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Abstract— Many robotic systems deal with uncertainty by
performing a sequence of information gathering actions. In this
work, we focus on the problem of efficiently constructing such
a sequence by drawing an explicit connection to submodularity.
Ideally, we would like a method that finds the optimal sequence
of actions, taking the minimum amount of time while providing
sufficient information. Finding this sequence, however, is gen-
erally intractable. As a result, many well-established methods
select actions greedily. Surprisingly, this often performs well
even with only one step lookahead. Our work first explains
this high performance – we note that a commonly used metric,
reduction of Shannon entropy, is submodular under certain
assumptions, rendering the greedy solution comparable to
the optimal plan in the offline setting. Recently developed
notions of adaptive submodularity enable guarantees for a greedy
algorithm in the online setting. We develop new methods within
this framework, enabling us to provide guarantees compared
to the optimal online policy, as well as exploit additional
computational speedups. We demonstrate the effectiveness of
these methods in simulation and on a robot.

I. INTRODUCTION

Dealing with uncertainty is a fundamental problem in
robotics. Uncertainty accumulates from various sources such
as noisy sensors, inaccurate models, and calibration er-
ror. This is particularly problematic for fine manipulation
tasks [1], such as precise grasping, button pushing, or insert-
ing a key into a keyhole. Due to the high accuracy required
for these tasks, small errors often lead to catastrophic failure.

A standard approach is to perform a sequence of uncer-
tainty reducing actions [2]–[6]. In fine manipulation, such
actions are often encoded as guarded moves [7], where the
hand moves along a path until it feels a touch.

The optimal sequence of actions provides enough informa-
tion to accomplish the task while optimizing a performance
criterion like minimum energy or time. Computing the op-
timal sequence can be formulated as a Partially Observable
Markov Decision Process (POMDP) [8]. However, finding
optimal solutions to POMDPs has been shown to be PSPACE
complete [9]. Although several promising approximate meth-
ods have been developed [10]–[13], they are still not well
suited for many manipulation tasks, due to the continuous
state and observation spaces.

In this paper, we address the efficient automatic con-
struction of such a touch-based localization sequence. Our
primary insight is a connection to submodularity, allowing us
to utilize efficient greedy algorithms and additional computa-
tional speedups. Furthermore, we provide guarantees that the
sequence we select is near-optimal. Our experiments confirm
that our methods provide accurate localization in an efficient

Fig. 1: We adaptively select a sequence of touch actions to
reduce uncertainty. Here, we show actions selected by our
Hypothesis Pruning method, enabling a successful grasp.

manner. See Fig. 1 for an example sequence which enabled
a successful grasp of a noisy door handle.

Previous work on localization often utilizes online plan-
ning within the POMDP framework, looking at locally
reachable states during each decision step [14]. In general,
these methods limit the search to a low horizon [15], often
using the greedy strategy of selecting actions with the highest
expected benefit in one step [2], [3], [5], [6]. This is generally
out of necessity - computational time increases exponentially
with the search depth. However, this simple greedy strategy
often works surprisingly well for uncertainty reduction.

One class of problems known to perform well with a
greedy algorithm is submodular maximization. A metric is
submodular if it exhibits the diminishing returns property,
which we define rigorously in Section III-A. A striking
feature of submodular maximizations is that a simple greedy
selection scheme is provably near-optimal. Furthermore, no
polynomial time algorithm can guarantee optimality (unless
P = NP) [16], [17].

One often used metric for uncertainty reduction is the ex-
pected decrease in Shannon entropy [2]–[6], [18]–[20]. This
is referred to as the information gain metric, and has been
shown to be submodular under certain assumptions [21].



Not surprisingly, many robotic systems which perform well
with a low horizon use this metric [2], [3], [5], [6], [18],
though they do not make the connection with submodularity.
We note that Hsiao mentions that touch localization could
be formulated as a submodular maximization problem [15].
One of our contributions is identifying the assumptions
required for greedy action selection to be near-optimal,
their consequences, and applicability to different problems
in Section IV-A, as well as providing experimental results.

The guarantees for submodular maximization only hold
in the non-adaptive setting. That is, if we were to select a
sequence of actions offline, and perform the same sequence
regardless of which observations we received online, greedy
action selection would be near-optimal. Unfortunately, it has
been shown that this can perform exponentially worse than
a greedy adaptive algorithm for information gain [22], and
thus we evaluate information gain online.

Recent notions of adaptive submodularity [23] extend the
guarantees of submodularity to the adaptive setting. The
set of requirements for adaptive submodular functions are
different, and information gain does not meet those criteria.
With information gain as our inspiration, we design a similar
metric which does. In addition to providing guarantees with
respect to that metric, we can use a lazy-greedy algo-
rithm [23], [24] which does not reevaluate every action at
each step, enabling a computational speedup.

In this work, we draw an explicit connection between
touch based localization with a robotic end effector and
submodularity. Understanding this connection enables us to
design methods that fit into this framework and use a more
efficient algorithm with near-optimal performance.

Along those lines, we present two approaches for uncer-
tainty reducing action selection. The first approach optimizes
the information gain by fitting a Gaussian distribution to the
remaining particles, and evaluating the expected entropy that
results from each action. The second approach maximizes the
expected number of hypotheses it will disprove. We show
that our formulation of this metric is adaptive submodular.
We apply both methods to selecting touch based sensing
actions. We present results in Section V, comparing the
accuracy and computation time of each metric. Finally, we
show the applicability of these methods on a real robot.

II. RELATED WORK

Hsiao et al. [5], [15] formulate the problem of producing
uncertainty reducing tactile actions with a POMDP. Since it
is intractable to solve fully, they perform a forward search
online. Potential actions are specified by a small set (typically
∼5) of preset world-relative trajectories [5], making for a low
branching factor. By searching at a limited horizon and per-
forming aggressive pruning and clustering of observations,
they circumvent computational issues. However, this can still
take many seconds to compute each action and update, and
there are no guarantees for optimality. In contrast, our work
focuses on simpler actions and observations with a horizon
of one, enabling us to consider significantly more actions
(typically ∼150) and achieve localization more quickly.

Hebert et al. [6] independently approached the problem of
action selection for touch based localization. They utilize a
greedy information gain metric, similar to our own. However,
they do not make a connection to submodularity, and provide
no theoretical guarantees with their approach. Additionally,
they model noise only in X ,Y,Z, while we use X ,Y,Z,θ .
Furthermore, by using a particle based representation instead
of a histogram (as in [6], [15]), we can model the underlying
belief distribution more efficiently.

Others forgo the ability to plan with the entire belief space
altogether, projecting onto a low-dimensional space before
generating a plan to the goal. During execution, this plan
will likely fail, because the true state was not known. Erez
and Smart use local controllers to adjust the trajectory [25].
Platt et al. note when the belief space diverges from what
the plan expected, and re-plan from the new belief [26].
They prove their approach will eventually converge to the
true hypothesis. While these methods plan significantly faster
due to their low-dimensional projection, they pick actions
suboptimally. Furthermore, by ignoring part of the belief
space, they sacrifice the ability to avoid potential failures. For
example, these methods cannot guarantee that a trajectory
will not collide and knock over an object, since the planner
may ignore the part of the belief space where the object is
actually located.

Petrovskaya et al. [27] consider the problem of full 6DOF
pose estimation of objects through tactile feedback. Their
primary contribution is an algorithm capable of running in
the full 6DOF space quickly. In their experiments, action
selection was done randomly, as they do not attempt to
select optimal actions. To achieve an error of ∼5mm, they
needed an average of 29 actions for objects with complicated
meshes. While this does show that even random actions
achieve localization eventually, we note that our methods
take significantly fewer actions.

In the DARPA Autonomous Robotic Manipulation Soft-
ware (ARM-S) competition, teams were required to local-
ize, grasp, and manipulate various objects within a time
limit. Many teams first took uncertainty reducing actions
before attempting to accomplish tasks [28]. Similar strategies
were used to enable a robot to prepare a meal with a
microwave [29], where touch-based actions are used prior
to pushing buttons. To accomplish these tasks quickly, some
of these works rely on hand-tuned motions and policies,
specified for a particular object and environment. While this
enables very fast localization with high accuracy, a sequence
must be created manually for each task and environment.
Furthermore, these sequences aren’t entirely adaptive.

Dogar and Srinivasa [30] use the natural interaction of
an end effector and an object to handle uncertainty with
a push-grasp. By utilizing offline simulation, they reduce
the online problem to enclosing the object’s uncertainty in
a pre-computed capture region. Online, they simply plan a
push-grasp which encloses the uncertainty inside the capture
region. This work is complimentary to ours - the push-grasp
works well on objects which slide easily, while we assume
objects do not move. We believe each approach is applicable



in different scenarios.
Outside of robotics, many have addressed the problem of

query selection for object identification. In the noise-free
setting, a simple adaptive algorithm known as generalized
binary search (GBS) [31] is provably near optimal. Inter-
estingly, this algorithm selects queries identically to greedy
information gain if there are only two outcomes [19]. The
GBS method was extended to multiple outcomes, and shown
to be adaptive submodular [23]. Our Hypothesis Pruning
metric is similar to this formulation but with a more general
observation space, allowing us to essentially model some
amount of noise.

Recently, there have been guarantees made for the case of
noisy observations. For binary outcomes and independent,
random noise, the GBS was extended to noisy generalized
binary search [32]. For cases of persistent noise, where
performing the same action results in the same noisy out-
come, adaptive submodular formulations have been devel-
oped based on eliminating noisy versions of each hypothe-
sis [33], [34]. In all of these cases, the message is the same
- with the right formulation, greedy selection performs well
for uncertainty reduction.

III. PROBLEM FORMULATION

We review the basic formulation for adaptive submodular
maximization. For a more detailed explanation, see [23].

Let a possible object state be φ , called the realization.
Let Φ be a random variable over all realizations. Thus, the
probability of a certain state is given by p(φ) = P [Φ = φ ].
At each decision step, we select an action a from A, the
set of all available actions, which incurs a cost c(a). Each
action will result in some observation o from O, the set of all
possible observations. We assume that given a realization φ ,
the outcome of an action a is deterministic. Let A⊆A be all
the actions selected so far. During execution, we maintain the
partial realization ψA, a sequence of observations received
indexed by A. We call it a partial realization as it encodes
how realizations φ ∈Φ agree with observations.

For the case of tactile localization, φ is the object pose.
A corresponds to all end-effector guarded move trajectories,
which terminate when the hand touches an obstacle. O
encompasses any possible observation, which is the set of
all distances along any trajectory within which the guarded
move may terminate. The partial realization ψA essentially
encodes the “belief state” used in POMDPs, which we denote
by p(φ |ψA) = P [Φ = φ |ψA].

Our goal is to find an adaptive policy for selecting actions
based on observations so far. Formally, a policy π is a
mapping from a partial realization ψA to an action item a.
Let A(π,φ) be the set of actions selected by policy π if the
true state is φ . We define two cost functions for a policy -
the average cost and the worst case cost. These are:

cavg = EΦ [c(A(π,Φ))]

cwc = max
φ

c(A(π,φ))

Define some utility function f : 2A×OA → R≥0, which
depends on actions selected and observations received. We

would like to find a policy which that will reach some utility
threshhold Q while minimizing one of our cost functions.
Formally:

min c{avg,wc}(A(π,Φ))

s.t. f (A(π,φ),φ)≥ Q,∀φ

This is often referred to as the Minimum Cost Cover
problem, where we achieve some coverage Q while mini-
mizing the cost to do so. We can consider optimal policies
π∗avg and π∗wc for the above, optimized for their respective
cost functions. Unfortunately, obtaining even approximate
solutions is difficult [16], [23]. However, a simple greedy
algorithm achieves near-optimal performance if our objective
function f satisfies properties of adaptive submodularity and
monotonicty. We now briefly review these properties.

A. Submodularity

First, let us consider the case when we do not condition on
observations, optimizing an offline plan. We call a function
f submodular if whenever X ⊆ Y ⊆ A, a ∈ A\Y :

Submodularity (diminishing returns):

f (X ∪{a})− f (X)≥ f (Y ∪{a})− f (Y )

The marginal benefit of adding a to a smaller set X is at
least as much as adding it to the superset Y . We also require
monotonicty, or that adding more elements never hurts:

Monotonicity (more never hurts):

f (X ∪{a})− f (X)≥ 0

The greedy algorithm maximizes f (A∪{a})− f (A)
c(a) , the

marginal utility per unit cost. As observations are not incor-
porated, this corresponds to an offline plan. If submodularity
and monotonicty are satisfied, the greedy algorithm will have
a (1+ lnmaxa f (a)) of optimal for integer valued f [17].

B. Adaptive Submodularity

Now we consider the case where the policy adapts to new
observations [23]. In this case, the expected marginal benefit
of performing an action is:

∆(a|ψA) = E [ f (A∪{a},Φ)− f (A,Φ)|ψA]

We call a function f adaptive submodular if whenever
X ⊆ Y ⊆ A, a ∈ A\Y :

Adaptive Submodularity:

∆(a|X)≥ ∆(a|Y )

That is, the expected benefit of adding a to a smaller set X
is at least as much as adding it to the superset Y , for any set
of observations received from actions Y\X . We also require
strong adaptive monotonicity, or more items never hurts. For
any a /∈ X , and any possible outcome o, this requires:

Strong Adaptive Monotonicity:

E [ f (X ,Φ)|ψX ]≤ E [ f (X ∪{a},Φ)|ψX ,ψa = o]

In this case, the greedy algorithm maximize ∆(a|ψX )
c(a) . This

encodes an online policy, since at each ψX incorporates the



Fig. 2: We can think of tactile localization as a problem of set
cover, which is adaptive submodular [23]. Each observation
amounts to covering (green area) the hypotheses (black
dots) which do not agree. Our objective is to maximize our
coverage, or rule out as many hypotheses as possible.

new observations. Surprisingly, we can bound the perfor-
mance of the same algorithm with respect to both the optimal
average case policy π∗avg and optimal worst case policy π∗wc.
This has been shown to have a (1+ ln(Q)) approximation
for π∗avg, and a (1+ ln( Q

minφ p(φ) )) approximation for π∗wc ap-
proximation for integer valued f , for self-certifying instances
(see [23] for a more detailed explanation).

IV. APPLICATION TO TOUCH LOCALIZATION

We would like to appeal to the above algorithms and
guarantees for touch localization, while still maintaining
generality for different objects and motions. Given an object
mesh, we model the random realization Φ as a set of sampled
particles. We can think of each particle φ ∈ Φ representing
some hypothesis of the true object pose.

Each action a∈A corresponds to an end-effector trajectory
which stops when the object is touched. The cost c(a) is the
time it would take to run this entire trajectory, plus some
fixed amount for moving to the start pose. An observation
o ∈ R corresponds to the time it takes for the end-effector
to make contact with the object. We define aφ as the time
during trajectory a where contact first occurs if the true state
were φ . See Figure 3 for an example. If the swept path of a
does not contact object φ , then aφ = ∞. Note that this allows
us to handle the observation corresponding to no contact.

With this formulation, we first discuss some assumptions
made about interactions with the world. We then present
our different utility functions f , which capture the idea of
reducing the uncertainty in Φ. In general, our objective will
be to achieve a certain amount of uncertainty reduction while
minimizing the time to do so.

A. Submodularity Assumptions for Touch Localization

In order to create objectives that fit into the framework of
submodular maximization, we must make certain assump-
tions. First, all actions must be available at every step.
Intuitively, this makes sense as a necessity for diminishing
returns - if actions are generated at each step, then a new
action may simply be better than anything so far. In some
sense, non-greedy methods which generate actions based on
the current belief state are optimizing both the utility of
the current action, and the potential of actions that could
be generated in the next step. Instead, we generate a large,
fixed set of information gathering trajectories at the start.

Fig. 3: The observations for action a and realizations φ and
φ ′. Each observation aφ and a′

φ
corresponds to the time along

the straight line trajectory when contact first occurs with
the object. We use the difference of times |aφ − aφ ′ | when
measuring how far apart observations are.

Second, we cannot alter the underlying realization φ , so
actions are not allowed to change the state of the environment
or objects. Therefore, we cannot intentionally reposition
objects, or model noise caused by contact.

When applied to object localization, this frameworks lends
itself towards heavy objects that remain stationary when
touched. For such problems, we believe having an efficient
algorithm with guaranteed near-optimality outweighs these
limitations. To alleviate some of these limitations, we hope
to explore near-touch sensors in the future [35], [36].

B. Information Gain

Following Krause and Guestrin [21], we define the in-
formation gain as the reduction in Shannon entropy from
performing actions. Let ΨA be the random variable over ψA.
Then we have

IG(Φ;ΨA) = H(Φ)−H(Φ|ΨA)

As they show, this function is monotone submodular if
the observations ΨA are conditionally independent given the
state φ . Thus, if we are evaluating this offline, we would
be near-optimal compared to the optimal offline solution.
However, this can actually perform exponentially worse than
the online solution [22]. Therefore, we greedily select actions
based on the marginal utility of a single action:

∆IG(a) = H(Φ)−Eo [H(Φ|o)]

We also need to define the probability of an observation.
We consider a “blurred” measurement model where the
probability of stopping at o conditioned on a realization φ is
weighted based on the time difference between o and aφ (the
time of contact had φ been the true state), with σ modelling
the measurement noise:

p(aΦ = o|φ) ∝ exp
(
−
|o−aφ |

2σ2

)
If we were selecting with a discrete measure of entropy, lo-

cality of particles would not be taken into account. However,
our particles actually represent samples from an underlying
continuous distribution - we should prefer keeping two
nearby particles as opposed to two faraway ones. Thus,



instead of evaluating H(Φ) directly, we instead fit a Gaussian
distribution and compute the entropy of that distribution. Let
Σo be the covariance over the weighted set of hypotheses, and
N the number of parameters (typically x, y, z, θ ). We use
the approximated entropy:

H(Φ|o)≈ 1
2

ln((2πe)N |Σo|)

After performing the selected action, we update the belief
by reweighting hypotheses as described above. We repeat
the action selection process, setting Φ to be the updated
distribution, until we reach some desired entropy reduction.

C. Hypothesis Pruning
Intuitively, information gain is attempting to reduce uncer-

tainty by shrinking the probability mass. Here, we formulate
a method with the same underlying idea, which we show
to be adaptive submodular and strongly adaptive monotone.
We refer to this metric as Hypothesis Pruning, since the idea
is to prune away hypotheses which do not agree with the
observations. Golovin et al. describe the connection between
this sort of query selection and adaptive submodularity by
drawing a connection to Set Cover [23]. Our formulation is
similar - see Fig. 2 for a visualization.

As before, we consider a blurred measurement model. We
consider two different observation models. In the first, we
define a cutoff threshold dT . If a hypothesis is within the
threshold, we keep it entirely. Otherwise, it is removed. We
call this metric Hypothesis Pruning (HP). In the second,
we downweight the hypotheses with a (non-normalized)
Gaussian, and thus remove a portion of the hypothesis. We
call this metric Weighted Hypothesis Pruning (WHP). The
weighting functions are:

wHP
o (aφ ) =

{
1 if |o−aφ | ≤ dT

0 else

wWHP
o (aφ ) = exp

(
−
|o−aφ |2

2σ2

)
For a partial realization ψ , we take the product of weight-

ings:

pψ(φ) =

(
∏

{a,o}∈ψ

wo(aφ )

)
p(φ)

Note that this can never increase the probability - for any
actions and observations, pψ(φ)≤ p(φ).

To calculate how much probability mass m remains with
partial realization ψ , and after taking action a and receiving
observation o, we use:

Mψ = ∑
φ ′∈Φ

pψ(φ
′)

mψ,a,o = ∑
φ ′∈Φ

pψ(φ
′)wo(aφ ′)

We can now define the utility of a set of actions if φ is the
true state. Let A be the sequence of actions taken, and Aφ be
the sequence of observations received. Then our utility is:

f (A,φ) = 1−M{A,Aφ }

To calculate the expected marginal gain, we also need to
define the probability of receiving any observation. We
present it here, and show the derivation in the Appendix1.
Intuitively, this will be proportional to how much probability
mass agrees with the observation. Let O be the set of all
possible observations:

p(aΦ = o|ψ) =
mψ,a,o

∑o′∈O mψ,a,o′

Finally, we define the marginal utility as the additional
probability mass removed. For an observation o this is
fψ,a,o = Mψ −mψ,a,o. Thus, the expected marginal gain is:

∆(a|ψ) = Eo
[

fψ,a,o
]

= ∑
o∈O

mψ,a,o

∑o′∈O mψ,a,o′

[
Mψ −mψ,a,o

]
In practice, we need to discretize the infinite observation

set O. For an action a, we do so by considering observations
exactly at each hypothesis, or O = {aφ : φ ∈Φ}.

Thus, the greedy algorithm will maximize the expected
probability mass removed at each step, per unit cost. After
selecting an action and receiving an observation, the hy-
potheses are downweighted or removed as described above,
and action selection is iterated. We now present the main
guarantee for this method:

Theorem 1: Let our utility function for Hypotheses Prun-
ing be f as defined above, utilizing either weighting function
wHP or wWHP. Define δ = minφ p(φ). Let π∗avg and π∗wc be
the optimal policies minimizing the expected and worst-case
number of items selected, respectively, to guarantee every
realization is covered. The greedy policy πgreedy on average
costs at most

(
ln
(

Q
δ

)
+1
)

times the average cost of the

best policy, and
(

ln
(

Q
δ 2

)
+1
)

times the worst case cost of
the best policy. More formally:

cavg(π
greedy)≤ cavg(π

∗
avg)

(
ln
(

Q
δ

)
+1
)

cwc(π
greedy)≤ cwc(π

∗
wc)

(
ln
(

Q
δ 2

)
+1
)

Proof: In order to prove Theorem 1, we will need
to show that our objective is adaptive submodular, strongly
adaptive monotone, and self-certifying. We show this in the
Appendix1. Our proof then follows directly from [23].

In addition to being a logarithmic factor of optimal, we can
utilize a lazy-greedy algorithm which does not reevaluate all
actions at every step, enabling a computational speedup [23],
[24].

V. EXPERIMENTS

We implement a greedy action selection scheme with
each of the methods described above (IG, HP, WHP). In
addition, we compare against two other schemes - random
action selection, and a simple human-designed scheme which
approaches the object orthogonally along the X, Y and Z

1Located at http://www.cs.cmu.edu/˜sjavdani/touch_
loc_submodular.html

http://www.cs.cmu.edu/~sjavdani/touch_loc_submodular.html
http://www.cs.cmu.edu/~sjavdani/touch_loc_submodular.html


axes. Each object pose φ consist of a 4-tuple (x,y,z,θ)∈R4,
where (x,y,z) are the coordinates of the object’s center, and
θ is the rotation about the z axis.

We implement our algorithms using a 7-dof Barret arm
with an attached 4-dof Barret hand. We localize two objects:
a drill upright on a table, and a door. We define an initial
sensed location Xs ∈R4. To generate the initial Φ, we sample
a Gaussian distribution N(µ,Σ), where µ = Xs, and Σ is
the prior covariance of the sensor’s noise. For simulation
experiments, we also define the ground truth pose Xt ∈ R4.

For efficiency purposes, we also use a fixed number of
particles |Φ| at all steps, and resample after each selection,
adding small noise to the resampled set of particles.

A. Action Generation

We generate linear motions of the end effector, consisting
of a starting pose and a movement vector. Each action starts
outside of all hypotheses, and moves as far as necessary
to contact every hypotheses along the path. Note that using
straight-line trajectories is not a requirement for our algo-
rithm. We generate actions via three main techniques.

1) Sphere Sampling: Starting positions are generated by
sampling a sphere around the sensed position Xs. For each
starting position, the end-effector is oriented to face the
object, and the movement direction set to Xs. A random rota-
tion is applied about the movement direction, and a random
translation along the plane orthogonal to the movement.

2) Normal Sampling: These actions are intended to have
the hand’s fingers contact the object orthogonally. First,
we uniformly sample random contacts from the surface
of the object. Then, for each fingertip, we align its pre-
defined contact point and normal with the one randomly
sampled from the object, randomly rotate the hand about
the contact normal, and set the movement direction as the
contact normal.

3) Table Contacting: We generate random start points
around the sensed position Xs, and orient the end effector
in the −z direction. These are intended to contact the table
and reduce uncertainty in z.

B. Simulation Experiments Setup

We simulate an initial sensor error as Xt − Xs =
(0.015,−0.015,−0.01,0.05) (in meters and radians). Our
initial random realization Φ is sampled from N(µ,Σ) with
µ = Xs, and Σ a diagonal matrix with Σxx = 0.03, Σyy = 0.03,
Σzz = 0.03, Σθθ = 0.1. We fix |Φ|= 1500 hypotheses.

We then generate an identical action set A for each metric.
The set consists of the 3 human designed trajectories, 30
sphere sampled trajectories (Section V-A.1), 160 normal
trajectories (Section V-A.2), and 10 table contact trajectories
(Section V-A.3), giving |A|= 203.

We run 10 experiments using a different random seed for
each, generating a different set A and Φ, but ensuring each
method has the same A and initial Φ for a random seed. Each
metric chooses a sequence of five actions, except the human
designed sequence which consists of only three actions.
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Fig. 4: Uncertainty after each action for drill and door
experiments. The bars show the mean and 95% CI of the sum
of eigenvalues of the covariance matrix over 10 experiments.

IG HP WHP

Time (s) 47.171±0.25 8.41±0.58 25.70±0.29

TABLE I: Time to select one action for each metric, average
and 95% CI over drill experiments in Section V-B

C. Results

We analyze the uncertainty reduction of each metric as
the sum of eigenvalues of the covariance matrix, as in
Fig. 4. All of the metrics were able to reduce the uncertainty
significantly – confirming our speculation in Section II that
even random actions reduce uncertainty. However, as the
uncertainty is reduced, the importance of action selection
increases, as evidenced by the relatively poor performance
of random selection for the later actions.

We note that this measure of uncertainty is good for uni-
modal distributions, as it assumes a single covariance matrix
captures the uncertainty. Our Hypothesis Pruning (HP) and
Weighted Hypothesis Pruning (WHP) method actually make
no attempt to keep a unimodal distribution, as they naively
prune hypotheses. On the other hand, our Information Gain
(IG) method optimizes this measure directly, as it evaluates
entropy by fitting a Gaussian. Surprisingly, even for this
measure of uncertainty reduction, our HP and WHP meth-
ods have comparable performance with IG. Additionally,
we find that they perform significantly faster, due to both
their inherent simplicity, and a speedup from a lazy-greedy
algorithm [23], [24]. See Table I.

The human designed trajectories are effective for the drill,
but perform poorly on the door. Unlike the drill, the door
is not radially symmetric, and its flat surface and protruding
handle offer geometric landmarks that our action selection
metrics can exploit, making action selection more useful.

For one drill experiment, we also display the hypothesis set
after each action in Fig. 5, and the first 3 actions selected in
Table II. Interestingly, each of our metrics selected a different
sequence of actions, though they obtain similar performance.

1) Robot Experiments: We implemented each of our
methods (IG, HP, WHP) on a robot with a Barret arm and
hand, and attempted to open a door. Xs is initialized with a



Fig. 5: The particle sets Φ from a single drill experiment after
each update. Each plotted position corresponds to the x,y
parameter of φ ∈Φ, rotated by θ . Xs is the sensed position,
Xt the true position, and Φi the particles after update i. Arrow
lengths are approximately the length of the drill base. The
initial distribution was generated from a normal distribution
with σx = 0.02, σy = 0.02, σz = 0.02, σθ = 0.2.

vision system corrupted with an artificial error of 0.035m in
the y direction. Our initial random realization Φ is sampled
from N(µ,Σ) with µ = Xs, and Σ a diagonal matrix with
Σxx = 0.02, Σyy = 0.04, Σzz = 0.02, Σθθ = 0.08. We fix
|Φ| = 2000 hypotheses. We initially generate 600 normal
action trajectories (Section V-A.2), though after checking for
kinematic feasibility, only about 70 remain.

We utilize each of our uncertainty reducing methods prior
to using an open-loop sequence to grasp the door handle.
Once our algorithm selects the next action, we utilize a
motion planner to transition to its start pose, and perform
the straight line motion using a task space controller. We
sense contact by thresholding the magnitude reported by a
force torque sensor in the Barret hand.

Without touch localization, the robot missed the door han-
dle entirely. With any of our localization methods, the robot
successfully opened the door, needing only two uncertainty
reducing actions to do so. Selected actions are shown in
Table III, and full videos are provided online1.

VI. CONCLUSION AND DISCUSSION

In this work, we drew an explicit connection between
submodularity and touch based localization. We presented

Action 1 Action 2 Action 3

IG
H

P
W

H
P

R
an

do
m

H
um

an

TABLE II: First 3 actions selected for each metric from the
experiment in Fig. 5. The updates particles Φ are shown in
yellow, with the previous in grey.

three greedy methods of selecting uncertainty reducing touch
actions. The first, Information Gain (IG), has been used ex-
tensively for robot localization [2]–[6], [18], [20]. We noted
the assumptions necessary for this method to be submodular,
rendering the greedy algorithm near-optimal in the offline
setting. We design our own methods, Hypothesis Pruning
(HP) and Weighted Hypothesis Pruning (WHP), which we
show are adaptive submodular. Thus, an efficient greedy al-
gorithm is guaranteed to provide near-optimal performance in
the online setting. In addition, these metrics are much faster,
both due to their simplicity and a more efficient lazy-greedy
algorithm [23], [24]. We demonstrate good performance for
all our methods, both in simulation and on a robot.

One limitation of our current work is the assumption that



IG HP WHP
A

ct
io

n
1

A
ct
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n
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TABLE III: Actions selected during robot experiment. Note
that both IG and HP selected the same first action. All metrics
lead to a successful grasp of the door handle.

the hand and object are completely rigid, and contact is
sensed with any force. Some of the actions selected may
not be robust in the physical world. We hope to incorporate
better action generation, as well as a more expressive hand
and sensor model within our metrics to alleviate this.

Though our hypothesis pruning methods satisfy conditions
of adaptive submodularity, we note that Information Gain
performs comparably well. One limitation of our current
hypothesis pruning formulations is that they naively remove
hypotheses, with no notion of the underlying continuous
distribution. Furthermore, they simply reduce uncertainty
until it falls below some threshold. In actuality, we may wish
to drive our uncertainty to a particular distribution, dependent
on the desired task. We hope to extend the ideas developed
here to formulations which do.
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VII. APPENDIX

Here we present the theorems and proofs showing the Hypothesis Pruning metrics are near-optimal. To do so, we prove our
metrics are adaptive submodular, strongly adaptive monotone, and self-certifying. We define a function for calculating the total
probability mass removed from the original Φ: f̂ (A,φ) = 1−M{A,Aφ }. This function can utilize either of the two reweighting
functions wHP or wWHP defined in Section IV-C. Our objective is a truncated version of this: f (A,φ) = min

{
Q, f̂ (A,φ)

}
,

where Q is the target value for how much probability mass we wish to remove. We assume that the set of all actions A is
sufficient such that f (A,φ) = Q,∀φ ∈Φ. Note that adaptive monotone submodularity is preserved by truncation, so showing
these properties for f̂ implies them for f .

First, we show how we derive p(aΦ = o|ψ) =
mψ,a,o

∑o′∈O m
ψ,a,o′

:

p(aΦ = o|ψ) = ∑
φ∈Φ

p(o|φ ,ψ)p(φ |ψ)

= ∑
φ∈Φ

p(o|φ)p(φ |ψ)

We can think of our weighting function as an unnormalized version of p(o|φ), and pψ(φ) as an unnormalized version of
p(φ |ψ). Thus, we define an unnormalized version p̂(aΦ = o|ψ):

p̂(aΦ = o|ψ) = ∑
φ∈Φ

wo(aφ )pψ(φ)

= mψ,a,o

Finally, we need to normalize all observations, so we get:

p(aΦ = o|ψ) =
mψ,a,o

∑o′∈O mψ,a,o′

Now we can compute the expected marginal utility:

∆(a|ψA) = E
[

f̂ (A∪{a},Φ)− f̂ (A,Φ)
∣∣ψA]

= ∑
φ∈Φ

(
∑

o∈O
p(φ |o,ψA)p(o|ψA)

)[
(1−mψA,a,o)− (1−MψA)

]
= ∑

φ∈Φ

∑
o∈O

p(o|φ ,ψA)p(φ |ψA)
[
(1−mψA,a,o)− (1−MψA)

]
= ∑

o∈O
∑

φ∈Φ

p(o|φ ,ψA)p(φ |ψA)
[
(1−mψA,a,o)− (1−MψA)

]
= ∑

o∈O
p(o|ψA)

[
(1−mψA,a,o)− (1−MψA)

]
= ∑

o∈O

mψA,a,o

∑o′∈O mψA,a,o′

[
MψA −mψA,a,o

]
(1)

This shows the derivation of the marginal utility, as defined in Section IV-C. We now provide the proof for Theorem 1,
by showing that this utility function is adaptive submodular, strongly adaptive monotone, and self-certifying:

Lemma 1: Let A ⊆ A, which result in partial realizations ψA. Our objective function defined above is strongly adaptive
monotone.

Proof: We need to show that for any action and observation, our objective function will not decrease in value.
Intuitively, our objective is strongly adaptive monotone, since we only remove probability mass and never add hypotheses.
More formally:

E
[

f̂ (A,Φ)|ψA
]
≤ E

[
f̂ (A∪{a},Φ)|ψA,ψa = o

]
⇔ 1−MψA ≤ 1−M{ψA∪{a,o}}

⇔ 1−MψA ≤ 1−mψ,a,o

⇔ mψ,a,o ≤MψA

⇔ ∑
φ∈Φ

pψ(φ)wo(aφ ′)≤ ∑
φ∈Φ

pψ(φ)

As noted before, both of the weighting functions defined in Section IV-C never have a value greater than one. Thus each
term in the sum from the LHS is smaller than the equivalent term in the RHS.



Lemma 2: Let X ⊆Y ⊆A, which result in partial realizations ψX ⊆ ψY . Our objective function defined above is adaptive
submodular.

Proof: For the utility function f to be adaptive submodular, it is required that the following holds over expected
marginal utilities:

∆(a|ψY )≤ ∆(a|ψX )

∑
o∈O

mψY ,a,o

∑o′∈O mψY ,a,o′

[
MψY −mψY ,a,o

]
≤ ∑

o∈O

mψX ,a,o

∑o′∈O mψX ,a,o′

[
MψX −mψX ,a,o

]
We simplify notation a bit for the purposes of this proof. For a fixed partial realization ψX and action a, let mψX ,a,o = mo.

Additionally, we note that for any action a and observation o, it is always true that mψY ,a,o ≤mψX ,a,o when X ⊆Y . As noted
before, the weighting functions can only remove probability mass. Let ko = mψX ,a,o−mψY ,a,o, which represents the difference
of probability mass remaining between partial realizations ψY and ψX if we performed action a and received observation
o. We note that ko ≥ 0,∀o, which follows from the strong adaptive monotonicity, and ko ≤ mψX ,a,o, which follows from
mψY ,a,o ≥ 0. Rewriting the equation above:

∑
o∈O

mo− ko

∑o′∈O mo′ − ko′

[
MψY −mo + ko

]
≤ ∑

o∈O

mo

∑o′∈O mo′

[
MψX −mo

]
⇔

(
∑

o∈O
MψY mo−m2

o +moko−MψY ko +moko− k2
o

)(
∑

o′∈O
mo′

)
≤

(
∑

o∈O
MψX mo−m2

o

)(
∑

o′∈O
mo′ − ko′

)
⇔ ∑

o∈O
∑

o′∈O
MψY momo′ −m2

omo′ +momo′ko−MψY mo′ko +momo′ko−mo′k
2
o ≤ ∑

o∈O
∑

o′∈O
MψX momo′ −MψX moko′ −m2

omo′ +m2
oko′

⇔ ∑
o∈O

∑
o′∈O

MψY (momo′ −mo′ko)+2momo′ko−mo′k
2
o ≤ ∑

o∈O
∑

o′∈O
MψX (momo′ −moko′)+m2

oko′

We also note that MψX −MψY ≥max
ô∈O

(kô). That is, the total difference in probability mass is greater than or equal to the
difference of probability mass remaining if we received any single observation, for any observation.

⇔ ∑
o∈O

∑
o′∈O

2momo′ko−mo′k
2
o ≤ ∑

o∈O
∑

o′∈O
(MψX −MψY )(momo′ −moko′)+m2

oko′

⇐ ∑
o∈O

∑
o′∈O

2momo′ko−mo′k
2
o ≤ ∑

o∈O
∑

o′∈O
max
ô∈O

(kô)(momo′ −moko′)+m2
oko′

⇐ ∑
o∈O

∑
o′∈O

2momo′ko−mo′k
2
o ≤ ∑

o∈O
∑

o′∈O
max(ko,ko′)(momo′ −moko′)+m2

oko′

In order to show the inequality for the sum, we will show it holds for any pair o,o′. First, if o = o′, than we have an
equality and it holds trivially. For the case when o 6= o′, we assume that ko > ko′ WLOG, and show the inequality for the
sum:

2momo′(ko + ko′)−mo′k
2
o−mok2

o′ ≤ 2momo′ko−moko′ko−mo′k
2
o +m2

oko′ +m2
o′ko

⇔ 2momo′ko′ −mok2
o′ ≤ m2

oko′ +m2
o′ko−mokoko′

⇔ 0≤ ko′(mo−mo′)
2− (ko− ko′)ko′(mo−mo′)+(ko− ko′)mo′(mo′ − ko′)

⇐ 0≤ ko′(mo−mo′)
2− (ko− ko′)ko′(mo−mo′)+(ko− ko′)ko′(mo′ − ko′)

We split into 3 cases:

A. ko′ = 0
This holds trivially, since the RHS is zero

B. ko′ 6= 0,mo ≤ 2mo′ − ko′

Since ko′ 6= 0, we can rewrite:

0≤ (mo−mo′)
2− (ko− ko′)(mo−mo′)+(ko− ko′)(mo′ − ko′)

⇐ 0≤−(ko− ko′)(mo−mo′)+(ko− ko′)(mo′ − ko′)

⇐ (mo−mo′)≤ (mo′ − ko′)



Which follows from the assumption for this case.

C. mo ≥ 2mo′ − ko′

We show this step by induction. Let mo = 2mo′ − ko′ + x,x≥ 0
Base Case: x = 0, which we showed in the previous case.
Induction Assume this inequality holds for mo = 2mo′ − ko′ + x . Let m̂o = mo +1. We now show that this holds for m̂o:

0≤ (m̂o−mo′)
2− (ko− ko′)(m̂o−mo′)+(ko− ko′)(mo′ − ko′)

⇔ 0≤ (mo−mo′ +1)2− (ko− ko′)(mo−mo′ +1)+(ko− ko′)(mo′ − ko′)

⇔ 0≤ (mo−mo′)
2− (ko− ko′)(mo−mo′)+(ko− ko′)(mo′ − ko′)+2mo−2mo′ +1+ ko− ko′

⇐ 0≤ 2mo−2mo′ +1− ko + ko′ by inductive hypothesis
⇐ 0≤ mo +1− ko by assumption from case
⇐ 0≤ 1

And thus, we have shown the inequality holds for any pair o,o′.
Finally, it is easy to show that the sum can be decomposed into pairs of o,o′. Therefore, we can see the inequality over

the sum also holds.
Lemma 3: Let A⊆ A, which result in partial realizations ψA. The utility function f defined above is self-certifying.

Proof: An instance is self-certifying if whenever the maximum value is achieved for the utility function f , it is achieved
for all realizations consistent with the observation. See [23] for a more rigorous definition. Golovin and Krause point out
that any instance which only depends on the state of items in A is automatically self-certifying (Proposition 5.6 in [23].)
That is the case here, since the objective function f = min

{
Q,1−MψA

}
only depends on the outcome of actions in A.

Therefore, our instance is self-certifying.
As we have shown our objective is adaptive submodular, strongly adaptive monotone, and self-certifying, Theorem 1

follows from Theorems 5.8 and 5.9 from [23]. Following their notation, we note that η = minφ p(φ), since it is always true
that f (S,φ)> Q−minφ p(φ) implies f (S,φ) = Q.
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