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Abstract—Autonomous navigation for large Unmanned Aerial
Vehicles (UAVs) is fairly straight-forward, as expensive sensors
and monitoring devices can be employed. In contrast, obstacle
avoidance remains a challenging task for Micro Aerial Vehicles
(MAVs) which operate at low altitude in cluttered environments.
Unlike large vehicles, MAVs can only carry very light sensors,
such as cameras, making autonomous navigation through ob-
stacles much more challenging. In this paper, we describe a
system that navigates a small quadrotor helicopter autonomously
at low altitude through natural forest environments. Using only
a single cheap camera to perceive the environment, we are able
to maintain a constant velocity of up to 1.5m/s. Given a small
set of human pilot demonstrations, we use recent state-of-the-
art imitation learning techniques to train a controller that can
avoid trees by adapting the MAVs heading. We demonstrate the
performance of our system in a more controlled environment
indoors, and in real natural forest environments outdoors.

I. INTRODUCTION

In the past decade Unmanned Aerial Vehicles (UAVs)
have enjoyed considerable success in many applications such
as search and rescue, monitoring, research, exploration, or
mapping. While there has been significant progress in making
the operation of UAVs increasingly autonomous, obstacle
avoidance is still a crucial hurdle. For MAVs with very limited
payloads it is infeasible to carry state-of-the-art radars [1].
Many impressive advances have recently been made using
laser range finders (lidar) [2]–[4] or Microsoft Kinect cameras
(RGB-D sensors) [5]. Both sensors are heavy and active, which
leads to increased power consumption and decreased flight
time. In contrast, passive vision is promising for producing a
feasible solution for autonomous MAV navigation [6]–[8].

Our work is primarily concerned with navigating MAVs
that have very low payload capabilities, and operate close to
the ground where they cannot avoid dense obstacle fields. We
present a system that allows the MAV to autonomously fly at
speeds of up to 1.5 m/s and altitudes of up to 4 meters above
the ground through a cluttered forest environment (Figure
1), using passive monocular vision as its only exteroceptive
sensor. We adapt a novel imitation learning technique [9] to
train reactive heading policies based on the knowledge of a
human pilot. Visual features extracted from the corresponding
image are mapped to the control input provided by the expert.

Fig. 1. We present a novel method for high-speed, autonomous MAV flight
through dense forest areas. The system is based on purely visual input and
imitates human reactive control.

In contrast to straightforward supervised learning [10], our
policies are iteratively learned and exploit corrective input at
later iterations to boost the overall performance of the predic-
tor, especially in situations which would not be encountered
by a human pilot. This is an important feature, as the purpose
of any reactive controller is to provide a reliable low-level
layer for autonomous control which works on minimal visual
input and can handle situations where 3D mapping [8], [11]
or high-level trajectory planning [12] fail. Our novel method
is evaluated in a constrained indoor setting using motion
capture as well as in several forest environments. Over all our
experiments, we successfully avoided 680 trees during flights
over a cumulative flight distance of more than 3 km.

II. RELATED WORK

An impressive body of research on control and navigation
of MAVs has been published recently. Several state-of-the-art
approaches for MAV control would be ideal to fly through a
forest, as they feature impressive aggressive maneuvers [13]
or can even be used for formation flight with large swarms
of MAVs [14]. However, these methods still require real-time,
accurate state feedback delivered by a motion-capture system
and are therefore unsuitable for our purpose.

The most popular sensors to carry on-board MAVs are



laser range finders and RGB-D sensors as both deliver quite
accurate depth estimates at a high framerate. Bachrach et al.
[2] demonstrated autonomous flight using scanning lidars for
Simultaneous Localization and Mapping (SLAM) in unknown
indoor environments, and Bry et al. [3] showed how to use the
same sensor for fast flight in indoor environments. The trend
in indoor active sensing has been to use RGB-D sensors [5]
that allow faster and more detailed scans. However, in outdoor
environments, RGB-D sensors are often not applicable or
suffer from very limited range. Therefore, Vandapel et al. [15]
proposed outdoor planning approaches in three dimensions
for UAV navigation using lidar data, and Scherer et al.
[4] achieved fast obstacle avoidance using a Yamaha RMax
helicopter and a 2-axis scanning lidar. For carrying outdoor
lidar systems and the corresponding power supplies, larger and
more expensive MAVs than what we aim for are required.

Accurate depth estimation and localization is also possible
with visual sensors using stereo cameras [16] or in a moving
monocular setup [17]. A single, cheap camera is enough to
create sparse [11] or even dense maps [8] of the environment.
While such structure-from-motion techniques are already rea-
sonably fast, they are still too computationally expensive for
high-speed flight in a forest. Additionally, pure forward motion
leads to an ill-posed problem when triangulating 3D points,
because the triangulation angle is very small and the resulting
position uncertainty is large.

Relatively simple yet efficient algorithms can be derived
when imitating animals and insects that use optical flow for
navigation [18]. Beyeler et al. [19] as well as Conroy et al. [20]
implemented systems which exploited this fact and led to good
obstacle avoidance results. Later, Lee et al. [21] proposed a
probabilistic method of computing optical flow for more robust
distance calculation to obstacles for MAV navigation. Optical
flow based controllers navigate by balancing flow on either
side. However flow can provide richer scene information than
what these controllers use. We embed flow in a data-driven
framework to automatically derive a controller which exploits
this information.

Most closely related to our approach are approaches which
learn motion policies and depth from input data. Michels et al.
[22] demonstrated driving a remote-controlled toy car outdoors
using monocular vision and reinforcement learning. Hadsell
et al. [23] showed in the LAGR project how to recognize and
avoid obstacles within complex outdoor environments using
vision and deep hierarchical networks. Bill et al. [24] used the
often orthogonal structure of indoor scenes to estimate vanish-
ing points and navigate a MAV in corridors by going towards
the dominant vanishing point. We extend those approaches and
employ a novel imitation learning technique that allows us to
find a collision-free path through a forest despite the diverse
appearance of visual input.

III. LEARNING TO IMITATE REACTIVE HUMAN CONTROL

Visual features extracted from camera input provide a rich
set of information that we can use to control the MAV and
avoid obstacles. We leverage state-of-the-art imitation learning

techniques [9], [10], [25]–[27] to learn such a controller. These
data-driven approaches allow us to directly learn a control
strategy that mimics an expert pilot’s choice of actions based
on demonstrations of the desired behavior, i.e., sample flight
trajectories through cluttered environments.

A. Background

The traditional imitation learning approach is formulated as
a standard supervised learning problem similar to, e.g., spam
filtering, in which a corpus of training examples is provided.
Each example consists of an environment (an image acquired
by the MAV) and the action taken by an expert in that same
environment. The learning algorithm returns the policy that
best mimics the expert’s actions on these examples. The classic
successful demonstration of this approach in robotics is that
of ALVINN (Autonomous Land Vehicle in a Neural Network)
[10] which demonstrated the ability to learn highway driving
strategies by mapping camera images to steering angles.

While various learning techniques have been applied to
imitation learning [25]–[27], these applications all violate the
main assumption made by statistical learning approaches that
the learner’s predictions (actions) do not affect the distribution
of inputs/states. As shown in previous work [28] and con-
firmed in the MAV setting here, ignoring the effects of the
learner on the underlying state distribution leads to serious
practical difficulties and poor performance. For example, dur-
ing typical pilot demonstrations of the task, trees are avoided
fairly early and most training examples consist of straight
trajectories with trees on the side. However, since the learnt
controller does not behave perfectly, the MAV encounters
situations where it is directly heading for a tree and is closer
than the human ever was. As the hard turns it needs to perform
in these cases are nonexistent in the training data, it simply
cannot learn the proper recovery behavior.

Theoretically, [28] showed that even if a good policy that
mimics the expert’s actions well on the training examples is
learnt, when controlling the drone, its divergence from the
correct controls could be much larger (by as much as a factor
T , when executing for T timesteps) due to the change in
environments encountered under its own controls.

Fortunately, Ross et al. [9] proposed a simple iterative
training procedure called DAgger (DAtaset Aggregation),
that addresses this issue and provides improved performance
guarantees. Due to its simplicity, practicality and improved
guarantees, we use this approach to learn the controller for
our drone. While [9] demonstrated successful application of
this technique in simulated environments (video game appli-
cations), our experiments show that this technique can also
be successfully applied on real robotic platforms. We briefly
review the DAgger algorithm below.

B. The DAgger Algorithm

DAgger trains a policy that mimics the expert’s behavior
through multiple iterations of training. Initially, the expert
demonstrates the task and a first policy π1 is learnt on this
data (by solving a classification or regression problem). Then,



at iteration n, the learner’s current policy πn−1 is executed to
collect more data about the expert’s behavior. In our particular
scenario, the drone executes its own controls based on πn−1,
and as the drone is flying, the pilot provides the correct actions
to perform in the environments the drone visits, via a joystick.
This allows the learner to collect data in new situations which
the current policy might visit, but which were not previously
observed under the expert demonstrations, and learn the proper
recovery behavior when these are encountered. The next policy
πn is obtained by training a policy on all the training data
collected over all iterations (from iteration 1 to n). This is
iterated for some number of iterations N and the best policy
found at mimicing the expert under its induced distribution of
environments is returned. See [9] for details.

The intuition is that, over the iterations, we collect a set of
inputs that the learner is likely to observe during its execution
based on previous experience (training iterations), and obtain
the proper behavior from the pilot in these situations. [9]
showed theoretically that after a sufficient number of itera-
tions, DAgger is guaranteed to find a policy that when executed
at test time, mimics the expert at least as well as how it could
do on the aggregate dataset of all training examples. Hence
the divergence in controls is not increased by a factor T as in
the traditional supervised learning approach when the learnt
policy controls the MAV.

For our application, we aim to learn a linear controller of
the drone’s left-right velocity that mimics the pilot’s behavior
to avoid trees as the drone moves forward at fixed velocity
and altitude. That is, given a vector of visual features x from
the current image, we compute a left-right velocity ŷ = w>x
that is sent to the drone, where w are the parameters of the
linear controller that we learn from the training examples. To
optimize w, we solve a ridge regression problem at each iter-
ation of DAgger. Given the matrix of observed visual features
X (each row is an observed feature vector), and the vector y
of associated left-right velocity commands by the pilot, over
all iterations of training, we solve w = (X>X + R)−1X>y,
where R is a diagonal matrix of per-feature regularization
terms. We choose to have individual regularization for different
types of features, which might represent different fractions of
the feature vector X , so that every type contributes equally to
the controls. In other words, we regularize each feature of a
certain type proportionally to the number of features of that
type. Features are also normalized to have zero mean and unit
variance, based on all the observed data, before computing w,
and w is applied to normalized features when controlling the
drone.

C. Using DAgger in Practice

Figure 2 shows the DAgger control interface used to provide
correct actions to the drone. Note that, at iteration n, the
learner’s current policy πn−1 is in control of the MAV and the
expert just provides the correct controls for the scenes that the
MAV visits. The expert controls are recorded but not executed
on the MAV. This results in some human-computer-interaction
challenges:

Fig. 2. One frame from MAV camera stream. The white line indicates the
current yaw commanded by the current DAgger policy πn−1 while the red
line indicates the expert commanded yaw. In this frame DAgger is wrongly
heading for the tree in the middle while the expert is providing the correct
yaw command to go to the right instead. These expert controls are recorded
for training later iterations but not executed in the current run.

1) After the first iteration, the pilot must be able to provide
the correct actions without feedback of how the drone would
react to the current command. While deciding whether the
drone should go left or right is easy, it can be hard to input
the correct magnitude of the turn the drone should perform
without feedback. In particular, we observed that this often
makes the pilot turn excessively when providing the training
examples after the first iteration. Performance can degrade
quickly if the learner starts to mimic these imperfect actions.
To address this issue, we provided partial feedback to the pilot
by showing a vertical line in the camera image seen by the
pilot that would slide left or right based on the current joystick
command performed. As the line indicated roughly where the
drone would move under the current command, this interface
led to improved actions provided by the pilot (Figure 2).

2) In addition to the lack of feedback, providing the correct
actions in real-time after the first iteration when the drone
is in control can be hard for the pilot as he must react to
what the drone is doing and not what he expects to happen:
e.g., if the drone suddenly starts turning towards a tree nearby,
the pilot must quickly start turning the other way to indicate
the proper behavior. The pilot’s reaction time to the drone’s
behavior can lead to extra delay in the correct actions specified
by the pilot. By trying to react quickly, he may provide
imperfect actions as well. This becomes more and more of
an issue the faster the drone is flying. To address this issue,
we allow the pilot to indicate the correct actions offline while
the camera stream from the drone is replayed at slower speed
(proportional to the drone’s speed), using the interface seen in
Figure 2. By replaying the stream slower the pilot can provide
more accurate commands and react more quickly to the drone’s
behavior.

3) The third challenge is that DAgger needs to collect
data for all situations encountered by the current policy in
later iterations. This would include situations where the drone
crashes into obstacles if the current policy is not good enough.
For safety reasons, we allow the pilot to take over or force
an emergency landing to avoid crashes as much as possible.
This implies that the training data used is not exactly what
DAgger would need, but instead a subset of training examples
encountered by the current policy when it is within a “safe”



region. Despite this modification, the guarantees of DAgger
still hold as long as a policy that can stay within this “safe”
region can be learnt.

D. Features

Our approach learns a controller that maps RGB images
from the on-board camera to control commands. This requires
mapping camera images to a set of features which can be
used by DAgger. These visual features need to provide indi-
rect information about the three-dimensional structure of the
environment. Accordingly, we focused on features which have
been shown to correlate well with depth cues such as those
in [22], specifically Radon transform statistics, structure tensor
statistics, Laws’ masks and optical flow.

We compute features over square windows in the image,
with a 50% overlap between neighboring windows. The feature
vectors of all windows are then concatenated into a single
feature vector. The choice of the number of windows is driven
primarily by computational constraints. A 15×7 discretization
(in x and y respectively) performs well and can be computed
in real-time.

a) Radon features (30 dim.): The Radon transform [29]
of an image is computed by summing up the pixel values along
a discretized set of lines in the image, resulting in a 2D matrix
where the axes are the two parameters of a line in 2D, θ and
s. We discretize this matrix in to 15 × 15 bins, and for each
angle θ the two highest values are recorded. This encodes the
orientations of strong edges in the image.

b) Structure tensor statistics (15 dim.): At every point
in a window the structure tensor [30] is computed and the
angle between the two eigenvectors is used to index in to a
15-bin histogram for the entire window. The corresponding
eigenvalues are accumulated in the bins. In contrast to the
Radon transform, the structure tensor is a more local descriptor
of texture. Together with Radon features the texture gradients
are captured, which are strong monocular depth cues [31].

c) Laws’ masks (8 dim.): Laws’ masks [32] encode
texture intensities. We use six masks obtained by pairwise
combinations of one dimensional masks: (L)evel, (E)dge and
(S)pot. The image is converted to the YCrCb colorspace and
the LL mask is applied to all three channels. The remaining
five masks are applied to the Y channel only. The results are
computed for each window and the mean absolute value of
each mask response is recorded.

d) Optical flow (5 dim.): Finally, we compute dense
optical flow [33] and extract the minimum and maximum of
the flow magnitude, mean flow and standard deviation in x
and y. Since optical flow computations can be erroneous, we
record the entropy of the flow as a quality measure. Optical
flow is also an important cue for depth estimation as closer
objects result in higher flow magnitude.

Useful features must have two key properties. First, they
need to be computed fast enough. Our set of features can be
computed at 15 Hz using the graphics processing unit (GPU)
for dense optical flow computation. Although optical flow is
helpful, we show in our experiments that removing this feature

Fig. 3. Left: Indoor setup in motion capture arena with fake plastic trees and
camouflage in background. Right: The 11 obstacle arrangements used to train
Dagger for every iteration in the motion capture arena. The star indicates the
goal location.

on platforms without a GPU does not harm the approach
significantly. Secondly, the features need to be sufficiently
invariant to changes between training and testing conditions
so that the system does not overfit to training conditions. We
therefore refrained from adding color features, as considerable
variations under different illumination conditions and confu-
sions between trees and ground, as well as between leaves
and grass, might occur. An experimental evaluation of the
importance of every feature is given in the next section, along
with a detailed evaluation.

In addition to visual features, we append 9 additional
features: the low pass filtered history of previous commands
(with 7 different exponentially decaying time periods), the
sideways drift measured by the on-board Inertial Measurement
Unit, and the deviation in yaw from the initial direction.
Previous commands encode past motion and help smooth the
controller output. The drift feature provides context to the
pilot’s commands and accounts for motion caused by inertia.
The difference in yaw is meant to reduce drift from the initial
orientation to maintain the original heading.

IV. EXPERIMENTS

We use a cheap, commercially available quad-rotor heli-
copter, namely the Parrot ARDrone, as our airborne platform.
The ARDrone weights only 420g and has a size of 0.3×0.3m.
It features a front-facing camera of 320 × 240 pixels and a
93 deg field of view (FOV), an ultrasound altimeter, a low
resolution down-facing camera and an on-board IMU. The
drone’s on-board controller stabilizes the drone and allows
control of the UAV through high-level desired velocity com-
mands (forward-backward, left-right and up-down velocities,
as well as yaw rotation) and can reach a maximum velocity
of about 5m/s. Communication is based on WiFi, with camera
images streamed at about 10−15Hz. This allows us to control
the drone on a separate computer that receives and processes
the images from the drone, and then sends commands to the
drone at 10Hz.

A. Indoor Experiments

We first tested our approach indoors in a motion capture
arena. We used fake indoor trees as obstacles and camouflage
to hide background clutter (Figure 3). Although being a very
controlled environment that lacked many of the complexities



Fig. 4. Left: Improvement of trajectory by DAgger over the iterations. The
rightmost green trajectory is the pilot demonstration. The short trajectories
in red & orange show the controller learnt in the 1st and 2nd iterations
respectively that failed. The 3rd iteration controller successfully avoided both
obstacles and its trajectory is similar to the demonstrated trajectory. Right:
Percentage of scenarios the pilot had to intervene and the imitation loss
(average squared error in controls of controller to human expert on hold-
out data) after each iteration of Dagger. After 3 iterations, there was no need
for the pilot to intervene and the UAV could successfully avoid all obstacles

of real outdoor scenes, it allowed us to obtain better quantita-
tive results to determine the effectiveness of our approach.

The motion capture system was only used to track the drone
and to adjust its heading so that it always headed straight
towards a given goal location. The drone moved at a fixed
altitude and forward velocity of 0.35m/s and we learnt a
controller that controlled the left-right velocity using DAgger
over 3 training iterations. At each iteration, we used 11 fixed
scenarios to collect training data, including 1 scenario with
no obstacles, 3 with one obstacle and 7 with two obstacles
(Figure 3).

Figure 4 qualitatively compares the trajectories taken by the
MAV in the mocap arena after each iteration of training on
one of the particular scenarios. In the first iteration, the green
trajectory to the farthest right is the demonstrated trajectory by
the human expert pilot. The short red and orange trajectories
are the trajectories taken by the MAV after the 1st and 2nd

iterations were completed. Note that both failed to avoid the
obstacle. After the 3rd iteration, however, the controller learnt
a trajectory which avoided both obstacles. The percentage
of scenarios where the pilot had to intervene for the learnt
controller after each iteration can be found in Figure 4. The
number of required interventions decreased between iterations
and after 3 iterations there was no need to intervene as the
MAV successfully avoided all obstacles in all scenarios.

B. Feature Evaluation

After verifying the general functionality of our approach,
we evaluate the benefit of all four feature types. An ablative
analysis on the data shows that the structure tensor features are
the most important, followed by Laws features. Figure 5 shows
how the contribution of different features varies for different
control signal strengths. Optical flow, for example, carries little
information in scenes where small commands are predicted.
This is intuitive since in these cases there are typically no
close obstacles and subsequently no significant variation in

Fig. 5. Breakdown of the contribution of the different features for different
control prediction strengths, averaged over 9389 datapoints. Laws and Radon
are more significant in cases where small controls are performed (e.g. empty
scenes), whereas the structure tensor and optical flow are responsible for
strong controls (e.g. in cases where the scene contains an imminent obstacle).
A slight bias to the left can be seen, which is consistent to observations in
the field. Best viewed in color.

optical flow. In fact, removing the optical flow feature only
results in a 6.5% increase in imitation loss. This is a significant
result for platforms incapable of computing expensive flow
computations at required update rates.

Anecdotally, Figure 6 shows the contribution of each of
the features at different window centers in the image. While
structure tensor features mainly fire due to texture in the
background (indicating free space), strong optical flow vectors
correspond to very close objects. In this example the predictor
commands a hard left turn (numerical value: 0.47L on a scale
of [0,1]), and all visual features contribute to this. Consistent
with the above analysis, the contribution of the structure
tensor was greatest (0.38L), Laws masks and optical flow
contribute the same (0.05L) while Radon features provide the
least contribution (0.01L). In this particular example, the non-
visual features actually predict a small right command (0.02R).

C. Outdoor Experiments

After validating our approach indoors in the motion capture
arena, we conducted outdoor experiments to test in real-world
scenarios. As we could not use the motion capture system
outdoors to make the drone head towards a specific goal
location, we made the drone move forward at a fixed speed
and aimed for learning a controller that would swerve left or
right to avoid any trees on the way, while maintaining the
initial heading. Training and testing were conducted in forest
areas while restraining the aircraft using a light-weight tether.

We performed two experiments with DAgger to evaluate its
performance in different regions, one in a park with relatively
low tree density, and another in a dense forest.

1) Low-density test region: The first area is a park area
with a low tree density of approximately 1 tree per 12× 12m,
consisting mostly of large trees and a few thinner trees. In this
area we flew at a fixed velocity of around 1m/s, and learnt a
heading (left-right) controller for avoiding trees using DAgger
over 3 training iterations, representing training data acquired
over a total of 1km of flight. Then, we exhaustively tested the
final controller over an additional 800m in the training area



(a) Radon (b) Structure Tensor (c) Laws (d) Flow (e) Combined Features

Fig. 6. Visualization of the contribution of the different features to the predicted control. The overall control was a hard left command. The arrows show
the contribution of a given feature at every window. Structure tensor features have the largest contribution in this example, while Radon has the least.

Fig. 7. Common failures over iterations. While the controller has problems
with tree trunks during the 1st iteration (left), this improves considerably
towards the 3rd iteration, where mainly foliage causes problems (middle).
Over all iterations, the most common failures are due to the narrow FOV of
the camera where some trees barely appear to one side of the camera or are
just hidden outside the view (right). When the UAV turns to avoid a visible
tree in a bit farther away it collides with the tree to the side.
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Fig. 8. Percentage of failures of each type for DAgger over the iterations of
training in the high-density region. Blue: Large Trees, Orange: Thin Trees,
Yellow: Leaves and Branches, Green: Other obstacles (poles, signs, etc.), Red:
Too Narrow FOV. Clearly, a majority of the crashes happen due to a too narrow
FOV and obstacles which are hard to perceive, such as branches and leaves.

and a separate test area.
Qualitatively, we observed that the behavior of the drone

improved over iterations. After the first iteration of training,
the drone sometimes failed to avoid large trees even when they
were in the middle of the image in plain view (Figure 7, left).
At later iterations however, this rarely occured. On the other
hand, we observed that the MAV had more difficulty detecting
branches or bushes. The fact that few such obstacles were seen
in the training data, coupled with the inability of the human
pilot to distinguish them from the background, contributed to
the difficulty of dealing with these obstacles. We expect that
better visual features or improved camera resolution might
help, as small branches often cannot be seen in 320 × 240
pixel images.

As expected, we found that the narrow field-of-view (FOV)
was the largest contributor to failures of the reactive approach
(Figure 7, right). This occurs when the learnt controller avoids
a tree and, as it turns, a new tree comes into view. Such a
situation may cause the controller to turn in a way such that
it collides sideways into the tree it just avoided. This problem
inevitably afflicts purely reactive controllers and can be solved

Fig. 9. Average distance flown autonomously by the drone before a failure.
Left: Low-Density Region, Right: High-Density Region.

by adding a higher level of reasoning [12], or memory of
recent visual features.

The type of failures are broken down by the type of obstacle
the drone failed to avoid, or whether the obstacle was not in the
FOV. Overall, 29.3% of the failures were due to a too narrow
FOV and 31.7% on hard to perceive obstacles like branches
and leaves.

Quantitatively, we compare the evolution of the average
distance flown autonomously by the drone before a failure
occured over the iterations of training. We compare these
results when accounting for different types of failures in Figure
9 (left). When accounting for all failure types, the average
distance flown per failure after all iterations of training was
around 50m. On the other hand, when only accounting for
failures that are not due to the narrow FOV, or branches/leaves,
the average distance flown increases to around 120m. For
comparison, the pilot successfully flew over 220m during the
initial demonstrations, avoiding all trees in this sparse area.

To achieve these results the drone has to avoid a significant
number of trees. Over all the data, we counted the number of
times the MAV avoided a tree1, and observed that it passed
1 tree every 7.5m on average. We also checked whether the
drone was actively avoiding trees by performing significant
commands2. 41% of the trees were passed actively by our
drone, compared to 54% for the human pilot.

Finally, we tested whether the learnt controller generalizes
to new regions by testing it in a separate test area. The test
area was slightly denser, around 1 tree per 10 × 10m. The
controller performed very well and was successfully able to
avoid trees and perform at a similar level as in the training
area. In particular, the drone was able to fly autonomously

1A tree is avoided when the drone can see the tree pass from within its
FOV to the edge of the image.

2A tree is actively avoided when the controller issues a command larger
than 25% of the full range, passively in all other cases.



without crashing over a 100m distance, reaching the limit of
our communication range for the tests.

2) High-density test region: The second set of experiments
was conducted in a thickly wooded region in a local forest. The
tree density was significantly higher, around 1 tree per 3×3m,
and the area included a much more diverse range of trees,
ranging from very small and thin to full-grown trees. In this
area we flew at a faster fixed velocity of around 1.5m/s, and
again learnt the heading (left-right) controller to avoid trees
using DAgger over 3 iterations of training. This represented
a total of 1.2km of flight training data. The final controller
was also tested over additional 400m of flight in this area.
For this experiment however, we used the new ARDrone 2.0
quad-rotor helicopter, which has an improved HD camera that
can stream 640 × 360 pixel images at 30Hz. The increased
resolution probably helped in detecting the thinner trees.

Qualitatively, in this experiment we observed that the per-
formance of the learnt behavior slightly decreased in the
second iteration, but then improved significantly after the third
iteration. This is consistent with the theory [9] which predicts
that the performance of the learnt behavior averaged over
time is guaranteed to increase, but that it might decrease on
individual iterations. For example, we observed more failures
to avoid both thin and large trees in the second iteration
compared to the other iterations. This is shown in Figure 8,
which compares the percentage of the different failures for the
human pilot and after each iteration of DAgger in this area.

We can also observe that the percentage of failures attributed
to large or thin trees is smallest after the third iteration, and
that again a large fraction of the failures occur when obstacles
are not visible in the FOV of the MAV. Additionally, the
percentages of failures due to branches or leaves diminishes
slightly over the iterations, which could be attributed to
the higher resolution camera that can better perceive these
obstacles. A visualization of a typical sequence is given in
Figure 10. Further qualitative results can be found in the
supplementary material video.

Quantitatively, we compare the evolution of the average
distance flown autonomously by the MAV before a failure
occurred over the iterations of training. Again, we compare
these results when accounting for different types of failures in
Figure 9. When accounting for all failure types, the average
distance flown per failure after all iterations of training was
around 40m. Surprisingly, despite the large increase in tree
density and faster forward velocity, this is only slightly worse
than our previous results in the sparse region. Furthermore,
when only accounting for failures that are not due to the
narrow FOV or branches and leaves, the average distance flown
increases to 120m per failure, which is on par with our results
in the sparser area. For comparison, when only accounting for
failures due to tree trunks, the pilot flew around 500m in total
during the initial demonstrations and only failed to avoid one
thin tree. However, the pilot also failed to avoid thin branches
and foliage more often (Figure 8). When accounting for all
types of obstacles, the pilots average distance until failure was
around 80m.

MAV’s on-board view Observer’s view
Fig. 10. Example flight in a dense forest area. The image sequence is
chronologically ordered from top (t = 0s) to bottom (t = 6.6s) and split
into the MAV’s on-board view on the left and an observer’s view to the right.
Note the direction label of the MAV in the first frame, and the color-coded
commands issued by DAgger. Apart from a qualitative visualization of our
algorithm, two major things can be observed. First, after avoiding tree A in
frame 3 the vehicle still rolls strongly to the left in frame 4. This is due to
the small but ubiquitous latency and should be addressed in future work to
fly the MAV in even denser areas. Second, in frames 5-7 tree B is avoided on
the left, rather than on the more intuitive right. DAgger prefers this decision
based on the drift feature, which indicates that the vehicle still moves left and
thus a swerve to the right would be more difficult.



The increase in tree density required our MAV to avoid a
significantly larger number of trees to achieve these results.
Over all the data, we observed that it was avoiding on an
average 1 tree every 5m. In this dense region, both the pilot
and the drone had to use larger controls to avoid all the trees,
leading to an increase in the proportions of trees that were
passed actively. 62% of the trees were passed actively by the
drone, compared to a similar ratio of 66% for the pilot.

D. Discussion of the Outdoor Results

We observed that much of the degradation in performance
is due to the limited FOV. We propose two approaches to
mitigate these limitations: First, integrating a small amount
of memory in DAgger to overcome the simplest failure cases
without resorting to a complete and expensive mapping of the
environment. Second, using the biologically-inspired solution
to simply ensure a wider FOV for the camera system. For
example, pigeons, that rely mostly on monocular vision, and
owls, that have binocular vision, have about 3 times and 1.5
times the FOV of our drone respectively.

V. CONCLUSION

We have presented a novel approach for high-speed, au-
tonomous MAV flight through dense forest environments. Our
system learns to predict how a human expert would control
the aircraft in a similar situation, and thus successfully avoids
collisions with trees and foliage using passive, low-cost and
low-weight visual sensors only. We have applied a novel
imitation learning strategy which takes into account that the
MAV is likely to end up in situations where the human
pilot does not, and thus needs to learn how to react in such
cases. During a significant amount of outdoor experiments
with flights over a cumulative distance of 3.4km, our approach
has avoided more than 680 trees in environments of varying
density.

Our work provides an important low-level layer for au-
tonomous control of MAVs, which works on minimal visual
input and can handle situations where 3D mapping or high-
level trajectory planning fails. In future work, we want to
focus on adding such higher-order layers, including receding
horizon planning and semantic knowledge transfer, as well as
implementing the means to handle latency and small field of
view effects. This will allow us to perform even longer flights,
in even denser forests and other cluttered environments.
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