.2 79.60 5.02 0.8938 0.0570
0.3 84.20 5.94 0.8993 0.0474
0.4 80.30 5.62 0.8785 0.0551

to enable the agents to arrive at an agreement. Further,
a sequential projection strategy with a reactive concession
function is a rational strategy for the agents. The convergence
guarantees hold for any nonlinear concave utility function. We
also performed computational experiments to demonstrate that,
in practice, the quality of solution obtained by our algorithm
is quite close to the Nash bargaining solution (that maximizes
the joint utility of the agents). The negotiation converges in a
reasonable number of iterations and scales well as the number
of agents or number of issues are increased.

This work can be extended in several directions. One direc-
tion is to design rational strategies for agents to negotiate in the
presence of hard deadlines. Another possibility is to extend this
sequential projection method to negotiation between multiple
negotiation teams. At present our agents are myopic in nature
and do not try to learn the other agents utility function from the
sequence of offers. It would also be interesting to investigate
whether the agents can be incorporated with some learning
capability so that they converge faster to an agreement.
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VIII. APPENDIX A

Proof of Lemma 1: For any x ∈ [0, 1]
N , y ∈ A, PA[x]

is the projection of point x on set A. We have

(PA [x]− y)
′
(y − x) = (PA [x]− y)

′
(y − PA [x])

+ (PA [x]− y)
′
(PA [x]− x) .

(5)

Since A is a convex set, by the property of the projection
operator, we have

(PA [x]− y)
′
(PA [x]− x) ≤ 0, (6)

Using (6) in (5) we obtain inequality (2), namely,

(PA [x]− y)
′
(y − x) ≤ −‖PA [x]− y‖2 .

We also have

‖PA [x]− x‖2 = ‖x− y‖2 + ‖PA [x]− y‖2

+ 2 (PA [x]− y)
′
(y − x)

≤ ‖x− y‖2 − ‖PA [x]− y‖2 .
(7)

where the last inequality was obtained using (2).
Proof of Theorem 1: Let agent i + 1 be the agent

proposing an offer xi+1
t+1 in period t + 1. Then we have

xi+1
t+1 = PAi+1

t+1
[wt] , x

j
t+1 = xj

t , j 6= i, and (8)

wt+1 = wt +
1

m

(
xi+1
t+1 − xi+1

t

)
. (9)

Using the results above, we can get

m∑
j=1

‖xj
t+1 − wt+1‖2

=

m∑
j=1

j 6=i+1

‖xj
t+1 − wt+1‖2 + ‖xi+1

t+1 − wt+1‖2

=

m∑
j=1

‖xj
t − wt‖2 +

m− 1

m
‖xi+1

t+1 − xi+1
t ‖2

+ 2
(
xi+1
t+1 − xi+1

t

)′ (
xi+1
t − wt

)
. (10)

By Lemma 1, we have(
xi+1
t+1 − xi+1

t

)′ (
xi+1
t − wt

)
≤ −

∥∥xi+1
t+1 − xi+1

t

∥∥2 ,
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which in turn gives

m∑
j=1

‖xj
t+1 − wt+1‖2

≤
m∑
j=1

‖xj
t − wt‖2 −

m + 1

m
‖xi+1

t+1 − xi+1
t ‖2

≤
m∑
j=1

‖xj
t − wt‖2.

Proof of Theorem 2: Suppose ∃ s, s.t. As = ∩mi=1A
i
s 6=

∅, (otherwise ∀t,∩mi=1A
i
t = ∅, which implies there is no

interior point contained in the set limt→∞ ∩mi=1A
i
t) then as

Ai
t ⊂ Ai

t+1 for i ∈ {1, 2, ...,m}, we have ∀t ≥ s,∩mi=1A
i
t 6=

∅. Let

eit = PAi
t
[wt−1]− wt−1. (11)

Without loss of generality, we assume agent 1 proposes in
period s + 1. Then by Lemma 1, ∀i ∈ {1, 2, · · · ,m},

∥∥eis+i

∥∥2 ≤ ‖ws+i−1 − x‖2 −
∥∥xi

s+i − x
∥∥2

≤ 1

m

m∑
j=1

∥∥∥xj
s+i−1 − x

∥∥∥2 − ∥∥xi
s+i − x

∥∥2 . (12)

Thus, by summing (12) over all agents, we get

m∑
i=1

∥∥eis+i

∥∥2 ≤ 1

m

m∑
i=1

m∑
j=1

∥∥∥xj
s+i−1 − x

∥∥∥2 − m∑
i=1

∥∥xi
s+i − x

∥∥2 .
(13)

Moreover, xi
s = xi

s+1 = · · · = xi
s+i−1 and xi

s+i = xi
s+i+1 =

· · · = xi
s+m. Therefore,

m∑
i=1

m∑
j=1

∥∥∥xj
s+i−1 − x

∥∥∥2
=

m∑
i=1

[ i−1∑
j=1

‖xj
s+j − x‖2 +

m∑
j=i

‖xj
s+j−1 − x‖2

]
=

m∑
j=1

m∑
i=j+1

‖xj
s+j − x‖2 +

m∑
j=1

j∑
i=1

‖xj
s+j−1 − x‖2

=

m∑
j=1

(m− j) ‖xj
s+j − x‖2 +

m∑
j=1

j‖xj
s+j−1 − x‖2 (14)

By substituting (14) into (13), we obtain

m∑
i=1

‖eis+i‖2 ≤
m∑
i=1

i

m

[
‖xi

s+i−1 − x‖2 − ‖xi
s+i − x‖2

]
(15)

The inequality (15) holds for s = s+km and xi
s+(k−1)m+i =

xi
s+km+i−1, ∀k ∈ N , so

R∑
k=1

m∑
i=1

∥∥eis+km+i

∥∥2
≤

R∑
k=1

m∑
i=1

i

m

[∥∥xi
s+i−1 − x

∥∥2 − ∥∥xi
s+i − x

∥∥2]
=

m∑
i=1

i

m

[∥∥xi
s+i−1 − x

∥∥2 − ∥∥xi
s+Rm+i − x

∥∥2] (16)

When R→∞, the inequality (16) implies

lim
k→∞

m∑
i=1

∥∥eis+km+i

∥∥2 = 0.

Hence, limt→∞
∥∥eit∥∥ = 0 for all i.

Proof of Theorem 3: From inequality (16) in Theorem 2,
we have

R∑
k=1

m∑
i=1

∥∥eis+km+i

∥∥2
≤

m∑
i=1

i

m

[∥∥xi
s+i−1 − x

∥∥2 − ∥∥xi
s+Rm+i − x

∥∥2]
Moreover, from the definition of eit, we can obtain

m∑
i=1

∥∥∥eis+(k+1)m+i

∥∥∥2 ≤ m∑
i=1

∥∥eis+km+i

∥∥2 , ∀k ∈ N.

Thus,
m∑
i=1

∥∥eis+Rm+i

∥∥2
≤ 1

R

m∑
i=1

i

m

[∥∥xi
s+i−1 − x

∥∥2 − ∥∥xi
s+Rm+i − x

∥∥2]
≤ 1

R

m∑
i=1

i

m

∥∥xi
s+i−1 − x

∥∥2
which implies, ∀ε > 0, there exists T > 0, where

T = s + R

⌈∑m
i=1

i
m

∥∥xi
s+i−1 − x

∥∥2
ε

⌉
+ i

such that ∀t > T ,
∑m

i=1

∥∥eit∥∥2 < ε.

IX. APPENDIX B

For completeness purpose, we present the convex optimiza-
tion formulation for finding the Nash bargaining solution.
In [32], Nash gave an axiomatic approach to define reasonable
outcomes in a negotiation. This discussion is available in the
original paper and many subsequent works. In this paper,
we are using a convex optimization approach for computing
the Nash bargaining solution. Hence, we will restrict our
discussion to the formulation of the optimization problem.
Let there be m agents negotiating on n issues with the
issues taking on continuous values between 0 and 1 . Let
ui(x) be the utility function of agent i, which is assumed
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to be concave. Without loss of generality, we assume that no-
agreement results in a utility of 0. The objective function to
be maximized is the joint utility, namely,

f(x) =

m∏
i=1

ui(x) (17)

Since ui(x) is concave and non-negative, f(x) is non-negative,
and hence maximizing f(x) is equivalent to maximizing
log(f(x)). Let xj denote the jth component of x. The convex
optimization problem to be solved for computing the Nash

equilibrium is

maximize

m∑
i=1

log(ui(x))

s.t. ui(x) ≥ rui i = 1, . . . ,m,

0 ≤ xj ≤ 1, ∀j = 1, . . . , n.

(18)

where rui is the ultimate reservation utility of agent i. Since
each ui is a concave function of x, the set of constraints in (18)
forms a convex set. The objective function to be maximized
is a sum of log-concave functions and hence the problem is a
convex optimization problem. In the paper, we have used the
solver CVX [19], [18] implemented in MATLAB for obtaining
the Nash bargaining solutions.


