An Incremental Trust-Region Method for Robust
Online Sparse Least-Squares Estimation

David M. Rosen, Michael Kaess, and John J. Leonard

Abstract—Many online inference problems in computer vision
and robotics are characterized by probability distributions whose
factor graph representations are sparse and whose factors are
all Gaussian functions of error residuals. Under these condi-
tions, maximum likelihood estimation corresponds to solving a
sequence of sparse least-squares minimization problems in which
additional summands are added to the objective function over
time. In this paper we present Robust Incremental least-Squares
Estimation (RISE), an incrementalized version of the Powell’s
Dog-Leg trust-region method suitable for use in online sparse
least-squares minimization. As a trust-region method, Powell’s
Dog-Leg enjoys excellent global convergence properties, and
is known to be considerably faster than both Gauss-Newton
and Levenberg-Marquardt when applied to sparse least-squares
problems. Consequently, RISE maintains the speed of current
state-of-the-art incremental sparse least-squares methods while
providing superior robustness to objective function nonlinearities.

I. INTRODUCTION

Many online inference problems in computer vision and
robotics are characterized by probability distributions whose
factor graph representations are sparse and whose factors
are all Gaussian functions of error residuals; for example,
both bundle adjustment [6] and the smoothing formulation
of simultaneous localization and mapping (SLAM) [19], [20]
belong to this class (Fig. 1). Under these conditions, maximum
likelihood estimation corresponds to solving a sequence of
sparse least-squares minimization problems in which addi-
tional summands are added to the objective function over time.

In practice, these problems are often solved by computing
each estimate in the sequence as the solution of an inde-
pendent minimization problem using standard sparse least-
squares techniques (usually Levenberg-Marquardt). While this
approach is general and produces good results, it is computa-
tionally expensive, and does not exploit the sequential nature
of the underlying inference problem; this limits its utility in
real-time online applications, where speed is critical.

More sophisticated solutions exploit sequentiality by using
recursive estimation. For example, in the context of SLAM,
Dellaert and Kaess et al. developed incremental smoothing
and mapping (iISAM) [10], [9], which uses the information
gained from new data to produce a direct update to the
previous estimate, rather than computing a new estimate from
scratch. This incremental approach enables iSAM to achieve
computational speeds unmatched by iterated batch techniques.
However, iSAM internally uses the Gauss-Newton method to

The authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139, USA {dmrosen, kaess, jleonard}@mit.edu

Fig. 1. Factor graph formulation of the SLAM problem, where variable
nodes are shown as large circles, and factor nodes (measurements) as small
solid circles. This example combines the pose-graph and the landmark-based
SLAM formulations. The factors shown are odometry measurements u, a prior
p, loop closing constraints ¢ and landmark measurements m.

perform the least-squares minimization. While this method
generally performs well when initialized with an estimate
that is close to a local minimum of the objective function,
it can exhibit poor (even divergent) behavior when applied to
objective functions with significant nonlinearity. Overcoming
this brittleness in the face of nonlinearity is essential for
the development of robust general-purpose online inference
methods.

In this paper, we adopt the Powell’s Dog-Leg optimization
algorithm as the basis for sparse least-squares estimation.
Powell’s Dog-Leg is known to perform significantly faster
than Levenberg-Marquardt in sparse least-squares minimiza-
tion while achieving comparable accuracy [14]. Furthermore,
by exploiting pre-existing functionality provided by the iISAM
framework, it is possible to produce a fully incrementalized
version of Powell’s Dog-Leg suitable for use in online least-
squares estimation. This incrementalized algorithm, which
we refer to as Robust Incremental least-Squares Estimation
(RISE), maintains the speed of current state-of-the-art incre-
mental sparse least-squares methods like iISAM while provid-
ing superior robustness to objective function nonlinearities.

II. INFERENCE IN GAUSSIAN FACTOR GRAPHS
A factor graph is a bipartite graph G = (F, 0,) with two
node types: factor nodes f; € F (each representing a real-
valued function) and variable nodes 0; € © (each representing
an argument to one or more of the functions in F). Every
real-valued function f(©) has a corresponding factor graph G
encoding its factorization as

f(©) = Hfz(@i),
0;=1{0; €0 |(fi,0;) €&}.

If the function f appearing in equation (1) is a probability
distribution, then maximum likelihood estimation corresponds

)

to finding the variable assignment ©* that maximizes (1):

O* = argmax f(O). ()
)

Suppose now that each of the factors on the right-hand side
of (1) is a Gaussian function of an error residual:

1
[i(6;) oc exp <—2 [1hi(©;) — Zz||22> ; (3)
where h;(0©;) is a measurement function, z; is a measurement,
and ||}, = eT¥ e is the squared Mahalanobis distance

with covariance matrix ¥. Taking the negative logarithm of the
factored objective function (1) corresponding to the Gaussian
model (3) shows that the maximizer ©* in (2) is given by:

* . 1 2
0* = argén1n52\\hi(6i) — zl5, - (4)

Equation (4) shows that under the assumption of Gaussian
factors (3), maximum likelihood estimation over factor graphs
is equivalent to an instance of the general nonlinear least-
squares minimization problem:

x* = argmin S(x),
reR"
m (5)
S) =) ri(2)* = |lr(2)|?
i=1
for r: R» — R™.

Note that each factor in (1) gives rise to a summand in
the least-squares minimization (4). Consequently, performing
online inference, in which new measurements become avail-
able (equivalently, in which new factor nodes are added to G)
over time, corresponds to solving a sequence of minimization
problems of the form (5) in which new summands are added
to the objective function S(x) over time.

III. REVIEW OF ISAM

The incremental smoothing and mapping (iISAM) algorithm
[10], [9] is a computationally efficient method for solving
a sequence of minimization problems of the form (5) in
which new summands are added to the objective function over
time. iISAM achieves this efficient computation by directly
exploiting the sequential nature of the problem: it obtains each
successive solution in the sequence of minimization problems
by directly incrementally updating the previous solution, rather
than computing a new solution from scratch (an expensive
batch operation). Internally, iSAM uses an incrementalized
version of the Gauss-Newton method to perform the mini-
mization. In this section, we review the general Gauss-Newton
method and its incremental implementation in iSAM.

A. The Gauss-Newton method

The Gauss-Newton algorithm [4], [15] is an iterative numer-
ical technique for estimating the minimizer z* of a problem
of the form (5) for m > n. Given an estimate x(*) for
the minimum, the function 7 is locally approximated by its
linearization L(")(h) about z("):

LOM) =J (x@) htr (M) , 6)

where
J (JJ(Z)) _ g c IRT)’LXTL7 (7)
L=z
and a revised estimate
a0t =20 +pl >0 (8)

is chosen so that the estimated value for S (z("*1)) obtained
by using the approximation (6) in place of r on the right-hand
side of (5) is minimized:

) , 2

hfj,{ = argmin HL(l)(h)H .)
heRrn

Provided that the Jacobian J (x(i)) is full-rank, the Gauss-

Newton step hf;%

solution of

defined in (9) can be found as the unique

RORH = g0

an

QW (Réi)> =7 («)

is the QR decomposition [5] of the Jacobian J (z(*)) and

i T
(£0) (@) ()
for d¥ € R™ and e¥ € R™ ™, Furthermore, in that case,
since R is upper-triangular, equation (10) can be solved
efficiently via back-substitution.
The complete Gauss-Newton method consists of iteratively
applying equations (7), (11), (12), (10), and (8), in that order,
until some stopping criterion is satisfied.

(10)
where

(an

12)

B. Incrementalizing the solution: iSAM

As shown at the end of Section II, the arrival of new data
corresponds to augmenting the function r = r,q: R — R™
on the right-hand side of (5) to the function

7. Rn"rnnew N Rm"rmnew

Told (:Eold)

) (13)
T (xold; xn&w) = Tnew (xold l'new) ’

where here 7,0, : R*Tnew — R™Mnew is the set of new
measurement functions (factor nodes in the graph G) and
Tpew € R77ew is the set of new system variables (variable
nodes in (7) introduced as a result of the new observations.
In the naive application of the Gauss-Newton algorithm
of Section III-A, the solution z* = (z¥,,,2}.,) for the
augmented least-squares problem determined by (13) would
be found by performing Gauss-Newton iterations (8) until
convergence. However, in the sequential estimation problem
we already have a good estimate 2,4 for the values of the old
variables, obtained by solving the least-squares minimization
problem (5) prior to the introduction of this new set of
data. Furthermore, under the assumption of the Gaussian error
models (3) the raw observations z,,, in (4) are typically fairly
close to their ideal (uncorrupted) values, which provides a
good guess for initializing the new estimates Z,,. We thus

obtain a good initial guess & = (Zo14, Tnew) for the Gauss-
Newton algorithm.

Now, since we expect the initial estimate & to be close to
the true minimizing value x*, it is not necessary to iterate the
Gauss-Newton algorithm until convergence after integration of
every new observation; instead, a single Gauss-Newton step
is computed and used to correct the initial estimate &. The
advantage to this approach is that it avoids having to compute
the Jacobian J(£) for 7 from scratch (an expensive batch
operation) each time new observations arrive; instead, iISAM
efficiently obtains J(#) together with its QR decomposition
by updating the Jacobian J(&,4) and its QR decomposition.

Letting & = (T014, Tnew) the Jacobian J(x) for the newly
augmented system (13) can be decomposed into block form

as
_ or Orola 0 J(zora) 0
Ja) == (B g) = (7 (14)
ax (c’)mom c’?zmw W
where
arOZd mxn
J ($old) = aTld

is the Jacobian of the previous function r,;4 and

8rnew> _ Ornew

Mnew X (N+Nnew)
0T new ox eR

W — (aTnew

OTold

. (1%
Letting

J (#ora) = (@1 Q2) (15)

be the QR decomposition for the old Jacobian, where @), €
R™*™ and Qs € Rm*X(m=n) e have

(Ql 0 Q2> RWO :(QlR O)
0 I 0) W
:(J(a:«om 0) 10
W

which gives a partial QR decomposition of J (). This decom-
position can be completed by using Givens rotations to zero
out the remaining nonzero elements below the main diagonal.
Let G € R("Hmnew)x(nt+mnew) denote a matrix of Givens
rotations (necessarily orthogonal) such that

()= (o)

where R € R(Fnnew)x(ntnncw) s upper-triangular. Then
defining

~_(G 0 A_ (@1 0 Q2 A7

G_(o J’ Q‘(o I 0)07
(so that G, Q € R(m+mnew)x(m+mnew) are also orthogonal),
equations (16), (17) and (18) show that

i@ -a(y)

a7)

(18)

19)

is a QR decomposition for the new Jacobian J(). Now we
can use (10) and (12) to compute the Gauss-Newton step g,
for the augmented system:

T
(G 0) %1 ? <7“old(§fold))
0 I Qg 0 Trew(T)

(60 ‘QlTrn’Zi”E%} o)

~Q7 - #(#) = —

Q3 - roia()
B G() fw (20)
- O I Tnew
€old
= | Gnew
6old
where J
_ old
<emw) e (_me (@)) @1

for d € R"*"new, The Gauss-Newton step A, used to correct
the estimate & for the augmented system is then computed as
the solution of

Rhg, = d. (22)

Equations (15), (17) and (21) show how to obtain the R
factor of the QR decomposition of .J(#) and the corresponding
linear system (22) by updating the R factor and linear system
(10) for the previous Jacobian J(Z,;4) using Givens rotations.
Since the updated factor R and the new right-hand side vector
d are obtained by applying G directly to the augmented factor
R in (17) and the augmented right-hand side vector d in (21),
it is not necessary to explicitly form the orthogonal matrix Q
in (18). Nor is it necessary to form the matrix G explicitly
either; instead, the appropriate individual Givens rotations can
be directly applied to the matrix in (17) and the right-hand
side vector in (21). Furthermore, under the assumption that the
factor graph G is sparse, the Jacobian J(Z) will likewise be
sparse, so only a small number of Givens rotations are needed
in (17). Obtaining the linear system (22) by this method is
thus a computationally efficient operation.

Finally, we observe that while relinearization is not needed
after every new observation, the system should be periodically
relinearized about its corrected estimate in order to perform
a full Gauss-Newton iteration and obtain a better estimate of
the local minimum (this is particularly true after observations
which are likely to significantly alter the estimates of system
variables). When relinearizing the system about the corrected
estimate, the incremental updating method outlined above is no
longer applicable; instead, the QR factorization of the Jacobian
needs to be recomputed from scratch. While this is a slow
batch operation, the factorization step can be combined with a
variable reordering step [2] in order to reduce the fill-in in the
resulting factor R, thereby maintaining sparsity and speeding
up subsequent incremental computations.

IV. FROM GAUSS-NEWTON TO POWELL’S DOG-LEG

The incrementalized Gauss-Newton method outlined in
Section III-B is computationally efficient, straightforward to
implement, and enjoys rapid (up to quadratic [15, pg. 22])
convergence near the minimum. However, the assumption of
the local linearity of r (which justifies the approximation
r(x@ 4 h) ~ L@ (h) used in (9)) means that the Gauss-
Newton method can exhibit poor behavior when there is signif-
icant nonlinearity near the current linearization point. Indeed,
convergence of the Gauss-Newton method is not guaranteed,
not even locally(!), and it is not difficult to construct simple
(even quadratic!) examples of r where the sequence of iterates
{z} computed by (8) simply fails to converge at all [4,
p- 113]. Thus, while Gauss-Newton may be acceptable for use
in many cases, a robust general-purpose optimization method
must be more tolerant of nonlinearities in the function 7.

One possible alternative to Gauss-Newton is the use of
steepest descent methods, which (as their name suggests)
simply generate a step hgy in the direction along which the
objective function decreases most rapidly, i.e., in the direction
of the negative gradient of the objective function:

hsa = —aV.S(z)

for some scalar o > 0. These methods enjoy excellent global
convergence properties [4], but their convergence is often slow
since they are first-order, thus limiting their utility for online
applications.

In this paper, we adopt the Powell’s Dog-Leg algorithm [15],
[16] as the method of choice for performing the sparse least-
squares minimization (5). This algorithm combines the rapid
end-stage convergence speed of the Gauss-Newton algorithm
with the excellent global convergence properties [1], [17],
[18] of steepest descent methods. Indeed, when applied to
sparse least-squares minimization problems, Powell’s Dog-
Leg performs significantly faster than Levenberg-Marquardt
(the current de facto nonlinear optimization method in the
robotics and computer vision communities) while maintaining
comparable levels of accuracy [14].

Internally, Powell’s Dog-Leg operates by maintaining a
region of trust, a ball of radius A centered on the current
linearization point x within which the linearization (6) is
considered to be a good approximation for r; this trust-region
is used to guide an adaptive interpolation between Gauss-
Newton and steepest descent steps. When computing a dog-
leg step hq;, Gauss-Newton updates are preferred (due to their
superior speed), and are considered reliable so long as they fall
within the trust region; otherwise, the more reliable steepest
descent steps (or some linear interpolation between the two
lying within the trust region) are used instead (Algorithm 1).

As the Powell’s Dog-Leg algorithm proceeds, the radius of
the trust region A is varied adaptively according to the gain
ratio

_ S(x) = S(z+ha) (23)

P TLO - L)
which compares the actual reduction in the objective function
value obtained by taking the proposed dog-leg step hg; with

Algorithm 1 Computing the dog-leg step hg;
1: procedure COMPUTE_DOG-LEG(hgy,, hsq, D)

2: if [|hgn|| < A then

3: ha <~ hgn

4: else if ||754]] > A then

5: hay HhATtH hsa

6: else

7: hai <= hsa + B (hgn — hsq), where 3 is chosen
such that ||hle = A.

8: end if

9: return hy;

10: end procedure

the predicted reduction in function value using the linear
approximation (6). Values of the gain ratio close to 1 indicate
that the approximation (6) is performing well near the current
linearization point, so that the radius A of the trust region can
be increased to allow larger steps (hence more rapid conver-
gence), while values close to 0 indicate that the linearization
is a poor approximation, and A should be reduced accordingly
(Algorithm 2).

Algorithm 2 Updating the trust-region radius A
1: procedure UPDATE_TRUST_RADIUS(p, hg;, A)
2: if p > .75 then
3: A <—max{A,3- ||hdl||}
4 else if p < .25 then
5 A+ A/2
6: end if
7
8:

return A
end procedure

Combining the above strategies produces the Powell’s Dog-
Leg algorithm (Algorithm 3). The algorithm takes as its
arguments the function r defining the objective function S
as in (5), an initial estimate xy for the minimizer of S, and an
initial estimate A, for the trust-region radius, together with
four other arguments (€1, €2, €3, and k;,4;) that control the
stopping criteria.

We point out for clarity that the vector g appearing in
Algorithm 3 is a vector parallel to the objective function
gradient V.S(x), since

1
g=J@)" r() = 3VS(), (24)
where the second equality follows by differentiating equation
(5). Likewise, the scalar « that controls the size of the
steepest-descent step hsy = —ag is (once again) obtained
by substituting the linear approximation (6) into the right-

hand side of (5), and then setting o to be the scaling factor

Algorithm 3 Powell’s Dog-Leg
1: procedure POWELLS_DOG-LEG(r, zg, Ag, €1, €2, €3,
kmam)

2: k<0, 2 20, A< ANg, g J (x0)" -7 ()
3 stop [([r (2)]lc < €3) or (|lgllec < €1)]

4: while (not stop and (k < kynq4.)) do

5: Compute hg, using (10).

6: Set a « [|g]1*/[|J (=)g]]*.

7: Set hgq < —ag.

8: Set hq; <~ COMPUTE_DOG-LEG(hgpn, hsq, D).
9: if ||hai]] < €2 (||z]] + €2) then

10: stop < true

11: else

12: Set Tproposed < ((E + hdl)-

13: Compute p using (23).

14: if p > 0 then

15: Set T < Tproposed-

16: Set g « J(z)T - r(z).

7 stop « [([Ir ()] < ez or ([lglloe < €1)]
18: end if

19: A < UPDATE_TRUST_RADIUS(p, hq;, A)
20: end if

21: k (k + 1)

22: end while

23: return x

24: end procedure

minimizing the resulting estimated objective function value:

2
a = argmin || L (—ag)||2 = 7”‘(]” .
a€R 17 (z)gll?

Note that even though this method uses the approximation (6)
to compute the steepest-descent step, it is still valid within
the context of the trust-region approach, since any steepest-
descent step hgg that is proposed for use as the dog-leg step
hq; and leaves the region of trust is scaled down to lie within
it (lines 4 and 5 in Algorithm 1).

(25)

V. RISE: INCREMENTALIZING POWELL’S DOG-LEG

In this section we present Robust Incremental least-Squares
Estimation (RISE), which we obtain by deriving an incremen-
talized version of Powell’s Dog-Leg (Algorithm 3) with the
aid of iISAM.

Algorithm 1 shows how to compute the dog-leg step hg;
directly from the Gauss-Newton step hg, and the steepest-
descent step hgq; as iSAM already implements an efficient
incremental algorithm for computing hg,, it remains only to
compute hgg. In turn, line 7 of Algorithm 3 shows that hgy
is computed in terms of the gradient direction vector g and
scale factor o, which can be determined using equations (24)
and (25), respectively. Thus, it suffices to determine efficient
incrementalized versions of (24) and (25).

Letting * = (Zoid, Tnew) as before and substituting the
block decompositions (13) and (14) into (24) produces

= J(& ()
(Zota)”) _ (Told(Zold))
Tnew (iolda inew)
- (xOld) OrOld(xOld)> + WT *Tnew (i'olda ‘%new)'

(26)

Comparing the right-hand side of (26) with (24), we rec-
ognize the product J(Zoa)T - To1d(Z014) as nothing more
than g = g,14, the gradient direction vector of the original
(i.e. unaugmented) system at the linearization point Z,;4. Thus,
(26) can be reduced to

g= (g) F W rpew (@)

Since the matrix W 1is sparse and its row dimension is
equal to the (small) number of new measurements added when
the system is extended, equation (27) provides an efficient
method for obtaining the new gradient direction vector g by
incrementally updating the previous gradient direction vector
g, as desired.

Furthermore, in addition to obtaining g from g using (27)
in incremental update steps, we can also exploit computations
already performed by iSAM to more efficiently directly batch-
compute g during relinearization steps, when incremental up-
dates cannot be performed. Substituting the QR decomposition
(19) into (24), we compute'

27

qg= J f
R
-(0 (0)) e
= (R" 0)- QTTU
Comparing the final line of (28) with (20) shows that
- T . _ d _ =T . =
g=(R" 0) ((9)_ RT . d. (29)

The advantage of equation (29) versus equation (24) is that R
is a sparse matrix of smaller dimension than .J(%), so that the
matrix-vector multiplication in (29) will be faster. Moreover,
since iISAM already computes the factor R and the right-hand
side vector d, the factors on the right-hand side of (29) are
available at no additional computational expense.

Having shown how to compute the vector g, it remains only
to determine the scaling factor « as in (25). The magnitude of
g can be computed efficiently directly from g itself, which
gives the numerator of (25). To compute the denominator
| J(2)g]|?, we again exploit the fact that iISAM already main-
tains the R factor of the QR decomposition for J(#); for since
Q@ is orthogonal, then

|7@)al” = | (QR) gl =
and equation (25) is therefore equivalent to

a=|lgl*/lIRg|*.

(30)

Again, since R is sparse, the matrix-vector multiplication
appearing in the denominator of (30) is efficient.

Equations (27), (29), and (30) enable the implementation
of RISE, a fully incrementalized version of Powell’s Dog-
Leg that integrates directly into the existing iSAM framework
(Algorithm 4).

Furthermore, although these equations were derived in the
context of the original iISAM algorithm [10] for pedagogical
clarity, they work just as well in the context of iISAM2 [9]. In
that case, the use of the Bayes Tree [8] and fluid relinearization
enables the system to be efficiently relinearized at every
timestep by applying direct updates only to those (few) rows of
the factor R that are modified when relinearization occurs. One
obtains the corresponding RISE2 algorithm by replacing lines
4 to 13 (inclusive) of Algorithm 4 with a different incremental
update procedure for g: writing R on the right-hand side of
equation (29) as a stack of (sparse) row vectors, and then using
knowledge of how the rows of R and the elements of d have
been modified in the current timestep, enables the computation
of an efficient incremental update to g.

Finally, we point out that RISE(2)’s efficiency and incre-
mentality are a direct result of exploiting iISAM(2)’s pre-
existing functionality for computing the matrix R. In ad-
dition to being a purely intellectually pleasing result, this
also means that any other computations depending upon pre-
existing iISAM functionality (for example, online covariance
extraction for data association [7]) can proceed with RISE
without modification.

VI. EXPERIMENTAL RESULTS

In this section, we examine the performance of five algo-
rithms (the Powell’s Dog-Leg, Gauss-Newton, and Levenberg-
Marquardt batch methods and the RISE and iSAM incremental
methods) operating on a class of toy 6DOF SLAM prob-
lems in order to illustrate the superior performance of the
Powell’s Dog-Leg-based methods versus current state-of-the-
art techniques. (We do not include experimental results for
iISAM2 and RISE2 in this paper, as at the time of writing
improved release implementations of these algorithms are in
development. However, we expect that a comparison of the
performance of iISAM2 and RISE2 will be qualitatively similar
to what is demonstrated here for iISAM and RISE.)

Our test set consists of 1000 randomly generated instances
of the sphere2500 data set [9]. The samples were generated
using the executable generateSpheresICRA2012.cpp
included in the iSAM version 1.6 release (available through
http://people.csail.mit.edu/kaess/isam/).

Since one of our motivations in developing an incremental
numerical optimization algorithm suitable for use in general
nonlinear least-squares minimization is to enable the use of
robust estimators in SLAM applications, we also replace the
quadratic cost function in (4) with the pseudo-Huber robust
cost function [6, p. 619]:

O(5) = 202 (W - 1)

with parameter b = .5.

Algorithm 4 The RISE algorithm
1: procedure RISE
2: Initialization: Z,;q, Zestimate < Lo, A +— Ag.
3 while (3 new data (%00, Tnew)) do
4 if (relinearization_step) then
5: Update linearization point: Z,;q < Testimate-
6
7

Construct Jacobian J (%014, Tnew)-

Perform complete QR decomposition on J(#),
cache R factor and right-hand side vector d as
in equations (11) and (12).

: Set g« —R” -d.

9: else

10: Compute the partial Jacobian W as in (15).
11: Obtain and cache the new R factor and new

right-hand side vector d by means of Givens
rotations as in equations (17) and (21).
12: Set

= (g) + W rpew ().

13: end if

14: Compute Gauss-Newton step hg,, using (22).

15: Set a « [|g]|*/|| Rg|)*.

16: Set hgq <+ —ag.

17: Set hq; <~ COMPUTE_DOG-LEG(hgpn, hsa, D).

18: Set Q%proposed — (i —+ hdl)-

19: Compute p using (23).

20: if p > 0 then

21: Update estimate: Zestimate < Lproposed-

22: else

23: Retain current estimate: Zostimate < L.

24: end if

25: Set A +UPDATE_TRUST_RADIUS(p, hg;, A).

26: Update cached variables: Z,;q < &, 7 < 7,9 < g,
R+ R, d+ d.

27: end while

28: return Zogiimate

29: end procedure

All experiments were run on a desktop with Intel Xeon
X5660 2.80 GHz processor. Each of the five algorithms used
was implemented atop a common set of data structures, so any
variation in algorithm performance is due solely to differences
amongst the optimization methods themselves.

A. Batch methods

In this experiment, we compared the performance of the
three batch methods to validate our hypothesis that Powell’s
Dog-Leg should be adopted as the standard for sparse least-
squares minimization. Powell’s Dog-Leg was initialized with
Ap = 1, and the Levenberg-Marquardt algorithm (following
the implementation given in Section A6.2 of [6] using additive
modifications to the diagonal) was initialized with Ay = 1076
and scaling factor A = 10 (the Gauss-Newton method takes

http://people.csail.mit.edu/kaess/isam/

(a) Initial estimate

(c) Levenberg-Marquardt (d) Powell’s Dog-Leg

Fig. 2. A representative instance of the sphere2500 6DOF SLAM problem
from the batch experiments. 2(a): The initial estimate for the solution
(objective function value 1.221 ES8). 2(b): The solution obtained by Gauss-
Newton (3.494 E6). 2(c): The solution obtained by Levenberg-Marquardt
(8.306 E3). 2(d): The solution obtained by Powell’s Dog-Leg (8.309 E3).
Note that the objective function value for each of these solutions is within
+0.5% of the median value for the corresponding method given in Table L.

no parameters). In all cases, the initial estimate for the robot
path was obtained by integrating the simulated raw odometry
measurements. All algorithms use the stopping criteria given
in Algorithm 3, with ¢; = €3 = €3 = .01 and Kk, = 500.
The results of the experiment are summarized in Table I. A
representative instance from the test set is shown in Fig. 2.

As expected, Powell’s Dog-Leg and Levenberg-Marquardt
achieved comparable levels of accuracy, significantly outper-
forming Gauss-Newton. The superior performance of these
algorithms can be explained by their online adaptation: both
Powell’s Dog-Leg and Levenberg-Marquardt adaptively in-
terpolate between the Gauss-Newton and steepest descent
steps using the local behavior of the objective function as a
guide, and both implement a look-ahead strategy in which
the proposed step h is rejected if the objective function value
at the proposed updated estimate proposed actually increases
(cf. line 14 of Algorithm 3). In contrast, the Gauss-Newton
method has no look-ahead strategy and no guard against
overconfidence in the local linear approximation (6), which
renders it prone to “overshooting” (i.e., taking too large a
step), non-recoverably driving the estimate & away from the
true local minimum.

In addition to its favorable accuracy, Powell’s Dog-Leg
is also the fastest algorithm of the three by an order of
magnitude, both in terms of the number of iterations neces-
sary to converge to a local minimum and the total elapsed
computation time. The superior speed of Powell’s Dog-Leg
versus Gauss-Newton is explained by its adaptive step compu-

tations, which enable it to advance more directly toward local
minima, whereas Gauss-Newton may take many false steps
and overshoots before converging, or may not converge at all.
The superior speed of Powell’s Dog-Leg versus Levenberg-
Marquardt has been studied previously [14]: it is due in part
to the fact that Powell’s Dog-Leg need only solve the normal
equations once at each linearization point, whereas Levenberg-
Marquardt must solve the modified normal equations (an ex-
pensive operation) whenever the linearization point is updated
or the damping parameter \ is changed.

These results support our thesis (put forward in Section IV)
that Powell’s Dog-Leg should be adopted as the method of
choice for general sparse nonlinear least-squares estimation.

B. Incremental methods

In this experiment, we compared the new RISE algorithm
(Algorithm 4) with the original iSAM algorithm, a state-of-
the-art incremental sparse least-squares method. RISE was
initialized with Ay = 1, and both algorithms were set to
relinearize every 100 steps. The results of the experiment are
summarized in Table II. (Note that the statistics given for each
method in the first and second rows of Table II are computed
using only the set of problem instances for which that method
did not terminate early, as explained below.)

As expected, RISE significantly outperformed the original
iSAM in terms of accuracy. In over half of the problem
instances, the solution computed by iSAM diverged so far from
the true minimum that the numerically-computed Jacobian
became rank-deficient, forcing the algorithm to terminate early
(solving equation (10) requires that the Jacobian be full-rank).
Even for those problem instances in which iSAM ran to
completion (which are necessarily the instances that are the
“easiest” to solve), Table II shows that the solutions computed
using the incremental Gauss-Newton approach are consider-
ably less accurate than those computed using the incremental
Powell’s Dog-Leg method. Indeed, RISE’s performance on all
of the problem instances was, on the average, significantly
better than the original iSAM’s performance on only the
easiest instances.

While Table II shows that RISE is slightly slower than the
original iSAM, this is to be expected: each iteration of the
RISE algorithm must compute the Gauss-Newton step (the
output of iSAM) as an intermediate result in the computation
of the dog-leg step. Each of the steps in Algorithm 4 has
asymptotic time-complexity at most O(n) (assuming sparsity),
which is the same as for iSAM, so we expect that RISE
will suffer at worst a small constant-factor slowdown in speed
versus iISAM. The results in Table II show that in practice this
constant-factor slowdown has only a modest effect on RISE’s
overall execution speed (when the computational costs of
manipulating the underlying data structures are also included):
both iISAM and RISE are fast enough to run comfortably in
real-time.

Powell’s Dog-Leg Gauss-Newton Levenberg-Marquardt
Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.
Objective function value 8.285 E3 | 8.282 E3 71.40 4544 E6 | 3.508 E6 | 4.443 E6 || 9.383 E3 | 8.326 E3 | 2.650 E3
Computation time (sec) 16.06 15.73 1.960 226.2 226.0 2.028 126.7 127.0 43.51
Iterations 34.48 34 4.171 499.9 500 2.500 338.2 328 138.9
Iteration limit interrupts 0 998 311
TABLE I
SUMMARY OF RESULTS FOR BATCH METHODS
RISE iSAM
Mean Median Std. Dev. Mean Median Std. Dev.
Objective function value 9.292 E3 | 9.180 E3 | 5.840 E2 6.904 EI11 | 1.811 E4 | 1.242 E13
Computation time (sec) 50.21 50.18 0.13 42.97 42.95 0.13
Early termination failures (rank-deficient Jacobian) 0 (0.0%) 586 (58.6%)
TABLE II

SUMMARY OF RESULTS FOR INCREMENTAL METHODS

VII. CONCLUSION

In this paper we derived Robust Incremental least-Squares
Estimation (RISE), an incrementalized version of the Powell’s
Dog-Leg trust-region method suitable for use in online sparse
least-squares minimization. RISE maintains the speed of cur-
rent state-of-the-art incremental sparse least-squares methods
while providing superior robustness to objective function non-
linearities.

In addition to its utility as a general-purpose method for
least-squares estimation, we expect that RISE will prove par-
ticularly advantageous in 6DOF lifelong mapping and visual
SLAM tasks. In both of these applications, the large number
of data association decisions that must be made make it likely
that at least some of them will be decided incorrectly. Under
the usual squared-error cost criterion, even a few erroneous
data associations can severely degrade the quality of the
resulting estimate. RISE’s robustness to nonlinearity admits
the use of robust cost functions in these applications, which
should significantly attenuate the ill effects of erroneous data
associations; indeed, this was our original motivation for
developing the algorithm.

Finally, although RISE was developed under the assumption
of Gaussian residual distributions, we believe that it is possible
to generalize the algorithm to perform efficient online infer-
ence over arbitrary sparse factor graphs. Given the ubiquity
of these models, this would be of considerable interest as
a general-purpose online probabilistic inference method. We
intend to explore this possibility in future research.

ACKNOWLEDGMENTS

This work was partially supported by Office of Naval Re-
search (ONR) grants N00014-06-1-0043, N00014-10-1-0936
and N00014-11-1-0688, and by Air Force Research Laboratory
(AFRL) contract FA8650-11-C-7137. The views expressed in
this work have not been endorsed by the sponsors.

REFERENCES

[1] R.G. Carter. On the global convergence of trust region algorithms using
inexact gradient information. SIAM Journal on Numerical Analysis,
28(1):251-265, 1991.

T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. A column
approximate minimum degree ordering algorithm. ACM Trans. Math.
Softw., 30(3):353-376, 2004.

[2]

[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization
and mapping via square root information smoothing. Intl. J. of Robotics
Research, 25(12):1181-1203, Dec 2006.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
2nd edition, 1987.

G. Golub and C. Van Loan. Matrix Computations.
University Press, Baltimore, MD, 3rd edition, 1996.
R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

M. Kaess and F. Dellaert. Covariance recovery from a square root
information matrix for data association. Journal of Robotics and
Autonomous Systems, 57(12):1198-1210, Dec 2009.

M. Kaess, V. Ila, R. Roberts, and F. Dellaert. The Bayes tree: An algo-
rithmic foundation for probabilistic robot mapping. In Intl. Workshop on
the Algorithmic Foundations of Robotics, WAFR, Singapore, Dec 2010.
M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F. Del-
laert. iSAM2: Incremental smoothing and mapping with fluid relin-
earization and incremental variable reordering. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), Shanghai, China, May 2011.

M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
smoothing and mapping. [EEE Trans. Robotics, 24(6):1365-1378, Dec
2008.

K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai,
and R. Vincent. Efficient sparse pose adjustment for 2D mapping. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
22-29, Taipei, Taiwan, October 2010.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g20: A general framework for graph optimization. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), Shanghai, China, May
2011.

K. Levenberg. A method for the solution of certain nonlinear problems
in least squares. Quart. Appl. Math, 2(2):164-168, 1944.

M.ILA. Lourakis and A.A. Argyros. Is Levenberg-Marquardt the most
efficient optimization algorithm for implementing bundle adjustment?
Intl. Conf. on Computer Vision (ICCV), 2:1526-1531, 2005.

K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for Non-Linear
Least Squares Problems. Informatics and Mathematical Modeling,
Technical University of Denmark, 2nd edition, 2004.

M.J.D. Powell. A new algorithm for unconstrained optimization. In
J. Rosen, O. Mangasarian, and K. Ritter, editors, Nonlinear Program-
ming, pages 31-65. Academic Press, 1970.

M.J.D. Powell. On the global convergence of trust region algorithms for
unconstrained minimization. Mathematical Programming, 29(3):297—
303, 1984.

G.A. Shultz, R.B. Schnabel, and R.H. Byrd. A family of trust-region-
based algorithms for unconstrained minimization with strong global
convergence properties. SIAM Journal on Numerical Analysis, 22(1):47—
67, 1985.

S. Thrun. Robotic Mapping: A Survey. In G. Lakemeyer and B. Nebel,
editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT
Press, Cambridge, MA, 2008.

Johns Hopkins

	I Introduction
	II Inference in Gaussian factor graphs
	III Review of iSAM
	III-A The Gauss-Newton method
	III-B Incrementalizing the solution: iSAM

	IV From Gauss-Newton to Powell's Dog-Leg
	V RISE: Incrementalizing Powell's Dog-Leg
	VI Experimental results
	VI-A Batch methods
	VI-B Incremental methods

	VII Conclusion
	References

