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The detection and tracking of moving objects is an essential task in robotics. The CMU-RI Navlab group has
developed such a system that uses a laser scanner as its primary sensor. We will describe our algorithm and its
use in several applications. Our system worked successfully on indoor and outdoor platforms and with several
different kinds and configurations of two-dimensional and three-dimensional laser scanners. The applications
vary from collision warning systems, people classification, observing human tracks, and input to a dynamic
planner. Several of these systems were evaluated in live field tests and shown to be robust and reliable. C© 2012
Wiley Periodicals, Inc.

1. INTRODUCTION
Detection and tracking of moving objects (DATMO) is a
central problem in many robotics applications. We have
built a DATMO system based on laser rangefinder data.
The core algorithms have been adapted for many dif-
ferent uses: moving scanners or fixed installations; two-
dimensional (2D) rangefinders or slices of data from three-
dimensional (3D) sensors; detecting and tracking vehicles
or pedestrians; and running indoors or outdoors, on roads,
or cross-country. Our applications include safety warning
systems for city bus drivers, pedestrian safeguarding for
robot military vehicles operating offroad in the vicinity of
dismounted troups, vehicle detection for the Urban Grand
Challenge, and mapping typical pedestrian paths through
an office environment. Of course, in all applications ex-
cept perhaps the last, the system must be real-time to be
relevant; this limits the amount of processing we can do
on each scan. The algorithmic steps in each case involve
cleaning up the input data, segmenting them, and matching
them to data from previous scans. This process is compli-
cated by occlusions, shape-change artifacts, and nonrigid
objects such as pedestrians or foliage. Our system deals
with these issues by using a number of strategies: remov-
ing spurious points such as ground returns, calculating sta-
ble features, reasoning about the geometry of occlusions,
Kalman filtering, fusing data from multiple sensors, and
classifying objects.

In this paper, we first review DATMO systems devel-
oped by various groups. Then we give an overview of the

sensors and platforms that we use in our systems. This is
followed by a description of the algorithm. Next we evalu-
ate the system in two main applications and three smaller
installations. The approximate timeline of the development
of the various applications for our DATMO is shown in
Figure 1.

2. REVIEW OF DATMO SYSTEMS

Many different groups have developed DATMO algo-
rithms. Tables I and II contain a comprehensive summary
of the papers discussed below. We will first discuss work
with 2D laser scanners and later work with 3D laser scan-
ners. DATMO algorithms are used inside and outside and
on fixed and moving platforms. In indoor environments,
the ground is usually flat and there is a smaller variety of
objects, e.g., there are no cars. DATMO on a moving plat-
form is more challenging than from a fixed one because the
viewpoint is constantly changing. The speed of the plat-
form outdoors can be high, e.g., highway speed, whereas
indoors the speed is usually similar to human speed. The
ones most closely related to this paper are those on moving
platforms that operate outside. Fürstenberg and Dietmayer
(2004) and Fürstenberg (2005) describe DATMO using the
IBEO sensor. The IBEO sensor has four laser planes within
an angular spread of about 3◦ so that it can compensate for
the pitching of the vehicle. Their main focus is on automo-
tive safety and comfort applications. Mendes et al. (2004)
use their multitarget detection and tracking system for
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Figure 1. Timeline of the development of the various applica-
tions for our DATMO.

collision avoidance for their Cybercar. An outdoor appli-
cation on a fixed platform, described in Zhao et al. (2006),
monitors an intersection. They developed a joint tracking
and classification algorithm for moving objects.

Compared to outdoor detection, indoor detection and
tracking is simplified because in general the ground is flat,
objects are mostly vertical, the environment is limited by
walls, and moving cars and vegetation are basically nonex-
isting. On the other hand, one can encounter large groups
of pedestrians. The gait of a pedestrian is commonly used
for detection and classification (e.g., Zhao et al. 2007). Lind-
ström and Eklundh (2001) detect nonstatic objects by de-
tecting occupation of previously unoccupied space. This is
similar to an occupancy grid method. The key algorithm in
Schulz et al. (2001) is a sample-based joint probabilistic data
association filter.

Several fixed 270◦ LADARs are used in Zhao and
Shibasaki (2005) to cover a large area and track people in
crowds. The system was able to handle 100 trajectories si-
multaneously. Fod et al. (2002) also use multiple LADARs.
They devote a significant amount of work to evaluating the
accuracy of their tracking system by comparing it to ground
truth obtained by cameras.

Several papers focus on solving particular issues.
Xavier et al. (2005) developed a feature detection system
for real-time identification of lines, circles, and peoples
legs. Castro et al. (2004) used an adaptation of the Hough
transform in the feature extraction procedure to interpret
scanned segments as primitive features. Montemerlo et al.
(2002) presented a conditional particle filter for simulta-
neously estimating the pose of a mobile robot and the
positions of nearby people in a previously mapped envi-
ronment. Arras et al. (2007) applied AdaBoost to train a
strong classifier from simple features of groups of neigh-
boring beams corresponding to legs in range data. Khan
et al. (2006) introduced a probabilistic model for interact-
ing targets that addresses both multiple returns from sin-
gle targets and merged measurements between interacting
targets. They provided an algorithm for approximate in-
ference in this model using a Markov chain Monte Carlo
(MCMC) based auxiliary variable particle filter. Bruce and
Gordon (2004) presented a motion model based on the

Table I. List of DATMO papers with their basic setups, type of laser scanner used, and a very short description of their contribu-
tion. The dimension “2+” is a laser scanner with four scanning planes.

Reference Outdoor Moving Sensor Dimension Special comments

(Fürstenberg, 2005) × × IBEO 2+ Automotive applications
(Fürstenberg and Dietmayer, 2004)

(Mendes et al., 2004) × × SICK 2 Collision avoidance
(MacLachlan and Mertz, 2006) × × SICK 2 Collision warning
(Zhao et al., 2006) × SICK 2 Joint tracking and classification
(Zhao et al., 2007) × SICK 2 Observing pedestrian gait
(Lindström and Eklundh, 2001) × SICK 2 Similar to occupancy grid method
(Kluge et al., 2001) × SICK 2 Network optimization techniques
(Schulz et al., 2001) × 2 Sample-based joint probabilistic

data association
(Zhao and Shibasaki, 2005) LD-A 2 Multiple LADARs, crowds
(Fod et al., 2002) SICK 2 multiple LADARs, evaluation
(Xavier et al., 2005) × SICK 2 line, arc/circle and leg detection
(Castro et al., 2004) × SICK 2 Hough transform feature extraction
(Montemerlo et al., 2002) × SICK 2 Conditional particle filter
(Arras et al., 2007) SICK 2 Boosted features
(Khan et al., 2006) SICK 2 Markov chain Monte Carlo based

auxiliary variable particle filter
(Bruce and Gordon, 2004) 2 Efficient trajectories motion model
(Gate and Nashashibi, 2008) IBEO 2+ Recursive appearance estimation
(Iagnemma et al., 2008) × × Velodyne 3 Urban Grand Challenge teams
(Steinhauser et al., 2008) × × Velodyne 3 Motion segmentation
(Thornton and Patil, 2008) × × GDRS 3 Joint spatial-temporal association
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Table II. List of DATMO papers for pedestrian detection.

Reference Outdoor Moving Sensor Dimension Special comments

(Wang et al., 2007) × SICK 2 Interacting object tracking
(Song et al., 2008) × SICK 2 Online supervised learning
(Arras et al., 2008) × SICK 2 Multihypothesis leg-tracker with

adaptive occlusion probabilities
(Frank et al., 2003) SICK 2 Sequential Monte Carlo methods
(Cui et al., 2007) SICK 2 Rao-Blackwellized Monte Carlo

data association filter
(Taylor and Kleeman, 2004) SICK 2 Multihypothesis framework
(Gate and Nashashibi, 2009) × × 2 Individual and groups of pedestrians
(Gidel et al., 2009) × × IBEO 2+ Fusion of planes, particle filter
(Glas et al., 2007) × × SICK 2 Parametric human shape model

particle filter
(Spinello et al., 2010) × Velodyne 3 AdaBoost, geometric and

statistical features

intuition that people tend to follow efficient trajectories
through their environments rather than random paths.
Gate and Nashashibi (2008) proposed a system that recur-
sively estimates the true outlines of every tracked target us-
ing a set of segments called Appearance.

Many groups deal with tracking people in crowded en-
vironments. In most of the papers, the sensors were either
fixed or on moving platforms indoors, i.e., the sensors saw
the people at a constant height. Wang et al. (2007) intro-
duced a scene interaction model and a neighboring object
interaction model to take long-term and short-term interac-
tions, respectively, between the tracked objects and its sur-
roundings into account. Song et al. (2008) used an online
supervised learning-based method for tracking interacting
targets with a laser scanner. They compare their method
to a joint probabilistic data association filter (JPDAF), a
Monte Carlo joint probabilistic data association filter (MC-
JPDAF), and a nearest-neighbor standard filter (NNSF).
Arras et al. (2008) used a tracker that detects and tracks
legs separately with Kalman filters, constant velocity mo-
tion models, and a multihypothesis data association strat-
egy. They extended the data association so that it explicitly
handles track occlusions. Two approaches are described in
Frank et al. (2003) to deal with the multiple target tracking
problem. Both are based on sequential Monte Carlo meth-
ods and joint probability data association. To track peo-
ple in dense crowds, Cui et al. (2007) introduced a stable
feature extraction method based on accumulated distribu-
tion of successive laser frames, and then they introduced
a region coherency property to construct an efficient mea-
surement likelihood model. The final tracker is based on a
combination of an independent Kalman filter and a Rao-
Blackwellized Monte Carlo data association filter (RBMC-
DAF). Taylor and Kleeman (2004) focused on tracking legs.
They extended a multiple hypothesis framework to allow
for both association uncertainty and a switched dynamic

model depending on the currently moving leg. Gate and
Nashashibi (2009) used a feature-based classification ap-
proach that detects and tracks regular pedestrians. It also
copes smoothly and efficiently with groups of people. A
“Parzen Window” kernel method is described in Gidel et al.
(2009) that allows the centralized fusion of information
from the four planes of a laser scanner. Additionally, a par-
ticle filter with feedback in a laser image is employed for
a closer observation of pedestrian random movement dy-
namics. Glas et al. (2007) also used a particle filter. A para-
metric human shape model is recursively updated to fit ob-
served data after each resampling step of the particle filter.
The laser scanners are mounted at waist height, which al-
lows the model to include torso and arms.

To increase the amount of information available to
do detection, tracking, and classification, one can combine
the 2D LADAR with other sensors or use a 3D LADAR.
A popular approach is to combine LADAR with video
(Cui et al., 2008; Fayad and Cherfaoui, 2007; Kämpchen,
2007; Labayrade et al., 2005; Mählisch et al., 2006; Monteiro
et al., 2006; Perrollaz et al., 2006; Thornton et al., 2008).
In our work, we took the approach of using 3D LADAR
data exclusively. Since mobile 3D LADAR scanners with
sufficient update rates have only become available in
recent years, the field of 3D DATMO is relatively new.
Many groups that participated in the Urban Grand Chal-
lenge used a Velodyne LADAR Iagnemma et al. (2008). Of
the 11 finalists, seven used a Velodyne and one used an
actuated SICK LMS. A Velodyne LADAR is also used in
Steinhauser et al. (2008). Their system extracts essential
information about drivable road segments in the vicinity
of the vehicle and clusters the surrounding scene into
point clouds representing static and dynamic objects.
Thornton and Patil (2008) used their own proprietary
LADAR (see experimental unmanned vehicle (XUV) and
Suburban in Figure 2). The LADAR data association

Journal of Field Robotics DOI 10.1002/rob



20 • Journal of Field Robotics—2013

Figure 2. Five vehicle platforms on which our DATMO system was running live. From left to right, up to down: GDRS XUV and
Suburban, Tartan team Boss, our own test vehicle Navlab 11, and a Pittsburgh transit bus. Furthermore, we had DATMO running
live in a fixed indoor setting (lower right). One of the SICK sensors can be seen, indicated by a white arrow.

problem is approached with a joint spatial-temporal
solution and several features are used for classification.
Spinello et al. (2010) detected people in 3D data. They ap-
plied AdaBoost to train a strong classifier from geometrical
and statistical features of groups of neighboring points at
the same height. In a second step, the AdaBoost classifiers
mutually enforce their evidence across different heights
by voting into a continuous space. Pedestrians are finally
found efficiently by mean-shift search for local maxima in
the voting space.

There are also papers that explore subalgorithms of
DATMO. Reviews of clustering algorithms can be found
in Jain et al. (1999) and Xu and Wunsch (2005). A cluster-
ing method for 3D laser data is discussed in Klasing et al.
(2008). Premebida and Nunes (2005) describe segmentation
and geometric primitives extraction from 2D LADAR data.
Nguyen et al. (2007) compare line extraction algorithms.
Statistics of natural images and range images can be found
in Huang and Mumford (1999) and Huang et al. (2000). Pel-
legrini et al. (2009) address the question of how to model
human behavior to better track people in crowded environ-
ments. They developed a social behavior model in which
the location and velocity of people around a person are
taken into account. Similarly, Luber et al. (2010) integrate
a model based on a social force concept into a multihypoth-
esis target tracker. Estimation of the ground bearing surface
can be found in Lalonde et al. (2006) and Kelly et al. (2006).

There are several data sets of laser scanner data freely
available online. In Pandey et al. (2011), a Velodyne, two
push-broom forward-looking Riegl LIDARs, and a Point-
Grey Ladybug3 omnidirectional camera system collected
data from a moving vehicle. Peynot et al. (2010) describe
the Marulan data sets. They contain data from four 2D laser
scanners, a radar scanner, a color camera and an infrared
camera. The MIT Urban Grand Challenge team made their
data available Huang et al. (2010). Their vehicle had a Velo-
dyne, five cameras, and 12 SICK laser scanners. Access to
annotated laser scanner data can be found in Yang et al.

(2011). This data set was collected with our Navlab11 vehi-
cle (Figure 2).

Lastly, we want to mention some surveys of pedestrian
and vehicle detection in general. Gandhi and Trivedi (2007)
contains a survey of active and passive pedestrian protec-
tion systems. Among other things, it compares pedestrian
detection using video, stereo, visible and IR, RADAR,
LADAR, and multiple sensors. Enzweiler and Gavrila
(2009) has an extensive survey of monocular pedestrian
detection. A review of onroad vehicle detection can be
found in Sun et al. (2006). Its emphasis is on vision sensors,
but it also discusses other sensors such as laser scanners.

3. SYSTEM OVERVIEW

The central sensor for our DATMO system is a laser scan-
ner. We have used many types, such as 2D laser scanners
like a SICK LMS or 3D laser scanners like a nodding SICK
LMS, a Velodyne, or a General Dynamics Robotic Systems
(GDRS) mobility LADAR, which is a custom sensor. The
sensors we used and their configurations are listed in Ta-
ble III.

The sensors can be mounted on vehicles or they can
be used on a stationary platform. Figure 2 shows various
robotic systems with the sensors. The first vehicle is a Demo
III XUV (Shoemaker and Bornstein, 1998) and we used it
with 4 SICK LMS LADARs, one on each side, or with a

Table III. Sensors used with our DATMO.

Resolution Rate Field-of-view

SICK LMS 1◦ 75 Hz 180◦

SICK LMS 0.5◦ 37 Hz 180◦

SICK LMS 0.25◦ 19 Hz 100◦

Nodding SICK LMS 1◦ 2 Hz 110◦

Velodyne 0.1◦ 5 Hz 180◦

GDRS 3D mobility LADAR 5–15 Hz 90◦–180◦
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Figure 3. Flow chart of our DATMO.

GDRS 3D LADAR. The next vehicle is a Suburban with a
dual GDRS 3D LADAR. We also had a single SICK LMS on
the front of it. The next vehicle is Boss, the winner of the Ur-
ban Grand Challenge. It ran our system on two SICK laser
scanners. Next is a Jeep with 3 SICKs (sides and front) and
a transit bus with two SICKs, one on each side. Also, data
from nodding SICKs and a Velodyne laser were used as in-
put to our DATMO, and these data were post-processed.
The last setup was stationary indoors where 4 SICKs were
observing a wide area. In all cases except the post-process
data, our system was running live.

The basic modules of our DATMO are illustrated in
Figure 3. It begins with scan lines that can be directly ob-

tained from a 2D LADAR scanner, from the projection of a
3D scan onto a 2D plane (Section 5) or from the fusion of
multiple sensors (Section 4.2). This scan line is transferred
into world coordinates and segmented. Line and corner fea-
tures are extracted for each segment. The segments are as-
sociated with existing objects and the kinematics of the ob-
jects are updated with the use of a Kalman filter. Segments
that cannot be associated trigger the creation of a new ob-
ject. The Kalman filter assumes the errors to be Gaussian.
This is mostly true with the measurements we are using,
but sometimes we are confronted with outliers and special
cases. In the next section, these algorithms are discussed in
more detail.

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Graphical illustration of our DATMO algorithm: (a)
raw data, (b) segmented data, (c) fitting of lines and corners
and feature extraction, and (d) tracking of feature points.

4. ALGORITHM DESCRIPTION

We will first describe the core algorithm of our DATMO.
In the second subsection, we will show how our DATMO
can be used with multiple sensors. Our DATMO algorithm
is described in detail in MacLachlan and Mertz (2006),
Navarro et al. (2006) and Navarro-Serment et al. (2008).

4.1. Core Algorithm

A laser scanner gives a scan line within a 2D plane, i.e., a set
of ordered points with constant angular steps. In the first
step, which is the segmentation process, the points in the
scan line are clustered into segments with a basic region-
growing algorithm. A point is added to an existing cluster
if its distance to the cluster is less than a threshold. A graph-
ical example is shown in Figures 4(a) and (b), where the raw
data are segmented into two clusters. In Figure 10, one can
see actual data, the laser data (white dots) that are within a
box belong to the same segments.

4.1.1. Occlusions

During simple segmentation, we also detect when back-
ground objects are partially occluded by foreground ob-
jects. Each point is classified as occluded or normal. A point
is occluded if an adjacent point in the scan is in a different
segment and in front of this point, or if it is the first or last
point in the scan. This flag has several uses:

• When an occluded point appears at the boundary of an
object, we consider this to be a false boundary.

• We only count nonoccluded points when determining
if there are enough points to create a new track, or if
the point density is high enough for a segment to be
compact.

• If an occluded point defines the position of a feature,
then that feature is regarded as vague.

Figure 5. A corner fit to points from a vehicle that include
outliers and a rounded corner.

In the segmentation process, missing range returns are
treated as points at maximum distance, and are not as-
signed to any segment. Similarly, if there is a large enough
dropout in the middle of an object, it will split the ob-
ject into two segments (e.g., a person standing between
the sensor and a wall will result in splitting the wall in
two segments). If any point in a segment is occluded, then
the segment is considered partially occluded. Finally, tracks
that are not associated on the current tracker iteration, and
which were last associated with a partially occluded seg-
ment, are considered candidates for total occlusion. These
will be removed from the list after failing to be associated
for several iterations.

4.1.2. Features

Next we want to extract features from the segments that are
stable to viewpoint changes. When the host vehicle drives
by extended objects such as other vehicles or buildings, the
change in viewpoint modifies the apparent shape of the ob-
ject. Features such as the center-of-mass (centroid) of the
points change their location even if the object is fixed. We
found that corners and lines fitted to the points [Figure 4(c)]
are much more stable to changes of viewpoint. An exam-
ple of a corner fitted to the points coming from a vehicle is
shown in Figure 5. To make the fit robust to outliers, we first
make a trial fit and then we fit again with 20% of the worst
points (i.e., largest distance to the fitted line) discarded. We
also give a lower weight to points in areas that are densely
sampled, i.e., closer to the scanner. We make both a line
and a corner fit. The corner fit is chosen if it is significantly
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better than the line fit. The ends of the line and the corner
of a segment are the feature points [Figure 4(c)].

4.1.3. Data Association

To track the objects we first have to associate them from
one scan to the next. This is mainly done by detecting the
overlap between the areas of the predicted object and the
current segment. For two objects to overlap, it is required
that at least one actual measurement point falls inside the
track outline, and symmetrically, that when the track’s last
measured points are updated for predicted motion, that at
least one of these predicted points falls inside the segment’s
outline. The track outline is determined by finding the cor-
ners of a bounding box that contains all the points in the
segment. Since the points are on the edge of the object, we
expand the object outline by 0.8 m, then check if any points
fall inside this expanded outline. However, in cases when
objects split, merge, or are too close to each other, the as-
sociation is ambiguous. In these cases, the main point is
to determine which segment will best support the existing
track. For this purpose, we calculate the closeness between
features. Closeness is defined as the sum of the inverse dis-
tance between corresponding features (e.g., between cor-
ners). This measure of closeness differs from the RMS dis-
tance in two important ways: First, the result is dominated
by the best agreeing features, not the worst, so it is not con-
fused by the gross shape change that happens when tracks
split or merge. Second, the result is not normalized by the
number of features in correspondence. The more features,
the higher the closeness.

In a split/merge situation, we discard the track or seg-
ment with less information. If a current segment is not as-
sociated with a predicted object, a new object is created.
Likewise, if an object cannot be associated with a current
segment for several consecutive cycles, it is deleted.

The position, velocity, acceleration, and turn rate of the
object is estimated by a Kalman Filter with a constant lin-
ear acceleration, constant turn rate, and fixed process noise
[Figure 4(d)]. Each feature is considered to be an indepen-
dent measurement. The turn rate is the derivative of the
heading and the heading is usually derived from the ori-
entation of the line or corner. If we do not have a good
line or corner fit, then the direction of the linear velocity is
used.

Measurement noise. The two dominant sources of fea-
ture position uncertainty are angular resolution limits and
instability in segmentation or feature extraction. The fea-
ture position uncertainty is decomposed into longitudi-
nal (lengthwise, along the scan line) and lateral (normal
to the line) uncertainties. We address these two classes of
uncertainty by combining two noise estimates: static and
adaptive.

The static part is calculated from a single scan and ac-
counts for things like geometric effects, fit quality, or miss-
ing returns. For linear features, it is computed from sepa-
rate longitudinal and lateral variances. At long ranges and
shallow incidence angles, the interpoint spacing can exceed
the segmentation threshold, causing the line to end at that
point even though the object extends on; the longitudinal
uncertainty is then effectively infinite. In this case, the line
end should not be interpreted as a stable corner feature.

The adaptive part downweighs features that have un-
stable positions. Its value is derived from the position mea-
surement residue (the difference between prediction and
measurement). After a feature has been associated 15 times,
the covariance of the position measurement residue (the
difference between prediction and measurement) is used as
the measurement error. The static noise covariance times 0.3
is added to the adaptive noise to insure a lower bound.

Special cases are when the end point of a line does
not correspond to the actual end of the object. This hap-
pens when an object in the foreground casts a shadow on
an object behind it (occlusion) or when the interpoint spac-
ing exceeds the segmentation threshold at long distances or
shallow angles. In such cases, we use a modified Kalman
filter model where the longitudinal innovation (i.e., the ve-
locity and acceleration components of a segment running
lengthwise) is set to zero to suppress unwanted false ap-
parent motion.

There are still more challenging cases, e.g., when both
end points of a line do not correspond to the actual ends the
object, ground returns (the scan line strikes the ground in-
stead of an object), missing returns, or feature extraction er-
rors. We only update a track when the innovation is above
a given threshold and at the same time within physically
plausible limits. Furthermore, we implemented an addi-
tional validation procedure that operates independently of
the Kalman filter. We collect the last 35 segments (raw mea-
surements) associated with each track, then check how well
the track path matches up with the measurements if we
project it backward in time from the current state of the ob-
ject. If the discrepancy is too large, then there are either un-
modeled disturbances (rapid change in acceleration or turn
rate) or there is a tracking failure due to problems in feature
extraction, etc. and the track is invalidated.

4.2. Using Multiple Sensors

There are three main reasons why multiple sensors are
used. The first is when one sensor alone cannot cover all the
area. For example, in Figure 6 four SICK sensors are needed
to detect objects all around the vehicle. The second reason
is if you want to combine sensors with different properties
to achieve a quality of detection that cannot be achieved
with one kind of sensor. Those properties could be differ-
ent range, resolution, update rate, or even different sensing
modalities like LADAR, RADAR, or vision. The third rea-
son is redundancy.

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. An example of a multiple sensor arrangement. Four
LADARs, each with 180◦ field-of-view, are mounted on the
sides of the vehicle to give a complete coverage around the ve-
hicle.

Combining the data from multiple sensors can hap-
pen at any level during the detection and tracking pro-
cess. For synchronization purposes, all the sensor data
are time-stamped. Only the most recent data are used.
As shown in Figure 3, assume a set of Q sensors S =
{S1, S2, . . . , SQ} is used. Define Z

q
j = {x1, x2, . . . , xNq

} as
the set of Nq points collected at time tj by the sensor
Sq∈{1,2,...,Q}, whose elements are represented by Cartesian
coordinates x = (x, y, z). From these definitions, we now
proceed to describe the three different combination ap-
proaches we have used in various systems:

Point level. In this mode, the set of raw points from all sen-
sors, Zj = Z1

j ∪ Z2
j ∪ · · · ZQ

j , is resampled to form a new set
of points. To fit our data format, the points in the new set
are expressed in polar coordinates where the angles are dis-
cretized. The result is a vector of distance measurements
coming from consecutive bearings, which resembles the
kind of data provided directly by a line scanner such as
the SICK sensor. This is referred to as a virtual laser scan-
ner. In the resampling step, if there are two or more points
in one angular bin but at different radial distances, only the
point closer to the origin is used. The origin of the coordi-
nate system is the location of the new virtual laser scanner.
The great advantage of this method is that for the virtual
laser scanner, the overlap regions look like any other region
and therefore the overlap region does not need any further
special treatment. This point level fusion works well only
when the sensors are relatively close together. Otherwise,
the occlusions seen by the real sensors are too different
from the occlusions perceived by the virtual sensor. Also,
one will inadvertently have to discard some of the original
points and therefore not make full use of all the available

data. A version of this is described in Section 5 using the
dual LADAR on the Suburban in Figure 2.

Segment-to-object level. In this mode, each sensor is
treated as a stand-alone sensor up to the point where the
segments are formed and the features of the segments
are extracted. For each sensor Sq ∈ S, a set of segments
is extracted from the corresponding measurement set Z

q
j .

Then, a set of features is extracted from each segment
[Figure 4(c)]. The feature points of the segments from all
sensors S are then used to update one common list of ob-
jects Oj , which contains estimates of position and velocity
of all the targets at time tj . Notice that in this approach the
segments are not fused together to get a new list of seg-
ments. With this method, the occlusion reasoning is fully
preserved and therefore one can use sensors at very differ-
ent locations, e.g., in the system described in Section 8.2 the
SICK sensors are located in different corners of the room
and yet objects are consistently tracked around the island in
the middle of the room. One disadvantage of this method
is that at the boundaries between sensor FOVs, the system
can be confused when tracking large objects, because the
sensors see very different parts of the object.

Object level. Here each sensor is a stand-alone system that
produces its own list of objects. For each sensor Sq ∈ S, a set
of segments is extracted from the corresponding measure-
ment set Z

q
j . Then, a set of features is extracted from each

segment [Figure 4(c)]. However, as opposed to the segment-
to-object level approach, only the feature points from sen-
sor Sq are used to update one list of objects for this sensor,
O

q
j , which contains estimates of position and velocity of all

the targets “seen” by Sq at time tj . These lists are then com-
bined into one list that includes estimates of all targets, Oj

(to facilitate fusing the data, all the position and velocity es-
timates are expressed in the vehicle reference frame). This
method is very general and can even be used when com-
bining very different systems, i.e., systems that might use
different sensors and track different feature points. A dis-
advantage of this method is that at the boundary between
two sensors, the object needs to be acquired from scratch
by the second sensor. It does not use the knowledge about
the object from the first sensor to initialize the object. This
method was used on the Urban Grand Challenge vehicle
(Section 7.3).

5. DATMO WITH 3D LADAR

As mentioned before, our DATMO is capable of process-
ing range measurements from both line and 3D scanners.
The information pipeline used to feed sensor data into our
system is the same for both types of sensors, as seen in
Figure 3. The use of 3D LADAR improves the performance
in uneven terrains, while the line scanners, which usually
operate at faster rates, perform better in flatter areas. This
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feature allows the system to adapt to a wider range of op-
eration environments by combining the advantages of each
sensor type.

The 3D scanners used in the CTA (Collaborative Tech-
nology Alliances) project can be seen in Figure 2 on top of
the XUV and the Suburban. Our DATMO system uses 2D
scans of ordered points. If there are several 3D LADARS,
e.g., two of them on the Suburban in Figure 2, the 3D
point clouds are first combined to one 3D point cloud and
then the projection is performed. This is a variant of the
point level combination of multiple sensors mentioned in
Section 4.2.

To make use of the 3D point cloud, it first needs to be
appropriately converted into a 2D virtual scan, as described
next.

5.1. Projection into a 2D Plane

Since it is computationally too expensive to process the
entire point cloud, we initially isolate a 2D virtual slice,
which contains only points located at a certain height above
ground. As shown in Figure 7, a 3D scanner produces a
point cloud, from which a “slice” is projected onto the 2D
plane, resulting in a virtual scan line. This scan line is a vec-
tor of range measurements coming from consecutive bear-
ings, which resembles the kind of data reported directly by
a line scanner such as the SICK laser scanner. This projec-
tion is done by collapsing into the plane all the points re-

siding within the slice, which is defined by its height above
the ground, and then resampling the points. Resampling
means we pick for each angular bin the closest point and
order the points.

One difficulty in the projection procedure is determin-
ing which points belong to the ground plane. In general, the
terrain is uneven and it is not sufficient to linearly extend
the ground plane underneath the vehicle. It is necessary to
maintain a ground elevation map. Common algorithms for
estimating the ground surface [e.g., see Lalonde et al. (2006)
and Kelly et al. (2006)] are computationally too expensive.
We developed an efficient method that is described in the
following section.

5.1.1. Elevation Map

The system accumulates processed LADAR measurements
in a grid called an elevation map, which is always aligned
with the vehicle’s reference frame and is centered on the ve-
hicle’s current position. The elevation map provides a sur-
face description model in which each cell contains an es-
timate of the ground elevation for the corresponding area.
The mean and standard deviation of the heights of all scan
points that are inside each cell are computed, and the ele-
vation is then calculated by subtracting one standard devia-
tion from the average height of all the points in the cell. The
key properties of this simple algorithm are that mean and
standard deviations can be calculated recursively, and that

Figure 7. Projection of virtual scan line. A point cloud is collected from a wooded area (a). The points in the cloud located within
a certain height from the ground are projected into a 2D plane (b) and processed as if it were a single scan line. The resulting
projection is shown in (c), top view. As expected, this measurement resembles what would be obtained using a line scanner.
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Figure 8. Sample field test using ground elevation to eliminate ground returns. The test was conducted in uneven terrain (a). The
corresponding ground elevation map is shown in (b) (viewed from above). The 3D point clouds are shown in (c) and (d). Points
used in the slice are shown in green, while points in red are ignored. In (c), the virtual slice is a plane, and the lack of compensation
for ground elevation results in significant ground returns. Conversely, in (d) the virtual slice is adjusted depending on ground
elevation. Ground returns are greatly reduced, increasing the likelihood of collecting measurements from potential targets, while
reducing the probability of false detections resulting from processing ground returns.

the elevation estimate is never below the lowest point while
still having about 80% of the points above ground. To keep
the computational cost of maintaining the map to a mini-
mum, the map is indexed as a 2D ring buffer using mod-
ulo arithmetic. This logically scrolls the map as the vehicle
moves by physically wrapping around in memory. In this
way, only the cells for which no estimates have been com-
puted are updated when the map is scrolled in response to
vehicle movement.

5.1.2. Ground Removal

The elevation map is used to eliminate returns from the
ground. We only keep points that are between a lower and
an upper height bound. The values of height bounds de-
pend on the environment and the tolerance of the particular
application to spurious measurements. Usually the lower
bound is 0.5 m. If there is little or no ground vegetation, one
can use 0.3 m, and if there is tall grass one might need to go
as high as 1 m. The only reason to have an upper height
bound is to avoid getting returns from overhangs. It needs
to be at least as high as the clearance needed for the robot.

We commonly use 3 m. The ground removal is illustrated
in Figure 8, where the trajectory of a moving object is easily
identified, given the increased amount of ground returns
being ignored (red).

6. TESTING OF DATMO COMPONENTS

In this section, we give quantitative measures of the quality
of the velocity determination and the tracking, particularly
that of humans. The tracking is evaluated in terms of detec-
tion distance, velocity error and delay, and track breakup.
These numbers will give us a baseline of the performance
of our DATMO.

The most commonly used sensor in our systems is
the SICK LMS (see Table III). Its range is up to 80 m. The
manufacturer’s claim that the resolution and accuracy of
the SICK laser scanner is 1 cm has been confirmed by
our experiments, including variations over space and time
[Section 1.32 of PATH and CMU (2004)]. The following de-
rived quantities are for systems with a SICK LMS unless
stated otherwise.
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Figure 9. Distribution of errors in velocity determined by our DATMO. x velocity (left figure) is parallel and y velodity (right
figure) is perpendicular to the direction of travel of the host vehicle.

6.1. Object Velocity

An important derived quantity is the object velocity. To get
a good characterization of its error function we studied a
40-s-long data set from the bus project [Section 2.3.2.2 of
PATH and CMU (2006)]. During this time, the bus was driv-
ing at about 10 m/s past a series of fixed objects (parked
cars, mail boxes, and lamp posts), while our DATMO de-
tected 312 different objects. The distribution of the mea-
sured velocities shows the error function.

Figure 9 shows the distributions of the velocity errors
in the x and y directions (normalized so that the maximum
is 1). The left plot shows the velocity error in the x direction
and the right shows the y direction. Gaussian curves were
fit to the distributions and gave the parameters shown in
Table IV.

The centers of both distributions are not exactly at zero,
even though the objects are known to be stationary. The off-
set for the x direction can be explained by a 1% inaccuracy
of the speed of the bus. The offset for the y direction could
be due to a misalignment of 0.2◦ of the laser scanner. Both
of these errors are very small and well within the known
accuracy of the bus speed and the sensor alignment.

The distributions are fairly well described by the Gaus-
sian curve, except for their tails, which are much stronger.
These outliers can come from inconsistent scanner data,
e.g., if the scanner sees different parts of an object or does
not get any return from certain parts of an object. The bus it-

Table IV. Parameters of velocity errors

Center σ

x velocity −0.10 m/s 0.20 m/s
y velocity −0.04 m/s 0.13 m/s

self was not completely level and therefore the sensor plane
was not exactly parallel to the ground. This would explain
why we did not always get consistent returns, i.e., the scan-
ner probed the objects at different heights depending on the
distance of the objects.

For the great majority of objects, the velocity deter-
mination worked well, i.e., it was accurate enough to an-
alyze a situation and issued appropriate warnings. The
few outliers can occasionally cause false warnings (see
Section 7.1.3).

6.2. Tracking tests

To test the tracking of people in more detail, we used
Navlab 11 (Figure 2, left center) to detect and track pedes-
trians. The ground truth for the pedestrian speed was de-
termined by markers on the ground and a stopwatch. A
bird’s-eye view of a typical run is shown in Figure 10. We
are interested in detection distance, velocity error, velocity
delay, and track breakup to evaluate the performance of the
tracking. Table V shows some of these quantities for five
runs with different vehicle and target velocities.

Detection Distance. This is the distance to the object when
it is detected for the very first time. This happens when
the target returns at least three points. For a 0.5◦ resolution
scanner and a target of about 60 cm cross section, this dis-
tance is between 30 and 40 m. The average in Table V is
indeed 35 m with only a few meters variation from run to
run.

Velocity Error. This is the difference between the veloc-
ity measured by the system and the ground-truth veloc-
ity. Mean and standard deviation of velocity error are re-
ported in Table V. The mean error is small and is entirely
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Table V. Tracking pedestrians from Navlab 11. Five individual runs and their average are shown.

Vehicle Target Estimated Mean velocity Target detection velocity st. dev. of
speed velocity velocity error distance delay velocity
m/s (mph) m/s m/s m/s m s m/s

9.1 (20.4) 1.62 1.69 −0.066 34.7 1.1 0.046
10.5 (23.5) 2.18 2.1 0.077 36.9 1.8 0.048
11 (24.6) 3.95 4.08 −0.132 34.9 3.5 0.066
14.2 (32) 1.71 1.78 0.061 33.7 1.4 0.075
17.7 (40) 2.89 2.92 0.027 34.3 1.4 0.081
12.5 (28) 2.47 2.51 0.007 34.9 1.8 0.063

Figure 10. A pedestrian (white) moves at constant velocity.
Navlab 11 estimates the pedestrian’s velocity while driving at
35 mph. The white line indicates the pedestrian’s estimated ve-
locity. The intensity of the other objects indicates their classifi-
cation: light gray is low probability human, dark gray is ruled
out as human, and gray without points inside is a previous
object no longer associated with any point. Raw scanner mea-
surements appear as white dots.

explainable by the uncertainties of measuring the ground
truth. The standard deviation is about 0.06 m/s. It is smaller
than the velocity error reported in Section 6.1, but this is ex-
pected because pedestrians are much smaller than vehicles
and therefore have a better defined location.

Velocity Delay. This is the delay between the time at which
an object is detected and the time at which its velocity is
valid. It is valid if certain tests are passed, including the
estimated velocity error being below a given threshold. In

Figure 11. Estimation of target velocity. A pedestrian walk-
ing at a constant speed of 2 m/s is tracked. The system reports
a valid velocity estimate after 0.8 s, as shown in the top fig-
ure. The standard deviation of the velocity estimate, plotted in
the bottom figure, is one of several criteria used to validate the
track.

our examples, the delay varies between 1.1 and 3.5 s with
an average of 1.8 s

The location of an object is available after one cycle.
The estimation of the velocity takes several cycles to be re-
liable. It is initiated at 0 m/s and the Kalman filter needs to
be updated several times to give a valid measurement. An
example is shown in Figure 11 in which it took 0.8 s for the
velocity to become valid. Among one of the criteria of the
validity test is a threshold on the measurement error from
the Kalman filter (Figure 11, bottom).

Track Breakup. The tracking process can be negatively af-
fected by several causes. The system fails to detect a tar-
get when it is occluded, when it has poor reflectivity, or
when objects are too close to each other and it is not clear
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Table VI. Track breakup analysis: four pedestrians walking alongside an XUV moving at low speed.

No. of Average Minimum Maximum Time with valid
track velocity delay velocity delay velocity delay velocity estimate

Target breakups s s s %

A 4 2.10 1.5 2.8 96.0
B 10 3.57 0.2 10.7 79.5
C 9 0.81 0.2 2.9 96.4
D 57 4.95 0.8 15.0 28.0

whether to segment the data as one or more objects. It is
difficult to conduct a systematic quantitative evaluation of
track breakups because it is very much dependent on the
specific situation. We will describe one run with four peo-
ple walking alongside a manually driven XUV (Figure 2,
upper left) in an off-road environment. The vehicle drove at
about 1 m/s for 92 m. Table VI summarizes track breakup
occurrence. In this experimental run, target A moved al-
ways ahead of the vehicle, while periodically crossing from
one side to another. Targets B and C always remained be-
hind and close to the XUV (less than 4 m), and were never
occluded nor significantly affected by clutter. Target D fol-
lowed the XUV from slightly farther away and eventually
walked across tall grass areas, to the point of being lost in
the clutter for extended amounts of time. As shown in the
table, the system performed well, reporting valid velocity
estimates 96%, 79.5%, and 96.4% of the time for targets A, B,
and C, respectively. Similarly, there were few breakups for
these three targets, being as low as 4 for target A and as high
as 10 for target B. Target D was frequently occluded or clut-
tered by the tall grass and suffered as many as 57 breakups,
which precluded the computation of valid estimates more
than 51% of the time. At some point, the system assigned a
new track for this target every 0.1 s, since the target walked
too close to a patch of tall grass, even though the scanners
had an unobstructed view of it.

7. DATMO INTEGRATED INTO LIVE SYSTEMS

Our DATMO has many different applications, as can be
seen by the multitude of platforms that used it (Figure 2).
In the following sections, we want to describe six different
systems. The ones described in Sections 7.1 and 7.3 used
SICK laser scanners, whereas the one in Section 7.2 used
a 3D LADAR. Section 7.1 describes in detail a warning sys-
tem and measures its performance with false warning rates.
The reason for the false warnings and how they relate to our
DATMO are explained. Section 7.2 shows how our DATMO
can be used to classify objects as humans and nonhumans.
Our DATMO was also employed on an autonomous vehicle
for the DARPA Urban Grand Challenge. It was part of sev-
eral subsystems that detected and tracked moving objects.

DATMO’s role and function on this vehicle are described in
Section 7.3.

7.1. Side Collision Warning System (SCWS) for
Transit Buses

In a joint project, University of California PATH and
Carnegie Mellon University Robotics Institute developed
front and side collision warning systems for transit buses.
The purpose of these systems was to warn the bus driver
about dangerous situations and thereby avoid collisions.
For the side system, two SICK sensors and DATMO were
employed. Detailed descriptions of the system and the re-
sults can be found in the references PATH and CMU (2006).
The locations of the sensors and the computers are shown
in Figure 12. On the left and right side of the bus was one
retractable SICK LMS. On each upper corner was a video
camera. The cameras helped us to analyze collected data,
but they were not involved in creating warnings for the bus
driver. We also had a laser line striper (Aufrere et al. 2003)
consisting of a laser and a camera in the front right bumper.
This was used to detect the curb next to the vehicle. The
computers were housed in a compartment below the bus
driver.

Figure 12. Sensors and computers around the bus.
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Figure 13. Density (log scale) of warnings around the bus.

7.1.1. Range of Laser Scanner

We wanted to determine the maximum range that the laser
scanner needs to cover to detect all the dangerous situa-
tions the bus is exposed to during normal operations. For
this, we created a density plot of the location of all the warn-
ings, based on the warnings from all good runs. The density
plot for the PAT (Port Authority Pittsburgh) bus is shown in
Figure 13, where the highest density is dark red and the
lowest is dark blue.

Most of the warnings are located alongside the bus. On
the right side are mostly pedestrians, who are moving to-
ward the bus when the bus is coming to a stop. On the left
side, most of the warnings are caused by passing vehicles.
For the PAT bus there is a high concentration of warnings
in the middle of the bus adjacent to the right side.

The latter is the location of the laser scanner, and these
warnings were generated when the laser scanner was dirty.
The warnings in the front right or front left area of the bus
are generated when the bus is turning and an object is in
the path of the bus.

The figure also shows two enveloping areas, which in-
clude 80% and 98% of all warnings, respectively. They can
be described as rectangular boxes on the side of the bus
extending 3 m (5 m) from the back and 3 m (5 m) to the
side and a half-circle in front with a radius of 10 m (15 m).
The system covers the area of a half-circle of 50 m radius
for large objects (>1 m as viewed from the scanner), which
is much larger than the area indicated by the enveloping
limits. For pedestrian-sized objects, which are harder to de-
tect and track, the coverage is approximately a half-circle of
20 m radius, which still includes the enveloping area. We
can therefore be quite confident that we did not miss warn-
ings because of a lack of coverage.

The enveloped areas give an indication of what the
coverage of a commercial system should be. It is desirable
for the sensor to have a range somewhat greater than the
indicated area, because this enables the detection and track-
ing of objects before they enter the area.

7.1.2. SCWS Warning Algorithm

The sensors and modules described in the previous sections
provide the dynamic quantities of the bus and the observed
objects and additional information about the environment.
These measurements are combined with preloaded infor-
mation to analyze the threat level of the situation. In the
warning algorithm, the system calculates the probability
that a collision will occur within the next five seconds. If
the probability of collision exceeds a certain threshold, an
appropriate warning is displayed to the driver. In the warn-
ing algorithm for the SCWS, we have two warning levels:
“alert” and “imminent warning.” An “alert” is displayed to
the driver when the situation is somewhat dangerous, an
“imminent warning” is given if the situation is dangerous
enough to inform the driver in an intrusive way. A detailed
description of the algorithm can be found in Mertz (2004).
A short example is illustrated here.

In Figure 14, a bus turns right while an object crosses
its path from right to left (World). The sensors measure the
speed and turn rate of the bus and the location and veloc-
ity of the object. The algorithm calculates possible paths of
the object with respect to the bus (Fixed bus). In this calcula-
tion, the paths are distributed according to the uncertainties
of the measured dynamic quantities as well as according
to models of driver and object behavior. These models are
limits on speed, acceleration, turn-rate, etc. and were de-
termined from previously recorded data. Next, the system
determines for times up to 5 s into the future which fraction
of these paths lead to a collision. In Figure 14, this is shown

Figure 14. The trajectories of a bus and an object shown in the
world coordinate frame (left) and the fixed bus frame (right). In
the right figure, possible positions of the object are shown for
the times 2, 3, and 5 s in the future. Light gray indicates that no
collision has happened; dark gray indicates that a collision has
happened.
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Figure 15. Probability of collision plotted versus time. The
three regions correspond to the warning levels aware, alert,
and imminent.

for the times 2, 3, and 5 s. This fraction is the probability of
collision and is plotted versus time in Figure 15. This graph
is divided into three areas, each a different level of threat
severity. The area with the severest level that the probabil-
ity of collision curve reaches determines the warning issued
to the driver.

The algorithm can also deal with environmental infor-
mation. For example, if the object is a pedestrian and is
on the sidewalk, there is an enhanced likelihood that the
pedestrian will stay on the sidewalk. This is addressed by
giving the paths leaving the sidewalk a lower weight.

Underbus warning. Another important alarm is the under-
bus warning. It is issued when a person falls and has the
potential of sliding under the bus. We detect these situa-
tions by observing pedestrians who disappear while being
close to the bus. The challenge in this algorithm is to dis-
tinguish people who disappear through falling and people
who only seem to disappear, but in fact either merged with
another object or are occluded by other objects.

Notification that a collision occurred. Sometimes the bus
can collide with an object, especially a person, and the
driver does not notice it. It is therefore important to notify
the driver if a collision has occurred. A notification will be
triggered if the probability of collision is 100% for times up
to 0.5 s.

7.1.3. Missed Warnings

Alert and imminent warnings. The false negative alarm
rate (missed warnings) for alerts or imminent warnings is
difficult to determine because it is time-consuming to re-
view large sets of data to find situations when warnings
should have been given. Instead, we staged collisions to de-
termine how many the system missed. We did not observe
any missed warnings in these staged scenarios, which puts

an upper limit of 16% on the ratio of missed warnings to
correct warnings.

Failures that we observed in other situations that could
lead to missed warnings are:

• The system needs time to start up, so during this time
no warnings can be issued.

• The system reboots for some reason.
• The laser scanner is retracted.
• The laser scanner is dirty.
• The bus is leaning and therefore the laser scanner does

not point horizontally.
• Some objects do not reflect the laser light sufficiently. For

example, we observed a situation when a person was
wearing a dark outfit on a rainy day and was not seen
by the scanner. It could be that wet clothing specularly
reflected the laser light or the dark clothing absorbed it.

Contact warnings. Initial evaluation showed that this algo-
rithm is too restrictive, since objects colliding with the bus
at small velocities do not trigger a contact warning. The sys-
tem always gives an object an uncertainty in position and
velocity, so the probability-of-collision calculation will not
give a result of 100% unless the velocity of the object is suf-
ficiently large and aimed at the bus.

Under the bus warnings. We used the data from these
staged scenarios to test and calibrate the under-the-bus
warning algorithm. We found that we needed to modify
the tracking module (DATMO) to determine if an object
went into occlusion or merged with another object. This
information was passed to the warning algorithm so that
it did not falsely think an object disappeared (and poten-
tially was under the bus) when it in fact became occluded
or merged with some other object. We also discovered that
we should only consider objects that were detected for at
least half a second to suppress alarms for spurious objects.
Lastly, objects that are as far as 1.8 m from the bus when
they disappear need to be considered. After these modifi-
cations and tuning of parameters, all 12 staged events gave
correct under-the-bus warnings.

There were not enough staged events to determine a
reliable rate of false negative under-the-bus warnings. False
negative warnings are possible when a person falls while
being occluded by another object or the last part seen by the
sensor is close to another object and merges with it. Another
possibility is that a person falls under the bus at the front
door when the door is open. The system excludes these sit-
uations because people routinely disappear from the view
of the sensor at that location when they enter the bus.

7.1.4. False Positive Warnings

Alert and imminent warnings. When we interviewed op-
erators about the warning system, they stated that although
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Table VII. True and false positive warnings.

Absolute Relative (%) Rate (1/h)

Alert Imminent Alert Imminent Alert Imminent

Right Left Right Left Right Left Right Left Right Left Right Left

True 60 94 15 9 59 71 47 26 12.0 18.8 3.0 1.8
Vegetation 10 3 2 0 10 2 6 0 2.0 0.6 0.4 0.0
false velocity 21 28 10 20 21 21 31 57 4.2 5.6 2.0 4.0
no velocity 0 2 1 0 0 2 3 0 0.0 0.4 0.2 0.0
ground return 10 4 3 3 10 3 9 9 2.0 0.8 0.6 0.6
Other 1 2 1 3 1 2 3 9 0.2 0.4 0.2 0.6
Sum 102 133 32 35 100 100 100 100 20.4 26.6 6.4 7.0

the collision warning system is acceptable to them, they still
would like a lower false warning rate. The false warning
rates discussed below should therefore be considered in the
context of an acceptable system, while recognizing that a
reduction in the false warning rate is desirable.

We reviewed all alerts and imminent warnings in two
runs and determined if they were true or false. One of the
runs took place in California and the other in Pennsylva-
nia, and together they were five hours long. We wanted to
gather enough data to ensure that we observed the main
categories of false warnings. We collected at least 30 warn-
ings for each warning level and each side to ensure an up-
per limit of 10%, i.e., false warning categories that were
not observed have a rate of less than 10% (90% confidence
level). Table VII shows the absolute number of warnings,
the relative number for each category (percentage of the to-
tal number of warnings), and the warning rates, for the left
and right sides.

The most common situations that cause true warnings
are vehicles passing and fixed objects in the path of a turn-
ing bus. On the right side there are additional true warnings
caused by pedestrians entering the bus or walking toward
the bus when the bus has not yet come to a full stop.

A majority of the alerts are true alerts, whereas a major-
ity of the imminent warnings are false positives. The most
common reason for false imminent warnings is that the ve-
locity estimation was incorrect, but as explained below this
kind of error is not very serious.

Vegetation. The system cannot distinguish between veg-
etation (grass, bushes, and trees) and other fixed objects,
but the threat posed by vegetation is much smaller than
other objects because a bus can come in contact with grass,
leaves, or small branches without being damaged. A warn-
ing triggered by vegetation can often be considered a nui-
sance warning. This is the least serious kind of system error
because the system functions correctly, but the warning is
considered a nuisance. Figure 16 shows a situation when
the bus comes close to a bush and an imminent warning

is triggered. On the right side, the four images from the
four side cameras (see Figure 12) are shown. The bush can
be seen in the upper right image, overlaid with a dotted
and a thick white box, indicating an alert and an imminent
warning for that object. Those boxes can also be seen in the
bird’s-eye view of the situation on the left. Notice that part
of the bush extends over the curb. If an object is off the curb,
the warning algorithm will give it a higher probability of
collision than if it is on the curb.

False velocity estimation. The velocities of the objects are
determined by our DATMO algorithm. Figure 9 shows the
error distribution of the velocity estimation in the x and
y direction from that report. The distribution is character-
ized by a Gaussian shape plus some additional outliers. The
false velocities that give false warnings are from the tail of
the Gaussian distribution or are outliers. An example of a
case when a slightly incorrect velocity estimation leads to
an alert is shown in Figure 17. The vehicle can be seen in
the lower left image with a dotted box on it, indicating an
alert. The dotted box also appears in the bird’s-eye-view
display.

The incorrect velocity estimation increases the proba-
bility of collision by enough to cross the warning threshold.

Figure 16. Overhanging bush is close enough to trigger an
alert (dotted box) and an imminent warning (thick white box).
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Figure 17. The velocity estimation of the vehicle is slightly off,
leading to an alert (dotted box).

It needs to be mentioned that this kind of error is not very
serious because the danger level was only slightly overes-
timated. In most of the cases when an imminent warning
was issued because of a false velocity estimation (such as
Figure 17), the correct warning level would have been an
alert.

No velocity information. Our DATMO needs some time to
determine the velocity of an object after its initial detection
(see the “velocity delay” discussion in Section 6.2). During
that time, the system ignores the velocity of the object, i.e.,
sets it to zero. In some cases, this can lead to a false warning,
especially if the object is in the path of the bus and moving
away from the bus. This error is of medium seriousness be-
cause an object is present but the threat level is misjudged.

It is possible to avoid these false warnings by wait-
ing until the velocity of the object has been established, but
this would introduce latency and therefore false negative
warnings.

Ground return. The laser scanners will see the ground if
the bus rolls or pitches or if the ground in the vicinity of the
bus slopes upward with respect to the plane on which the
bus stands. Depending on the location of the ground seen
by the sensor, the system might issue a warning, as shown,
for example, in Figure 18.

Figure 18. Ground returns seen as an object in the left front of
the bus (thick white box).

In this case the bus is turning left. The laser scanner
sees the ground and the system thinks an object is directly
in the path of the bus and issues an imminent warning. In
the left upper image, the ground return is indicated as a
thick white (imminent warning) box and in the bird’s-eye-
view display it is the thick white box in the upper left cor-
ner. This is the most serious false positive, because a warn-
ing is issued when there is no threat whatsoever.

Other reasons for false positives. There are many other
reasons for false positive warnings, which can vary greatly
in their frequency from run to run. For example, in some
runs a malfunction of the retraction mechanism misaligned
the laser scanner and resulted in hundreds of false warn-
ings. Some of the reasons were easily eliminated after their
discovery, but they are listed here for completeness.

Retraction malfunction: When the laser scanner is re-
tracted, a switch should signal this fact to the system. In
some cases the switch malfunctioned and the sensor was
retracted without the system knowing about it.

Dirt on the scanner: Dirt on the laser scanner appears as
an object very close to the bus. This problem can be solved
by discarding all scanner data points very close to the scan-
ner itself.

Scanner sees the bus: The laser scanner can see parts of
the bus if the scanner is slightly misaligned or if some parts
of the bus protrude, such as an open door or a wheel when
the bus is turning. This problem can be solved by excluding
returns from certain areas, but this has the side effect that
these areas are now blind spots.

Error in DATMO: There are many ways that our
DATMO algorithm can make mistakes. The most common
one was already mentioned above, this being the incorrect
estimation of the velocity of an object.

Splashes: Splashes of water can be seen by the scanner
and trigger a warning. In Figure 19, one can see the devel-
opment of such a splash, indicated by a circle in the mid-
dle image. The outline of the bus is on the left in gray. The
splashes are seen by the sensor for only about 0.2 s, but
this is enough to be registered as an object and to trigger
an alert.

Noise in turn rate: The turn rate of the bus is measured
by a gyroscope, which has some noise, so there is a small
chance that it gives an erroneous value. Very few cases were
observed when these errors led to a false warning.

Dust: A cloud of dust can be produced by the wheels,
appearing as an object to the system.

7.1.5. Contact and Under-the-bus Warnings

The rate of contact warnings is very low, about 0.4 warn-
ings/h on the right side and 0.1 warnings/h on the left side.
All the contact warnings we observed during normal oper-
ations were false positive warnings, i.e., no actual collisions
occurred. These warnings were not directly related to our
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Figure 19. Example of a splash of water appearing on the right side of the bus.

DATMO. They were caused by two different indicator fail-
ures. One was the indicator for the retraction of the laser
scanner and the other was the bus-door-open indicator. Ei-
ther indicator would have vetoed the collision warning.

For the under-the-bus warnings, we observed a false
positive rate of 1.9 per hour. About half of those were
caused by similar indicator failures to those for contact
warnings. Most of the rest were cases when the system was
not able to interpret a cluttered scene correctly. In two cases,
the bus tires created a small dust cloud that disappeared af-
ter a short time and triggered a warning.

The total false positive warning rates of 0.5 contact
warnings/h and 2 under-the-bus warnings/h are still too
high because either warning requires drastic actions from
the bus driver, namely stopping the bus and investigating
what happened. We therefore did not activate and display
these warnings for the operational testing in public service.

The fact that we did not observe any correct under-
the-bus warning is no surprise, since people falling under
the bus is an extremely rare event. The system would bene-
fit from additional sensors that can positively identify that
something is underneath the bus or that something hit the
bus.

7.2. Human Detection with CTA System

In the CTA project we used 3D scanners, as seen in Figure 2
on top of the XUV and the Suburban. For this application,
the 3D data were converted to a 2D scan line using the pro-
cedure described in Section 5. This conversion is done to
eliminate ground returns, and also to reduce the compu-
tational cost of processing the point cloud. Consequently,
object detection and tracking can be done very efficiently.
We have achieved rates up to 15 Hz when processing up to
10,000 points per frame coming from two 3D scanners. But
in addition to detection and tracking, the system can also
classify objects. In this case, we were specifically interested
in determining which objects are humans: one of the most
important goals of any autonomous system is to avoid col-
liding with people.

We have developed a simple human detection algo-
rithm, which is described in detail in Navarro-Serment et al.

(2008). This algorithm operates as follows: Once the 2D scan
line is obtained, and after the DATMO process has been ex-
ecuted, four basic measures are determined for each object
being tracked: the object’s size, the distance it has traveled,
and the variations in the object’s size and velocity. These
measures are tested to score the extent to which the target
is believed to be a human. The size test eliminates large ob-
jects such as buildings and vehicles. The distance traveled
test discriminates against stationary objects such as barrels
and posts. Finally, both noise variation tests discriminate
against vegetation, since their signature in the scan line typ-
ically changes considerably due to their porous and flexible
nature.

All objects are evaluated by computing their Strength
of Detection (SOD), based on the four measures described
before. The SOD is a measure of how confident the algo-
rithm is that the object is actually a human. The SOD is the
product of the scores of the size and distance traveled test,
and the square root of the scores of the variance tests. The
objects evaluated with a SOD larger than a given thresh-
old are classified as humans. A sample result is illustrated
in Figure 20, where a snapshot of the point cloud contained
in one frame is shown. Tracked objects classified as humans
are colored from green (low) to red (high) according to their
SOD; objects in blue have an SOD of zero. The rest of the
points, which do not belong to any object being tracked,

Figure 20. Segmentation of points based on tracking
information.
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Figure 21. ROC and precision-recall curves for human classification, comparing performance for static and moving humans. The
data used to produce these plots come from various runs using the GenIII LADAR. The variations included static and moving
vehicles, pavement and off-road driving, and pedestrians standing, walking, or jogging.

are colored in gray. One can see that the human has a high
SOD whereas the other objects have a low SOD or an SOD
of zero.

To evaluate our detection algorithm, we hand-labeled
the objects reported by DATMO as humans and non-
humans and used this as ground truth to calculate the
performance curves. Figure 21 shows ROC and the
precision-recall curves for both static and moving humans.
Each object in each cycle counts as one example. For the
plot with moving humans, there were 1,793 cycles, 5,605
positive, and 55,241 negative examples. For the static hu-
mans, there were 380 cycles, 577 positive, and 9,935 nega-
tive examples.

This classifier performs fairly well when dealing with
moving humans. It has a 75% precision (or 2.7% false posi-
tive rate) at 80% recall (or true positive rate), but it has diffi-
culties with stationary humans, as can be seen in Figure 21.
This issue was the focus of subsequent research, where a
classifier was designed to exploit the information contained
in the 3D point cloud of each object (Navarro-Serment et al.,
2010). This work demonstrated improved classification per-
formance of both moving and static pedestrians. The im-
provements were most significant in the case of static hu-
mans. Alas, given the strict 3D nature of this algorithm,
they cannot be applied to 2D laser scanners.

7.3. Urban Grand Challenge System

Our DATMO played an important part of the detection
and tracking of moving cars in Tartan Racing’s entry into
the Urban Challenge in 2007 (Urmson et al., 2008). Boss,
the robot fielded by CMU, had a wide range of sensors
that were used for its perception systems, including eight

planar LADARs, two point LADARs, one 3D LADAR, and
five RADARs. For the detection and tracking of moving ob-
stacles perception subsystem, Boss made use of three SICK
planar LADARs mounted on the bumpers (two in front and
one in back), two IBEO AlaskaXT planar LADARs mounted
on the front bumpers, two point LADARs that were de-
signed for automatic cruise control (ACC) applications, and
five long-range RADARs. Each sensor type used in the
moving obstacle tracking subsystem passed its raw data
through a series of filters and data interpretation systems
that were responsible for converting the data into a form
that was compatible with the other sensors. The data gen-
erated from each of these sensors were then fused together
into a unified multitarget tracking module that reported the
existence and statistics of all moving obstacles around Boss
to the behavior and planning subsystems (Darms et al.,
2009).

In the early stages of Boss’s development, the only sen-
sors to be integrated into the system were the three planar
SICK LADAR mounted on the robot’s bumpers. Before de-
velopment began on the multisensor moving obstacle fu-
sion system, our DATMO was used to interpret the laser
point readings from the SICKs. The laser data from all three
SICKs were fused into a single 2D point cloud and this was
given to our DATMO for processing. DATMO clustered
the points into edge and corner-shaped targets, computed
their velocities, and returned this to the rest of the system.
This worked fairly well in the initial stages of testing, how-
ever there were some immediate shortcomings. First, our
DATMO is optimized for fitting lines and “L”-shaped cor-
ners to moving obstacles such as cars. When Boss was fol-
lowing a vehicle on the road, the front two bumper SICKs
would be able to see both rear corners of the vehicle. This
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created a “U”-shaped target in front of the robot that some-
times did not resolve properly in our DATMO system. The
second issue was that our DATMO generates very conser-
vative estimates for an object’s velocity. This is to ensure
that when a velocity is reported, it is accurate and reliable.
However, for an application like the Urban Challenge, a
reliable velocity estimate was needed almost immediately
once a moving object was detected.

The decision to develop a more complex moving ob-
stacle fusion system above and beyond the capabilities pro-
vided by our DATMO was three fold. First, our DATMO
had no mechanism for processing non-LADAR data from
sensors such as a RADAR. Secondly, the configurations of
the SICKs on the front of Boss did not lend themselves well
to generating a single set of laser points for our DATMO to
work with because of the overlap in the front that would
generate “U”-shaped targets. Finally, rapidly obtaining an
accurate estimate of a target’s velocity once it was detected
was a high priority for the team. The third issue would be
addressed by fusing the Doppler RADARs into the system,
which provided a direct measurement of velocity along the
axis of the emitted RADAR energy.

To combat the problem of the “U”-shaped targets, the
data from each planar SICK were fed into its own instance
of our DATMO, which clustered the points into edge and
“L”-shaped targets. These targets were fed into the mov-
ing obstacle fusion system and were merged with the other
targets generated from the other sensors. Ultimately, the ve-
locity estimate from our DATMO was not used as velocity
was estimated using the Kalman filters in the moving ob-
stacle fusion system. As stated before, direct velocity mea-
surements taken by the multiple RADAR assisted with ob-
taining a rapid and accurate estimate of target velocities.

One of the important functions provided by our
DATMO was the clustering of the LADAR points into lines
and “L”-shaped targets. The moving obstacle fusion system
made use of two different kinematics models for tracking
cars. The first is known as the “simple bicycle model” and is
a center-pivot steering model. The second is a simple point
model and is used by the RADARs as the targets returned
by those systems have no shape. When our DATMO returns
a line or an “L”-shape because the plane of the LADAR
traces along the side and/or the front of the car, the sim-
ple bicycle model is used (Figure 22). Without the shape of
the object being resolved by our DATMO, this model could
not be used as the velocity vector of the object is directly
coupled to its orientation.

Below is a sequence of images that illustrates the dif-
ferent stages of the moving obstacle fusion system used by
Boss in the Urban Challenge.

Figure 23 shows a representation of the raw data re-
turned by all of the different sensors. Individual laser
points highlight not only the nearby cars but also the edges
of the road. The diamond-shaped objects in this image are
targets returned by the RADARs.

Figure 22. Tracking models used by the moving obstacle
fuser. On the left is the simple bicycle model, which relies on
the shape of the tracked object to determine its heading. On
the right is the simple point model used when the shape of the
tracked car cannot be resolved (Darms et al., 2008).

Figure 23. A top-down virtual view showing Boss (lower cen-
ter) and the raw data from its forward-mounted LIDAR and
RADAR sensors. Point clouds from the LIDAR sensors are
shown as dots. RADAR targets are shown as boxes and dia-
monds. A set of curbs is visible in the LIDAR data.

The next step is to use modules such as our DATMO on
the SICK LADARs and the proprietary algorithms used by
the IBEO LADARs to cluster the individual LADAR points
into a sequence of line and “L”-shaped targets (Figure 24).
All other LADAR points are discarded as belonging to non-
car objects.

After clustering the LADAR points, all targets, regard-
less of whether they were from LADARs or from RADARs,
were validated to remove false positives. For the Urban
Challenge domain, all moving objects of interest were
found on the roads. Thus, any target that did not appear on
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Figure 24. Lines and L-shaped targets.

Figure 25. Target on and off the road.

the road world model (illustrated under Boss in Figure 25)
was filtered out from consideration. A second filtering step
was employed whereby the points returned by the Velo-
dyne 3D LADAR were used to check whether a line target,
an “L”-shaped target, or even a RADAR target actually be-
longed to a car. If the 3D point cloud corresponding to the

Figure 26. Lines and L-shapes merged with existing targets.

same location as the line points did not have the expected
volume and shape, then that potential target would also be
removed from consideration.

Each of the targets that survived the filtering process
would then be associated with existing targets already be-
ing tracked, as shown in Figure 26. The line and “L”-shaped
targets were compared against the known shape of the
different targets to determine the proper alignment of the
measurements. Any measurements that did not correspond
to a preexisting target would be a candidate for the creation
of a new target.

Finally, the set of measurements would be applied to
the target list, and statistics about the position, velocity,
and movement history would be generated for each target
(Figure 27). This information then was passed on to the be-
havior and planning modules.

8. ADDITIONAL CONFIGURATIONS AND
APPLICATIONS

Two more systems with 3D scanners are found in
Sections 8.1.1 and 8.1.2, each with different scanning
patterns and update rates from the one in Section 5. The
DATMO results were used for a dynamic planner and for
human detection. With the final system in Section 8.2, we
have a fixed indoor setting where we demonstrate the mon-
itoring of a wider area over long periods of time and the use
of multiple sensors.
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Figure 27. Final list of objects.

Figure 28. Picture of a situation seen by the nodding SICKs.

8.1. NREC Data

The Natinal Robotics Engeneering Center (NREC) pro-
vided us with data containing people and vehicles that we
analyzed off-line. In Figure 29, one can see a bird’s-eye view
of the scenario derived from the data. The white objects
are the stationary objects, mostly containers, visualized as
a cost map. The tracks of the people are red lines and the
path of the vehicle are the purple X’s.

Figure 29. Fixed objects (white) and tracks (gray) observed
by the nodding SICKs and our DATMO. The path of the host
vehicle is shown as X’s.

8.1.1. Nodding SICK

The nodding SICKs are shown in Figure 2 in the lower left.
One of the scenarios seen by the sensors can be seen in Fig-
ure 28. We analyzed these data as part of a project where we
wanted to show that data from such a sensor arrangement
can be used for a dynamic planner. In this particular run,
there were only pedestrians and no moving vehicles.

The points from one nodding cycle were accumulated
into one point cloud. The point cloud was treated like the
point cloud from the Gen III LADAR (Section 5), the ground
points were removed, and the slice was taken from the re-
maining data. The resulting tracked objects are shown in
Figure 29.

The main difference between this system and the Gen
III LADAR is that the update rate is very low, only about
2 Hz (Table III). Also, the point pattern is different from the
Gen III LADAR. One effect of the low update rate is that
there is some smear in the point cloud when a person is
moving. But as is evident in Figure 29, we are able to track
the people over long distances so that we are able to feed
these data into a dynamic planner. The paths of people that
overlap static objects are cases when an object is kept alive
for a while after it goes into occlusion. The static objects
were used to build a static cost map. In Figure 29, the costs
are indicated with gray scale. Black is no cost and white
is highest cost. The updates of position and velocity of the
dynamic objects were passed to the planner at each cycle.
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Figure 30. A snapshot of the 3D Velodyne data. The estimated
ground plane is blue, points below the ground are white, above
it green, and the slice is red. One can see several humans, two
vehicles, and containers.

8.1.2. Velodyne

Velodyne data were recorded at the same time as the data
for the nodding SICKs. The Velodyne sensor has a 360◦
horizontal field-of-view. However, in this case the back
view was obscured by other equipment and we only used
the front 180◦. An example of a point cloud is shown in
Figure 30. One can see humans, two vehicles, and rectan-
gular containers.

The 3D data were analyzed as described in Section 5,
the ground points were removed, and the slice was taken
from the remaining data. This can be seen in Figure 30,
where the ground plane is indicated by blue points, points
below the plane are white, those above the plane are green,

and the slice is red. Next the slice is projected into 2D and
analyzed by the detection and tracking algorithm. It should
be pointed out that we did not have to adjust any parame-
ters to make the system work except the field-of-view.

One measure on how well the system works with these
particular data is to evaluate its classification performance,
as was done for Gen III LADAR data in Section 7.2. Objects
are classified as humans or nonhumans by looking at their
size, movement, and noise characteristics. As in Section 7.2,
we hand-labeled the objects coming to get the ground truth
and calculated the performance curves. In Figure 31, one
can see the ROC and the precision-recall curves. They are
plotted for distance smaller and greater than 35 m. Each
object in each cycle counts as one example. There were 943
cycles. For distances less than 35 m, we had 4,468 positive
examples and 10,883 negative examples; for those greater
than 35 m, we had 644 positive examples and 13,562 nega-
tive examples.

The curves for distances smaller than 35 m are qualita-
tively similar to the ones in Figure 21 and thereby indicate
that our DATMO gives similar results to these two different
3D LADARS. A more detailed quantitative comparison is
not possible, because the scenarios were different. The run
with the Velodyne had no vegetation or stationary humans,
but instead containers and more vehicles.

We were able to detect humans up to 60 m. The clas-
sification is better at shorter distances, which is not sur-
prising. One can see the difference in Figure 31, where we
plotted the ROC and the precision-recall curves for distance
smaller and greater than 35 m.

8.2. Indoor

Our DATMO system can also be used indoors in a fixed set-
ting. In contrast to scanners mounted on a vehicle, which

Figure 31. ROC and precision-recall curves for human classification with Velodyne LADAR.
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Figure 32. The tracked paths in the indoor environment. The
locations of the SICK sensors are indicated by the green arrows.
The fixed objects (walls, furniture, etc.) are marked in red. The
paths of individual people are shown in blue. The locations
where people appear and disappear are indicated with green
X’s and black O’s, respectively.

are relatively close together and face away from each other,
the scanners in this setup are distributed over a wide area
and face each other. Figure 2 (lower right) shows the indoor
environment; one of the SICK sensors can be seen. The lo-
cations of the other three are indicated in Figure 32. That
figure displays the tracks from one run. The significance
in this setup is that we were able to track people walking
around the island in the middle of the room without inter-
ruption. The people were handed off from one sensor to the
next. This was done by fusing the sensors at the segment-
to-object level (see Section 4.2). Each scan from each sensor
was segmented individually and the segments were used
to update an object list that was common to all sensors.

We collected data in this setting almost continuously
for over a month. The only interruptions were the periodic
retrieval of the data. The tracks generated by our DATMO
were used in a project to learn and predict the behav-
ior of people using a Markov decision process framework
(Ziebart et al., 2009). To select only the tracks that belong
to single humans, we rejected tracks that merged or split
with other tracks and we required a high score in the hu-
man classification (see Section 7.2). In Figure 32, one can
see the tracks for one run. One can also see the locations
where tracks started (green “X”) and terminated (black cir-
cle). These locations are used as the origins and possible
goals in the Markov decision-process framework. Our sys-
tem provided high-quality data to train and test the predic-
tion model.

9. CONCLUSION AND OUTLOOK

We have shown that our DATMO can be employed on a
variety of platforms with different kinds of 2D and 3D laser
scanners. The data from multiple scanners can be combined
on the raw data level, on the segment to object level, or on
the object level. The system is able to track on the order
of 100 objects simultaneously. The applications that used
our DATMO included a collision warning system, pedes-
trian detection and classification, autonomous driving, hu-
man track learning and prediction, and input to a dynamic
planner. We have also characterized the accuracy and the
limitations of the system.

Our DATMO is now a tool with which we can build
many more future applications. Nevertheless, there are ar-
eas where our DATMO can be improved. It would be desir-
able to have a more systematic way of optimizing the con-
figuration parameters of DATMO for particular purposes.
There could also be a use for a greater variety of each of the
subalgorithms: ground estimation, segmentation, feature
extraction, association, motion prediction, stochastic filters,
and classification. In particular, one can make more use
of 3D information. However, we found [e.g., in Navarro-
Serment et al. (2010)] that 3D algorithms need a lot of com-
putational time and one needs to be careful in how to im-
plement them while retaining the ability to run the system
in real time. Another of our current research thrusts is to
do much better predictions of pedestrian behavior (Ziebart
et al., 2009). Better predictions will allow us to keep better
track of a person who temporarily went into occlusion.

A particularly interesting and challenging topic is dy-
namic planning, i.e., planning in environments with mov-
ing objects. Such planning would already be difficult if
the sensors gave a perfect representation of the environ-
ment. But the additional challenge for the planner is to
deal with the uncertainties that will come from DATMO.
For DATMO, on the other hand, the challenge is to make
the right tradeoffs between different errors (over- and
undersegmentation, different kinds of misassociations,
false and missed detections, etc.).
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