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Abstract—In this paper, we present provably-good distributed
task allocation (assignment) algorithms for a heterogeneous
multi-robot system where the tasks form disjoint groups and
there are constraints on the number of tasks a robot can do
(both within the overall mission and within each task group). Our
problem is motivated by applications where multiple robotswith
heterogeneous capabilities have to work together to accomplish
tasks. Thus, for our purposes, a task group is acompound task
composed of more than one atomic tasks where one robot is
required for each atomic task. Since robots have limited battery
life, we assume that the number of (atomic) tasks that a robot
can do within a mission has an upper bound. Futhermore, each
robot has a constraint on the number of tasks it can do from
each group (this models the fact that multiple robots may be
needed to simultaneously perform the atomic tasks that make
up the compound task). Each robot obtains a payoff (or incurs
a cost) for each task and the overall objective for task allocation
is to maximize the total payoff (or minimize the total cost) of all
the robots.

In general, existing (centralized or distributed) algorithms for
task allocation either assume that (atomic) tasks are independent,
or do not provide performance guarantee for the situation where
task constraints exist. We show that our problem can be solved
in polynomial time by a centralized algorithm by reducing it
to a minimum cost network flow problem. We then present
a decentralized algorithm (that extends the auction algorithm
of Bertsekas for linear assignment problems [1]) to providean
almost optimal solution. We prove that our solution is within a
factor of O(ntε) of the optimal solution, where nt is the total
number of tasks and ε is a parameter that we choose (the
guarantees are the same as that of the original auction algorithm
for unconstrained tasks). The decentralized algorithm assumes a
shared memory model of computation that may be unrealistic for
many multi-robot deployments. Therefore, we show that by using
a maximum consensus algorithm along with our algorithm, we
can design a totally distributed algorithm for task allocation with
group constraints. The key aspect of our distributed algorithm
is that the overall objective is (nearly) maximized byeach robot
maximizing its own objective iteratively (using a modified payoff
function based on an auxiliary variable, called price of a task).
Our algorithm is polynomial in the number of tasks as well as
the number of robots.

Index Terms—Multi-robot assignment, Task allocation, Auc-
tion algorithm.

I. I NTRODUCTION

For autonomous operations of multiple robot systems, task
allocation is a basic problem that needs to be solved ef-
ficiently [2], [3]. The basic version of the task allocation
problem (also known as linear assignment problem in combi-
natorial optimization) is the following:Given a set of agents

(or robots) and a set of tasks, with each robot obtaining some
payoff (or incurring some cost) for each task, find a one-to-
one assignment of agents to tasks so that the overall payoff
of all the agents is maximized (or cost incurred is minimized).
The basic task assignment problem can be solved (near)
optimally in polynomial time by centralized algorithms [4], [5]
and decentralized algorithms [1]. Generalizations of the linear
assignment problem where the number of tasks and agents are
different and each agent is capable of doing multiple tasks can
also be solved optimally by both centralized and decentralized
algorithms [5], [6], [7]. However, in all of these works, it is
assumed that the tasks are independent of each other and an
agent can do any number of tasks. In practice, robots have
limited battery life and thus there is a limit on the number
of tasks that a robot can do. Furthermore, the tasks may not
be independent and may occur in groups, where there is a
constraint on the number of tasks that a robot can do from
each group. Therefore, in this paper, we introduce and study
the multi-robot task allocation problem with group constraints,
where robots have constraints on the number of tasks they can
perform (both within the whole mission and within each task
group).

More sepecifically, the multi-robot (task) assignment prob-
lem for grouped tasks (MAP-GT) that we study can be stated
as follows:Given nr robots and nt tasks, where (a) the tasks
are organized into ns disjoint groups, (b) each robot has an
upper bound on the number of tasks that it can perform within
the whole mission and also within a group, and (c) each robot,
r i , has a payoff, ai j for each task, tj , find the assignment of the
robots to tasks such that the sum of the payoffs of all the robots
is maximized. For concreteness, a task group can be thought
of as acompound taskcomposed of more than one atomic
task where one robot is required for each atomic task. As
an illustrative example, consider the problem of transporting
objects from a start location to a goal location where an
object needs to be carried by multiple robots. Such pick and
place tasks are common in many application scenarios like
automated warehouse, automated ports, and factory floors. If
three robots are required to carry an object then the overall
task of carrying the object can be decomposed into three
atomic tasks of robots holding the object at three different
places and moving with it. Thus, the three atomic tasks
form a task group where each task in a group has to be
performed by one robot and the robots have to execute the
tasks simultaneously. The energy costs incurred by the robots



in transporting an object may be different because the weights
and load carrying capabilities of the robots may be different
and the force transmitted from the object to the robots may be
different depending on the holding location. Thus, the problem
of assigning robots to tasks forpick and placeoperations for
object transport to minimize total energy cost can be modeled
as a MAP-GT with each robot constrained to do at most one
task within each task group (please see Section III-A, for
detailed discussion on example application scenarios). Our
work here focuses on the design and theoretical analysis of
algorithms (both centralized and distributed) for multi-robot
task assignment for grouped tasks.

We first show that the multi-robot assignment problem for
grouped tasks can be reduced to a minimum cost network
flow problem. Thus, MAP-GT can be solved optimally in
polynomial time by using standard algorithms for solving
network flow problems [5]. We then present a decentralized
iterative algorithm for solving MAP-GT where it is assumed
that the robots have access to a shared memory (or there is
a centralized auctioneer). Our algorithm is a generalization of
the auction algorithm developed by Bertsekas [1] for solving
linear assignment problems. We prove that byappropriately
designing and updating an auxiliary variable for each task,
called the price of each task, each robot optimizing its own
objective function leads to a solution where the overall ob-
jective of all the robots is maximized. Mathematically, the
price of a task is the Lagrange multiplier (or dual variable)
corresponding to the constraint that each task can be done by
exactly one robot. The shared memory maintains the global
values of the price of each task. However, assumption of
the availability of such a shared memory may be unrealistic
for many deployments of multi-robot systems. Therefore, we
also present a totally distributed algorithm, where each robot
maintains a local value of the global price and updates it using
a maximum consensus algorithm. In our distributed algorithm,
each robot iteratively assigns itself (and informs its neighbors)
to the tasks that is most valuable to it based on her payoff and
local price information. We prove that this algorithm converges
to the same solution as the algorithm with the shared memory
assumption. This is analogous to the work in [8], where the
decentralized algorithm of [1] for linear assignment problem
was made totally distributed by combining it with a maximum
consensus algorithm.

Our algorithm for MAP-GT provides a solution that isnear-
optimal, namely, within a factor ofO(ntε) of the optimal solu-
tion wherent is the number of tasks andε is a parameter to be
chosen. This approximation guarantee is called near-optimal,
since we can chooseε to make the solution arbitrarily close
to the optimal solution. The running time of our algorithm for
the shared memory model isO(nrnt log(nt)

max{ai j }−min{ai j }
ε .

For the totally distributed model, we will need to multiply the
complexity by the diameter of the communication network
of the robots, which is at mostnr . Thus, our algorithm is
polynomial in the number of robots and number of tasks.
However, it is pseudo-polynomial in the payoff values. By
appropriately scaling the payoffs we can make the algorithm
polynomial in the payoffs.

This paper is organized as follows: In Sectionsec:rw, we
discuss the related literature on multi-robot task allocation.
In Section III, we give a formal definition of the multi-robot
assignment problem for groups of tasks with constraints on the
number of tasks that a robot can do. In Section IV, we present
the assignment algorithm with shared-memory model and in
Section V, we briefly discuss how to extend the algorithm to
a totally distributed algorithm with consensus techniques. In
Section VII, we demonstrate the performance of our algorithm
with some example simulations. Finally, in Section VIII, we
present our conclusions and outline future avenues of research.

II. RELATED WORK

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [9], multi-robotdeci-
sion making [10], and other multi-robot coordination problems
(see [11], [12]). There are different variations of the multi-
robot task assignment problem that have been studied in
the literature depending on the assumptions about the tasks
and the robots (see [2] for a taxonomy of task allocation
problems). One axis of dividing the task assignment problem
is as online versus offline. In offline task allocation the set
of tasks are known beforehand, whereas in online problems
the tasks arise dynamically. In this paper, we will consider
the offline task allocation problem and therefore we will
divide our discussion of the relevant literature here into the
offline and online task allocation problems. Moreover, our
objective is to design algorithms for task allocation with
provable performance guarantees. Therefore, we will elaborate
on algorithms that provide performance guarantees.
Offline Task Allocation: In offline task allocation, the payoff’s
of a robot for each task is assumed to be known beforehand.
In the simplest version of the offline task allocation problem
(also known as the linear assignment problem), each robot
can perform at most one task and the robots are to be
assigned to tasks such that the overall payoff is maximized.
The linear assignment problem is essentially a maximum
weighted matching problem for bipartite graphs. This problem
can be solved in a centralized manner using the Hungarian
algorithm [4], [5]. Bertsekas [1] gave a decentralized algorithm
(assuming a shared memory model of computation, i.e., each
processor can access a common memory) that can solve the
linear assignment problemalmost optimally. In subsequent
papers, the basic auction algorithm was extended to more
general task assignment problems with different number of
tasks and robots and each robot capable of doing multiple
tasks [1], [7]. Recently, [8], [12] have combined the auction
algorithm with consensus algorithms in order to remove the
shared memory assumption and obtain a totally distributed
algorithm for the basic task assignment problem. However all
of this work assume that the tasks are independent of each
other. For the more general case, where the tasks are organized
into disjoint groups such that each robot can be assigned to
at most one task from each group and there is a bound on
the number of tasks that a robot can do, [13] generalized the
auction algorithm of [1] to give an algorithm with near optimal
solution.



In the above discussion, the total payoff of a robot depends
on the individual tasks assigned to a robot, but it does
not depend on the sequence in which the tasks should be
done or the combination of tasks that the robots perform.
For multi-robot routing problems, where the individual robot
payoffs depend on the sequence in which the tasks are
performed, [9] has given different auction algorithms with
performance guarantees for different team objectives. When
the objective is to minimize the total distance traveled by all
the robots they provide a 2-approximation algorithm. For all
other objectives the performance guarantees are linear in the
number of robots and/or tasks. For example, when allocating
m spatially distributed tasks ton robots, for minimizing the
maximum distance traveled by a robot, their algorithm gives
a performance guarantee ofO(n).
Online Task Allocation: Even the simplest version of the
online task allocation problem, which is (a variation of) the
online linear assignment problem is NP-hard [2]. As stated
before, this is the online MWBMP where the edge weights are
revealed randomly one at a time, i.e., the tasks arrive randomly
and a robot already assigned to a task cannot be reassigned.
Greedy algorithms for task allocation, wherein the task is
assigned to the best available robot has been used in a number
of multi-robot task allocation systems (e.g., MURDOCH [14],
ALLIANCE [15]) and therefore, have the same competitive
ratio of 1

3 as [16], if the payoff’s are non-negative and satisfy
some technical assumptions. Note that the greedy algorithm
gives a solution that is exponentially worse in the number of
robots, when the objective is to minimize the total payoff [16].
This is different from the offline linear assignment problem
where both the maximization and minimization problems can
be solved optimally in polynomial time.

There are other variations of the task allocation problem
studied in the multi-robot task allocation community, as well as
operation research community that have been shown to be NP-
hard, and for many of them there are no algorithms with worst
case approximation guarantees [2]. Therefore, a substantial
amount of effort has been invested in developing and testing
heuristics for dynamic task allocation [17], [18], [19]. These
algorithms are based on distributed constraint optimization
(DCOP). Auction-based heuristics for multi-robot task alloca-
tion in dynamic environments have also been proposed, where
the robots may fail during task execution and the tasks need
to be reassigned [20], [21].

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [9], multi-robotdeci-
sion making [10], and other multi-robot coordination problems
(see [11], [12]). There are different variations of the multi-
robot assignment problem that have been studied in the
literature depending on the assumptions about the tasks and
the robots (see [2], [11], [22] for surveys), and there also exists
multi-robot task allocation systems (e.g., Traderbot [23], [24],
Hoplites [25], MURDOCH [14], ALLIANCE [15]) that build
on different algorithms.

III. PROBLEM STATEMENT

In this section, we give the formal definition of our multi-
robot task assignment problem with task group constraints.

We will first introduce some notations. Suppose that there are
nr robots,R= {r1, . . . , rnr }, andnt tasks,T = {t1, . . . ,tnt}, for
the robots. Letai j ∈R be the payoff for the assignment pair
(r i ,t j), i.e., for assigning robotr i to task t j . Without loss of
generality, we assume that any robot can be assigned to any
task. Each task can be performed by exactly one robot. Each
robot can perform at mostNi tasks (we call,Ni , the budget
of robot r i ). Since, performing each task needs a single robot,
we should have∑nr

i=1Ni ≥ nt , for all tasks to be performed.
Let fi j be the variable that takes a value 1 if task,t j , is
assigned to robot,r i , and 0 otherwise. The task setT forms
ns disjoint groups/subsets{T1, . . . ,Tns} so that∪ns

k=1Tk = T.
We assume that each robot,r i , can perform at mostNk,i tasks
from task groupTk, which we call the task group constraints.
matehmatically, the task group constraints can be written as

∑
j : t j∈Tk

fi j ≤ Nk,i , ∀i = 1, . . . ,nr , k = 1, . . . ,ns (1)

The overall objective is to assign all tasks to robots so thatthe
total payoff from the assignment is maximized. The multitobot
task assignment problem with grouped tasks can be formally
stated as follows:

Problem 1. Given nr robots andnt tasks with the tasks
forming ns disjoint groups, maximize the total payoffs of
robot-task assignment such that each task is performed by
exactly one robot, each robotr i performs at mostNi tasks in
the overall mission and at mostNk,i tasks from a task group
Tk.

Problem 1 can be written as an integer linear program (ILP)
given below

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt , (2)

nt

∑
j=1

fi j ≤ Ni , ∀i = 1, . . . ,nr , (3)

∑
j : t j∈Tk

fi j ≤ Nk,i , ∀i = 1, . . . ,nr ,k = 1, . . . ,ns, (4)

fi j ∈ {0,1}, ∀i, j. (5)

In the above formulation, the optimization variables arefi j .
Equation (2) states that each task can be assigned to exactly
one robot and also implies that all tasks should be assigned.
Equation (3) gives the budget constraints of the robot. Note
that the above problem is a generalization of the linear
assignment problem (LAP). In LAP, Equation (4) is not present
and in Equation (3),Ni = 1.

Remark 1. Generally speaking, the assignment payoff ai j can
be considered as the difference between assignment benefit
bi j and the assignment cost ci j , i.e., ai j = bi j − ci j . Thus, if
cost ci j is the only component to be considered, (i.e., bi j =
0), Problem 1 would become an assignment problem in the
form of cost minimization. Note that some papers use the term
payoff for the benefit bi j and the term utility for ai j . In the



context of this paper, we will use the terms payoff and utility
interchangibly.

The MAP-GT problem defined above can be solved in
polynomial time in the number of tasks and number of robots
by a centralized algorithm by reducing it to a network flow
problem. We will then use a dual decomposition-based method
to design a decentralized algorithm for MAP-GT and also
show that the algorithm can be made totally distributed. For
clarity of exposition, we will first present the solutions to
MAP-GT under the following assumptions: (a)Nk,i = 1 for
all task groups, i.e., each robot can do at most 1 task from
each group and (b) each robot has to perform exactlyNi tasks
during the mission. In Section VI, we will show how these
assumptions can be removed. Thus MAP-GT problem with
assumptions (a) and (b) above can be written as:

max
nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (6)

nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr (7)

∑
j : t j∈Tk

fi j ≤ 1, ∀i = 1, . . . ,nr ,k = 1, . . . ,ns (8)

fi j ≥ 0, ∀i, j (9)

Note that the constraints above implicitly imply that (a) the
number of tasks in any subset must be no more than the
number of robots (otherwise at least one task in the subset
cannot be performed), i.e., maxns

k=1 |Tk| ≤ nr , and (b) the
number of subsets must be no less than anyNi (otherwise
r i cannot be assigned toNi tasks), i.e.,ns ≥ maxnr

i=1Ni .

A. Motivation

TGC arise in two different kinds of scenarios: (a) each task
group consists of tightly-coupled tasks, i.e., tasks whichrobots
must perform simultaneously, and thus each robot can only
be assigned to one of them; (b) there exist group precedence
constraints among tasks, i.e., only after all tasks in one group
are finished by robots, the subsequent group of tasks can
get started. To fully explore the parallelism and increase
the efficiency, each robot can be assigned to at most one
task in each group. These constraints were motivated by a
combination of the following tasks in multi-robot systems:

• Go-and-return tasks: In such tasks, the robots have to
repeatedly visit a given site and return to base location.
Such tasks arise in a variety of application scenarios
including transportation of packages in automated ware-
house, collection of sensing information using mobile
sensors, where the locations to be visited are spatially
clustered. The spatial clustering gives a natural grouping
of the tasks. Each robot has to return to some base
location to unload the products (e.g., a package the robot
has picked up or collected sensing information) before
moving to another task location. Thus each robot can be

assumed to be doing at most one task at a time from
a group. The costs of different tasks to one robot are
independent of each other, and can be defined as twice
the distance from the robot base location to the task
location. The objective is to minimize the total costs
(traveling distance) of the assignments while satisfying
all the constraints.

• Tightly-coupled tasks: In such tasks, multiple robots
must simultaneously work on a given task to perform
it successfully. Examples of such task include multi-
robot collaborative manipulation/assembly tasks. Since,
for any task, robots must simultaneously perform the
atomic tasks, each robot can only be assigned to at most
one atomic task from each task set. If we assume that
the robots are designed to be heterogeneous and each
robot has a certain degree of generality and specialty for
tasks, the payoffs for the different robots for a task will
be different. The objective here is to maximize the overall
payoff of the assignment.

One example scenario of Problem 1 is the sensing informa-
tion collection by multi-robot systems. Consider the mission
of sending robots equipped with sensors to collect sensing
information from spatially distributed regions. Inside each
region, there exist different task locations where robots must
collect sensing information simultaneously with (almost)the
same time stamp. In this scenario, tasks are naturally forming
groups due to the spatial distribution of regions and each
robot can be assigned to at most one task location inside each
region. If one robot was assigned to more than one task in one
region, it can only collect sensing information from different
locations with different time stamp, which violates the mission
requirement. Assume that the sensing information collection
tasks are go-and-return style, and the payoff of assigning one
robot to one task locations depends on the traveling distance
as well as the value of the sensing information. The objective
here is to assign robots to all task locations in different regions
so that the total payoffs are maximized while the mission
requirements are met.

IV. A LGORITHM DESIGN AND PERFORMANCEANALYSIS

A. Overview

In Section IV, we design an algorithm to get the optimal
(or almost-optimal) solution for multi-robot task assignment
with task group constraints. First, we show how to reduce
Problem 1 to a min-cost network flow problem, which can
be solved in polynomial time usingcentralizednetwork flow
algorithm (Section IV-B). Second, we look at adistributedway
to find the optimal solution, where a centralized controlleris
not required, and instead each robot can make decisions on
its own in a distributed way. In Section IV-C, we design an
algorithm, which extends the basic auction algorithm in [1],
and prove that the algorithm can achieve an almost-optimal
solution. The algorithm is implemented in each single robot,
so the decision-making process is distributed. However, each
robot does not only need to know its local information, such
as its budget, payoffs between each task and itself, but also
need a shared memory (i.e., a centralized component) to access



some global information of each task, i.e., the highest bidding
price of each task from all robots, which are auxiliary variables
created and maintained during the algorithm implementation.
In Section V, we modify the algorithm by adding consensus
techniques among networked multi-robot system. So robots do
not need to know the global price information of each task,
instead, each robot just needs to get the local task information
through local peer-to-peer communication with its neighbors.
In this way, we remove the shared memory requirement,
which makes the algorithm totally distributed. Meanwhile,
the distributed algorithm can still achieve the almost-optimal
solution quality.

B. Centralized Solution: Reduction to network flow problem

For any MAP-GT problem mentioned above, we can con-
struct a min-cost network flow problem. A min-cost network
flow problem is defined as follows: [26]

The MAP-GT problem can be reduced to a network flow
problem by the following construction (shown in Figure 1).
Consider a directed graphG = (V,E), with a set of nodes
V = R

⋃
T

⋃
S, and edgesE = E1

⋃
E2, where

• Nodes: R= {r i |i = 1, . . . ,nr} represent robots,T = {t j | j =
1, . . . ,nt} represent tasks,S = {Ti,k|i = 1, . . . ,nr ,k =
1, . . . ,ns} is introduced to represent each task subsetTk

for each robotr i .
• Edges: E1 = {(r i ,Ti,k)|i = 1, . . . ,nr ,k = 1, . . . ,ns}, and

E2 = {(Ti,k,t j)|∀i, j,k, s.t., t j ∈ Tk}.
• Source and sink nodes:All nodes inR are source nodes

with supply Ni , and all nodes inT are sink nodes with
demand 1.

• Capacity and cost of edges:The capacity of all edges in
E is 1. The cost for edges inE1 is 0, while for edges
(Ti,k,t j) in E2 is −ai j .

• Flow: fi j , associated with each edge betweenTi,k and
t j , represents the flow from nodeTi,k to nodet j , where
t j ∈ Tk.

Fig. 1. Reduction to the min-cost network flow problem. For display purpose,
just robotr1, its corresponding nodesT1,k and edges are shown. For each other
robot r i , there are another set of nodes{Ti,k|k = 1, . . . ,ns}, edges{(r i ,Ti,k)|k=
1, . . . ,ns} and{(Ti,k,t j )|∀t j ∈ Tk}, which are omitted.+N1 and−1 represent
nodes’ supply and demand;[0,1] shows that the capacity of flow along the
edges is 1.

Solving the constructed min-cost network flow problem

above, will lead to the optimal solution for Problem 1 in
Section III due to the following facts:

• the demand and supply constraints are equal to the
constraint (1) and (2);

• the capacity constraints of flowfi j are equal to constraints
in (3) and (4);

• the objective function min∑i ∑ j ci j fi j here is equal to the
objective function max∑i ∑ j ai j fi j , since ci j = −ai j for
edges inE2 and the cost of edges inE1 is 0.

So after solving the min-cost network flow problem, the
non-zero (value 1) flow inE2 corresponds to the optimal
assignment of Problem 1 in Section III.

The min-cost network flow problem is a classical problem
that has been studied extensively. Centralized polynomial-time
algorithms exist that can be used to compute the optimal solu-
tion [26]. So we can directly use the off-the-shelf algorithms
to solve Problem 1 in a centralized way.

Using this method, a centralized controller is required so
that all robots input the information of payoffs and budgets
to the controller, the controller solves the whole problem,
and then it sends back commands to robots for their task
assignments. However, in some applications, there is often
need for decentralized/distributed algorithms so that robots
can make decisions by themselves in the field according to
the information they possess.

C. Decentralized Solution: Auction-based Algorithm Design

In this section, we extend the basic auction algorithm [1]
to provide a decentralized and almost-optimal solution for
Problem 1. The outline of this section is as follows: First,
we discuss the basic idea of auction algorithm and several
important concepts (introduced in [7]), e.g., robot is (almost)
happy, and the assignment is (almost) at equilibrium; second,
we design a decentralized auction-based algorithm for Prob-
lem 1, where each robot can bid on its own for tasks, and
prove the algorithm can achieve an almost-optimal solution.

1) Basic Idea and Concepts of Auction Algorithm:Auction
algorithm matchesnr robots andnt tasks with constraints (1)-
(4) through a market auction mechanism, where each robot is
an economic agent acting in its own best interest. Although
each robotr i wants to be assigned to its favoriteNi tasks, the
different interest of robots will probably cause conflicts.This
can be resolved through introducing aprice variable to each
task, and an auction mechanism of robots’ bidding for tasks.
Suppose the price for taskt j at iterationτ is p j(τ), and the
robot assigned to the task must payp j(τ). So the net value of
task t j to robot r i at iterationτ becomesv j(τ) = ai j − p j(τ)
instead of justai j . The iterative bidding from robots leads to
the evolution ofp j(τ), which can gradually resolve the interest
conflicts among robots (as shown later in this section).

Every robot r i wants to be assigned to a task setTJi =
{t j | j ∈ Ji} with maximum net values while satisfying its
constraints|Ji | = Ni andTJi

⋂
Tk ≤ 1,∀k = 1, . . . ,ns:

∑
j∈Ji

(ai j − p j(τ)) = ∑(
(Ni )
max)

k=1,...,ns
max
j∈Tk

(ai j − p j(τ)) (10)



where ∑(max(Ni)) is used to get the sum of theNi biggest
values. When (10) is satisfied, we say robotr i is happy. If all
robots are happy, we say the whole assignment and the prices
at iterationτ areat equilibrium.

Suppose we fix a positive scalarε. When each assigned task
for robot r i is within ε of being in the set ofr i ’s maximum
values, that is,

{ai j − p j(τ)| j ∈ Ji} ≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j(τ))− ε)

(11)
(after sorting both the left and right sets of (11) above, any
value in the left set is no less than its corresponding value in
the right set), we say robotr i is almost happy. If all robots
are almost happy, we say the whole assignment and the prices
at iterationτ arealmost at equilibrium.

2) Auction-based Algorithm Design:Appendix B discusses
two methods of directly applying the basic auction algorithm
to Problem 1, but they are either not decentralized or cannot
achieve good solution quality. In this subsection, we provide a
decentralized algorithm for Problem 1, which directly modifies
the bidding procedure of auction algorithm.

A single iteration of our auction algorithm for each
robot r i at iteration τ is described in Algorithm 1. We
can define the auction-based algorithm for our assignment
problem by setting all robots to run copies of Algorithm 1
sequentially. The algorithm terminates when all robots have
been assigned to their tasks (i.e.,N′

i = Ni for all tasks). The
sequential auction is known as one-at-a-time or Gauss-Seidel
implementation. One alternative is to let all robots bid
simultaneously and assign tasks to its highest bidder, which
is known as all-at-once or Jacobi implementation. The Jacobi
implementation is convenient for parallel implementation, but
tends to terminate slower as discussed in [7].

Algorithm 1 can be summarized as follows.

I During the first part of Algorithm 1 (from Line 2 to 7),
robot r i needs to update its assignment information from
its previous iteration, since other robots may bid higher
price for its assigned tasks after its previous iteration. If
that is the case, some previous assignments of tasks for
r i will be broken andr i needs to give new bids.

II During the bidding part of Algorithm 1 (from Line 10
to 21), robot r i keeps theN′

i assigned tasks since its
previous iteration, and bids forNi − N′

i tasks with the
best values from different subsets (which do not contain
any of N′

i assigned tasks). This part guarantees that after
the iteration, all constraints for robotr i are satisfied: (a)
robot r i is assigned to exactlyNi tasks (N′

i previously
assigned tasks plusNi −N′

i newly assigned tasks); (b)r i

is assigned to at most one task in each subset. Meanwhile
each task is assigned to at most one robot, because each
task either does not change assignment status (assigned
to previous robot or remains unassigned) or switch from
the previous assigned robot to robotr i . The bidding price
for each task is at leastε bigger than its previous price:
since j∗k is the best candidate task inTk and is among the
Ni −N′

i best from{ j∗k|k 6∈ IT}, j ′k is the second best inTk,

Algorithm 1 Bidding Procedure For Robotr i

1: Input: ai j , pj(τ), Tk for all j ,k,
< I t , IT ,P > // I t : indices of tasks assigned to ri during
// r i ’s previous iteration; IT : their corresponding subset
// indices; P: their corresponding bidding prices from ri

2: // Update the assignment information:
3: ∀ m∈ {1, . . . , |I t |} // m-th previously assigned task
4: if P(m) < pI t (m)(τ) then
5: // another robot has bid higher than ri ’s previous bid
6: removeI t(m), correspondingIT(m), P(m) from I t , IT ,

andP, respectively
7: end if
8: DenoteN′

i = |I t | // number of tasks still assigned to ri

9: // Collect information for new bids
10: Denotev j(τ) = ai j − p j(τ) // value of tj to ri

11: Select the best candidate task from each subsetTk, where
k 6∈ IT : j∗k = argmaxj∈Tk v j(τ)

12: Store the index of second best candidate from eachTk:
j ′k = argmaxj∈Tk, j 6= j∗k

v j(τ)

13: Select theNi −N′
i best candidate tasks from{ j∗k|k 6∈ IT}:

14: K∗ = arg(max(Ni−N′
i ))k6∈IT v j∗k

(τ) // arg(max(Ni−N′
i )) is the

//operator to get indices of the Ni −N′
i biggest values

15: Store the index of(Ni −N′
i +1)-th best candidate task from

{ j∗k|k 6∈ IT}:
k′ = argmaxk6∈(IT ⋃

K∗) v j∗k
(τ)

16: // Start new bids
17: Bid for tK = {t j∗k

|k∈ K∗} with price:
18: b j∗k

= p j∗k
(τ)+v j∗k

(τ)−max{v j∗
k′
(τ),v j ′k

(τ)}+ ε
19: // Update assignment information and price information:
20: Add { j∗k|k∈ K∗} to I t , K∗ to IT , and{b j∗k

|k∈ K∗} to P
21: Set p j∗k

(τ +1) = b j∗k
for k∈ K∗ and setp j(τ +1) = p j(τ)

for j 6∈ { j∗k|k∈ K∗}

j∗k′ is the(Ni −N′
i +1)-th best from{ j∗k|k 6∈ IT},

v j∗k
(τ) ≥ max{v j∗

k′
(τ),v j ′k

(τ)}

b j∗k
− p j∗k

(τ) = v j∗k
(τ)−max{v j∗

k′
(τ),v j ′k

(τ)}+ ε ≥ ε

So the tasks receivingr i ’s bids must be assigned tor i

at the end of the iteration. The bidding value ofb j∗k
is

related to the proof of the optimality of the algorithm,
which will be discussed in Section IV-C3.

3) Algorithm Performance Analysis:In this subsection, we
will answer the following questions about Algorithm 1:(a) Will
Algorithm 1 terminate with a feasible assignment solution in
a finite number of iterations? (b) How good is the solution
when Algorithm 1 terminates?

Lemma 1. When Algorithm 1 terminates for all robots, the
achieved assignment must be a feasible solution for Problem1,
i.e., (1)-(4) are satisfied.

Proof: When Algorithm 1 for robotr i terminates, it means
that r i has already been assigned toNi tasks and no other
robot would bid higher forr i ’s assigned tasks. Since the
algorithm terminates for all robots, according to summary
(II) of Algorithm 1, all the constraints have been satisfied for



all robots. So the achieved assignment is a feasible solution
satisfying (1)-(4).�
Lemma 1 implies Algorithm 1 is sound, i.e., when it outputs
a solution, the solution is feasible. The next result asserts that
Algorithm 1 always terminates in finite number of iterations
assuming the existence of at least one feasible assignment for
the problem. The proof relies on the observations below:

(a) When a task is assigned, it will remain assigned during
the whole process of the algorithm. The reason is that
during the bidding and assignment process, the assign-
ment status of a task can either transfer from unassigned
to assigned, or be reassigned from one robot to another,
but cannot become unassigned from assigned.

(b) Each time when a task receives a bid, its new price will
increase by at leastε according to the algorithm, i.e.,

p j∗k
(τ +1)= b j∗k

= p j∗k
(τ)+v j∗k

(τ)−max{v j∗
k′
(τ),v j ′k

(τ)}+ε

≥ p j∗k
(τ)+ ε

So if one task receives infinite number of bids, its price
will become+∞.

(c) If a robotr i bids for infinite number of times, all tasks in
the subsets, wherer i does not have fixed assigned tasks,
will receive infinite number of bids. The reason is that
there are finite number of tasks, and thus there must
be at least one task receiving infinite number of bids.
If there exists one task (from such subsets), which does
not receive infinite number of bids, its price would be
finite, and its value forr i must be bigger than those tasks
receiving infinite number of bids. So it has to receive
more bids, which leads to the contradiction. So all tasks
in those subsets receive infinite number of bids and thus
have the price of+∞ (according to (b)).

Theorem 1. If there is at lest one feasible solution for
Problem 1, Algorithm 1 for all robots will terminate in a finite
number of iterations.

Proof: If the algorithm continues infinitely, there must be some
subsets{Tk|k∈ K∞} where all tasks have+∞ price according
to (c) above. DenoteT∞ =

⋃
k∈K∞ Tk. Suppose some robots

{r i |i ∈ I∞} already getN∗
i tasks fromT \ T∞, and are still

bidding for its remainingN∞
i tasks fromT∞. (Please note, here

N∞
i = Ni −N∗

i does not necessarily equal toN′
i in Algorithm 1

since all those tasks inT∞ are not stably assigned to any
robot.) DenoteR∞ = {r i |i ∈ I∞}.

Each taskti ∈T∞ remains assigned (according to (a) above).
Each robotr i ∈ R∞ needs to be stably assigned toN∞

i more
tasks, but all tasks inT∞ cannot fill up all∑i∈I∞ N∞

i positions.
So

|T∞| < ∑
i∈I∞

N∞
i

Please note that the above inequality is strict, since there
must be at least one robotr i ∈ R∞ that has remaining tasks
unassigned (otherwise the algorithm terminates).

On the other hand, each robot must already be assigned to
exactly one task in each subsetTk,k 6∈ K∞ (according to (c)

above). We have

∑
i∈I∞

Ni = ∑
i∈I∞

N∗
i + ∑

i∈I∞
N∞

i

Suppose in any feasible assignment,N̂∗
i andN̂∞

i are the number
of assigned tasks forr i in T \T∞ and T∞, respectively.Ni =
N̂∗

i + N̂∞
i . It is easy to see that eachN∗

i (i ∈ I∞ ) has reached
the biggest possible value,∑i∈I∞ N∗

i ≥ ∑i∈I∞ N̂∗
i . So

∑
i∈I∞

N̂∞
i ≥ ∑

i∈I∞
N∞

i > |T∞|

It means in any feasible assignment, the number of assigned
tasks inT∞ for R∞ is bigger than the number of tasks inT∞.
By contradiction, we know that Algorithm 1 must terminate in
a finite number of iterations if there exists a feasible solution
for Problem 1.�

Lemma 1 and Theorem 1 together prove that Algorithm 1
is both sound and complete, and also give a positive answer
to the first question (at the beginning of Section IV-C3), when
there exists at least one feasible solution for the problem.

Infeasibility check:In the case when there does not exist
any feasible solution, the robots can detect that situationin
a distributed way during the bidding procedure. The bidding
procedure itself would guarantee that task group constraint (8)
is always satisfied since each robot would bid for at most one
task from each group. Constraint (6) might be violated due
to the fact that∑i Ni < nt . In that case, Algorithm 1 would
output an almost-optimal solution given the budget constraints
of robots, and leaves some tasks unassigned. Moreover, the
robots can detect that situation after the algorithm terminates
by checking whether there still exist tasks with initial zero
price. The infeasibility caused by budget constraint (7) can be
detected whenever a robot start continuing bidding for a task
with negative values to it. At that time, the robot can check
the price of other tasks: if all tasks have non-zero price, the
robot can detect that there does not exist any feasible solution
since it implies that∑i Ni < nt ; if the number of tasks with
zero price (tasks which have not received any bids) isnp0,
the robot can detect the infeasibility if it continues bidding
for tasks with negative values fornp0 rounds since it implies
that the structure of task groups prevents a feasible solution
satisfying task group constraint as well as budget constraint.
In this case, the robot detecting the infeasibility could send
out a message to its neighbors to stop the bidding procedure.
Please note that this infeasibility mainly comes from the strict
budget constraint that each robotr i must be assigned to exactly
Ni tasks. When we relax this budget constraint in Section VI so
that each robot can perform at mostNi tasks, this infeasibility
would not exist.

Next we want to prove the performance of Algorithm 1.
The result relies on the following theorem.

Theorem 2. After each iterationτ of robot ri , ri ’s newly
assigned tasks together with the task prices pj(τ + 1) keep
r i almost happy, i.e., (11) is satisfied.

Proof.
First, let us prove it holds true for the first iteration. At the

beginning of the first iteration,r i does not have any assigned



tasks. According to the bidding part of Algorithm 1, the bidden
taskstK = {t j∗k

|k∈ K∗} with the price before the iteration can
maker i happy:

{ai j ∗k
− p j∗k

(τ)|k∈ K∗} = (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j(τ)))

p j∗k
(τ +1) = b j∗k

= p j∗k
(τ)+v j∗k

(τ)−max{v j∗
k′
(τ),v j ′k

(τ)}+ ε,
andv j(τ +1) = v j(τ),∀ j 6∈ { j∗k|k∈ K∗}, so

ai j ∗k
− p j∗k

(τ +1) = max{v j∗
k′
(τ),v j ′k

(τ)}− ε
= max{v j∗

k′
(τ +1),v j ′k

(τ +1)}− ε

So the value of any task intK to robot r i is within ε of the
maximum value of any task in its own subset and other subsets
{Tk|k 6∈ K∗}, so

{ai j ∗k
−p j∗k

(τ +1)|k∈K∗}≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j −p j(τ))−ε)

which means (6) is satisfied.
Second, we prove that the unchanged tasks assigned tor i

sincer i ’s previous iteration, must still be in the new assignment
of r i . That is, those tasks are still among tasks, which maker i

almost happy after the iteration. Denote the index set of those
tasks ast ′K . Since these tasks did not receive any bid from other
robots sincer i ’s previous iteration, their prices (and hence their
values) tor i do not change. Meanwhile any other tasks’ price
either remain the same or increase after receiving bids, so
their values tor i reduce. So tasks int ′K must still be in the
new assignment to maker i almost happy. Since the bidding
process to get newly assigned tasks is the same, the newly
assigned tasks must also be in the new assignment to maker i

almost happy (due to similar proof for the first iteration).
So the conclusion is true for each iterationτ of r i , i.e., after

each iterationτ of r i , r i ’s newly assigned tasks together with
the task pricesp j(τ +1) keepr i almost happy.�

Since Theorem 2 holds true for all robots, we get the
corollary below.

Corollary 1. When Algorithm 1 for all robots terminates, the
achieved assignment and price are almost at equilibrium.

Theorem 3 below answers the second question (at the
beginning of Section IV-C3), and gives performance guarantee
for Algorithm 1.

Theorem 3. When Algorithm 1 for all robots terminates, the
achieved assignment{(i,(l i1, . . . , l iNi ))|i = 1, . . . ,nr} must be
within ∑nr

i=1Niε of an optimal solution.

Proof: Denote ({(i,(l i1, . . . , l iNi ))|i = 1, . . . ,nr}) as any fea-
sible assignment, i.e.,

(
Ni⋃

k=1

tl ik)
⋂

Tm ≤ 1,∀i,m : i = 1, . . . ,nr ;m= 1, . . . ,ns

(
Ni⋃

k=1

tl ik)
⋂

(

Nj⋃

k=1

tl jk ) = /0 if i 6= j (12)

Denote {pj | j = 1, . . . ,nt} as the set of task prices when
Algorithm 1 terminates for all robots and{p j | j = 1, . . . ,nt}
as any set of task prices.

First, we want to give an upper bound for the optimal
solution.

Ni

∑
k=1

(ail ik − pl ik) ≤ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik − pl ik) ≤
nr

∑
i=1

(
(Ni )
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik) ≤
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

Since it holds true for any set of price and any feasible
assignment, we haveA∗ ≤ B∗, whereA∗ is the optimal total
payoffs of any feasible assignment.

A∗ = max
l ik satisfy(12)

nr

∑
i=1

Ni

∑
k=1

(ail ik)

B∗ = min
p j : j=1,...,nt

B

= min
p j : j=1,...,nt

(
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j)))

On the other hand, according to Corollary 1, we have

nr

∑
i=1

Ni

∑
k=1

(ail ik
− pl ik

) ≥
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j − pj))−

nr

∑
i=1

Niε

nr

∑
i=1

Ni

∑
k=1

ail ik
≥

nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni )
max

k=1,...,ns
)(max

j∈Tk
(ai j − pj))−

nr

∑
i=1

Niε

≥ B∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

∑nr
i=1 ∑Ni

k=1ail ik
is the total payoffs of the achieved assignment

by Algorithm 1, and

A∗ ≥
nr

∑
i=1

Ni

∑
k=1

ail ik
≥ A∗−

nr

∑
i=1

Niε

So it is within ∑nr
i=1Niε of an optimal solution.�

Please note, if all the payoffs are integers, and we setε <
1

∑nr
i=1Ni

, the achieved assignment will be optimal.

V. D ISTRIBUTED AUCTION ALGORITHM

In this Section, we briefly discuss how to combine our
algorithm with consensus techniques to make the algorithm
totally distributed. In Algorithm 1, each robotr i can bid on
its own, however, it needs to access globalp j(τ) information
either from a shared memory or from communicating with
a centralized auctioneer. Recently, consensus algorithmshave
been introduced to combine with the auction algorithm, so that
the shared memory/centralized auctioneer can be removed [8],
[12]. Next we briefly talk about the basic idea.

Consider a connected networkG of all robots, each robot
can finally get some global information, based on repeated
local interaction with its neighbors. For example, in maximum-
consensus [27], each robotr i ∈ R has an initial value of task
j as pi

j , and wants to get the maximum initial value among
all robots,p j = maxr i∈R pi

j (denoter∗ the robot which gets the



initial value p j ). The maximum initial valuep j can propagate
to the whole connected network, if every robot keeps updating
its value using the local maximum value among its neighbors
as follows.

Suppose that at iterationτ, each robotr i has the value of
task j as pi

j(τ). Starting from initial valuepi
j(0), the robot

needs to update its value:

pi
j(τ +1) = max

k∈N
+

i

pk
j(τ) (13)

whereN
+

i = {i}∪Ni, andNi is the set ofr i ’s neighbors in
networkG. Eventually, each robot can get the true maximum
value of taskt j , and the number of iterations that each robot
r i gets the true valuep j would be the length of the shortest
path fromr i to r∗, which is at most the number of robotsnr .

Similar idea applies to the auction algorithm as shown
below.

Modification of Algorithm 1 to form a distributed algorithm:
Suppose at iterationτ, the price of taskt j that r i maintains
is pi

j(τ), then the vector of prices thatr i maintains is that
[pi

1(τ), pi
2(τ), . . . , pi

nt
(τ)], wherent is the number of tasks. At

the beginning of Algorithm 1, we can add a part wherer i

updates its price information of each taskt j , pi
j(τ), using

maximum-consensus approach as shown in Equation 13.r i

may use underestimated price for bidding during some itera-
tions due to two factors: (a)r i maintains the price of all tasks
using local maximum instead of global maximum; (b) the price
of each task at each iteration may increase (due to new bids).
However, the current true price information will eventually
propagate tor i in at mostnr iterations (given the network is
connected). So after combining with consensus techniques,the
performance of Algorithm 1 does not change except that the
convergence time may be delayed by at most∆ times, where
∆ ≤ nr is the diameter of the robot network.

After the modification, the only knowledge each robot needs
to know is its own budget, as well as the payoffs between
itself and each task. The price update and bidding procedure
can be implemented either in synchronous or asynchronous
way. During each bidding iteration, each robot needs to
communicate with its direct neighbors to update the local
maximum task price. The average number of messages each
robot needs to communicate is the average node degree in the
network. The size of each message is the number of tasks.

Almost-optimality of the modified algorithm:Similar proof
as for Theorem 1 can be used to prove that the new algorithm
with consensus technique would also terminate in finite num-
ber of iterations at a feasible solution if there exist at least
one such solution. Theorem 2 also holds true if we change
the price in the theorem from true values to robots’ estimate
from local maximum, i.e., all robots are almost happy with
respect to its maintained task price each time after its bidding
iterations; since we assume the robot connection network is
connected, the accurate task price information at iteration τ
(i.e., the global highest bid price of the tasks at that time),
would eventually propagate to the whole network within at
most ∆ iterations. When the algorithm terminates, the price
information stored by all robots does not change and must

reach the true values due to propagation, so Theorem 2 holds
true for the true price values. Thus Theorem 3 also holds true.

So each robot in a connected network can make deci-
sions based on updated local price information from its own
neighbors. Therefore the auction algorithm becomes totally
distributed for both decision process and the information
collecting process.

VI. EXTENSIONS

In this section, we discuss a few extensions to the basic
problem formulation in Problem 1, including the relaxationof
budget constraint (7) and task group constraint (8).

A. Relaxation of budget constraint

In Problem 1, each robot has budget constraint, i.e., the
number of tasks robotr i can perform is exactlyNi . In this
subsection, we relax this constraint so that each robot might
not exhaust all its budget, in other words, the number of tasks
robot r i is assigned to is bounded byNi (but can be any non-
negative number smaller thanNi ):

nt

∑
j=1

fi j ≤ Ni , ∀i = 1, . . . ,nr

To solve the extended problem in a centralized or decen-
tralized way, we just need to modify the input instances in
the following way: since the total budgets of robots must
be no less than the number of tasks, i.e.,∑i Ni ≥ nt , we
add ∑i Ni − nt virtual tasks (denote the set of virtual tasks
as TV) to the original tasks. Every single virtual task is
forming a separate task group. The payoffs between any
virtual task and any robot is set to be identical, i.e.,ai1 j =
ai2 j , ∀ two robotsi1, i2, and taskt j ∈ TV . Then we can apply
the same algorithms described in Section IV-B and IV-C. The
virtual tasks are auxiliary and only exist in the input to the
algorithm, and get removed in the output assignment solution,
i.e., if a robot is assigned toz virtual tasks after the algorithms
terminate, the robot would havez remaining unused budgets.

The soundness and completeness of the method above
directly come from the soundness and completeness of the
algorithms in Section IV. The optimality of the method can
be proved as follows. According to Theorem 3, for the new
input instance with virtual tasks, we have

A′ = ∑
i

∑
j∈J′i

ai j ≥ A∗′−∑
i

Niε

, whereJ′i is the set of tasks assigned to robotr i , including
the possibly assigned virtual tasks. Since the virtual tasks have
the same payoffs for any robot, we can cancel their payoffs
in our assignment solutionA′ and the optimal solutionA∗′,
which leads to

A = ∑
i

∑
j∈Ji

ai j ≥ A∗−∑
i

Niε

, whereJi is the set of tasks assigned to robotr i , excluding
the possibly assigned virtual tasks.

To solve the extended problem in a distributed way, we
cannot directly use the method above. The reason is that each



robot does not know other robots’ budget, and thus does not
know how many virtual tasks there are in the modified input
instance. The way to resolve this issue is to change the bidding
procedure: each time a robot detects that it is bidding for a task
with non-positive value, it should stop bidding for that task and
meanwhile reduce its budget by one. The reason is that if we
set the payoffs of virtual tasks to be zero in the above method,
a robot would bid for virtual task if and only if the values of
other tasks are negative; and robots would not compete for the
same virtual tasks. So the modified bidding procedure above
can lead to the same solution in a distributed way without
assuming that a robot knows other robots’ budgets.

B. Relaxation of task group constraint

In Problem 1, all tasks are forming disjoint groups, and
task group constraint means that each robot can be assigned
to at most one task from each group. In this subsection, we
relax this constraint so that each robotr i can be assigned to
multiple tasks in each groupTk, but the number of tasks it can
be assigned to in each group is bounded byNk,i :

∑
t j∈Tk

fi j ≤ Nk,i , ∀i,k : i = 1, . . . ,nr ,k = 1, . . . ,ns (14)

To address this extension, we need modify how the can-
didate bid tasks are selected (line 11 and 12) in the bidding
procedure of Algorithm 1. First, instead of selecting the best
candidate task from each subsetTk, we select the bestNk,i

tasks fromTk to form a setJ∗k ; second, instead of storing the
index of the second best candidate task from each groupTk,
we store the index of the(Nk,i +1)-th best candidate task,j ′k,
for future bid price update. The modified bidding procedure
is shown below in Algorithm 2:

The proof of soundness, completeness, and optimality of
Algorithm 2 is similar to the proof for Algorithm 1. The
difference is that in the optimality proof, instead of showing
that the bestNi candidate tasks are selected from different task
group to satisfy the basic task group constraint (8), we need
to show that the selectedNi tasks are the best candidate tasks
satisfying the extended task group constraint (14).

VII. S IMULATION RESULTS

In Section IV, we designed Algorithm 1 for the MAP-GT
problem, and proved the performance guarantee the designed
algorithm. According to Theorem 3, we know thatε is a
control parameter which directly influences the performance of
our algorithm. In this section, we run simulations in a synthetic
example to check how the control parameterε influences the
auction algorithm’s solution quality and convergence time.

Considernr = 20 robots, each robotNi needs to perform
Ni = 3 tasks from a set ofnt = 60 tasks. The task setT
can be divided intons = 20 disjoint subsets, with 3 tasks in
each subset. We randomly generate payoffsai j from a uniform
distribution in(0,20). ε in Algorithm 1 is a control parameter,
related to the convergence time and performance guarantee of
the algorithm. In our simulations, we tested different values
of ε. For eachε, we generated 100 samples with different
payoffs drawn from the uniform distribution, and we compared

Algorithm 2 Bidding Procedure For Robotr i

1: Input: ai j , pj(τ), Tk for all j ,k,
< I t , IT ,P > // I t : indices of tasks assigned to ri during
// r i ’s previous iteration; IT : their corresponding subset
// indices; P: their corresponding bidding prices from ri

2: // Update the assignment information:
3: ∀ m∈ {1, . . . , |I t |} // m-th previously assigned task
4: if P(m) < pI t (m)(τ) then
5: // another robot has bid higher than ri ’s previous bid
6: removeI t(m), correspondingIT(m), P(m) from I t , IT ,

andP, respectively
7: end if
8: DenoteN′

i = |I t | // number of tasks still assigned to ri

9: // Collect information for new bids
10: Denotev j(τ) = ai j − p j(τ) // value of tj to ri

11: Select the bestNk,i candidate tasks from each subset
Tk: J∗k = arg(max(Nk,i)) j∈Tkv j(τ) // arg(max(Nk,i)) is the
//operator to get indices of the Nk,i biggest values

12: Store the index of the (Nk,i + 1)-th best candidate from
eachTk:
j ′k = argmaxj∈Tk\J∗k

v j(τ)
13: Select theNi best candidate tasks fromJ∗ = ∪kJ∗k :
14: K∗ = arg(max(Ni))k∈J∗vk(τ) // arg(max(Ni )) is the //oper-

ator to get indices of the Ni biggest values
15: Store the index of(Nk,i + 1)-th best candidate task from

J∗:
k′ = argmaxk∈(J∗\K∗) vk(τ)

16: // Start new bids
17: Bid for tK = {tk|k∈ K∗} with price:
18: bk = pk(τ)+vk(τ)−max{vk′(τ),v j ′g(k)

(τ)}+ ε // Suppose

//task k belongs to task group gk

19: // Update assignment information and price information:
20: Add {k|k∈K∗} to I t , {g(k)|k∈K∗} to IT , and{bk|k∈K∗}

to P
21: Set pk(τ + 1) = bk for k ∈ K∗ and setp j(τ + 1) = p j(τ)

for j 6∈ K∗

the mean and standard deviation of performance ratio of our
solution to the optimal solution, as well as the convergence
time of the algorithm.

Figure 2 shows how the solution of assignment payoffs
changes with the control parameterε. Whenε is as small as
0.1, the assignment payoffs achieved by our algorithm almost
equal the optimal solution. Whenε increases, the difference
between our solution and the optimal solution is increased.
Figure 3 shows how the convergence time of our algorithm
changes withε. The number of iterations decreases withε,
which means with higherε, Algorithm 1 converges faster.

From Figure 2 and 3, we can see that there is a tradeoff
between the solution quality and the convergence time, which
can be adjusted byε. With biggerε, the algorithm converges
faster at sacrifice of solution quality; while with smallerε, the
algorithm solution is better at the cost of slower convergence
time. In this example,ε = 1 can achieve a good balance
between the above two performance indicators.

To test the effect of maxai j − minai j , we fixed ε, and
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Fig. 2. Total payoffs of assignment by our algorithm as a function of
parameterε , which is the minimum possible price increase during the bidding
procedure. The optimal solution can be achieved when we setε <

min di f f
∑nr

i=1 Ni
where min di f f is the minimum difference between any two individual
payoffs ai j . The lower bound of our solution is given by Theorem 3.
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Fig. 3. Convergence time of our algorithm as a function of parameterε .
The solid line shows the number of rounds for our algorithm toterminate,
where one round means all robots sequentially implement Algorithm 1 for
one iteration.

adjusted the payoff distribution bounds, i.e., we draw payoff
values from a uniform distributed(0,a), wherea is adjustable
for different samples. Figure 4 and 5 show the results of
performance ratio as well as the convergence time. Actually
the effect of adjustinga is equivalent of adjustingε, i.e., when
we increasea by β times, it is equivalent to decreaseε by β
times, because it is just the scale change ofa andε.
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Fig. 4. Total payoffs of assignment by our algorithm as a function of
parametera, which is the up-bound of the uniform distribution where we
draw payoffs. We fixε = 0.5, and generate 100 samples for each different
a∈ {1,2, . . . ,10,20, . . . ,100}.

VIII. S UMMARY

In this paper we introduced a class of multi-robot task
assignment problems called task assignment with set prece-
dence constraints, where the tasks are divided into disjoint
sets or groups and there are precedence constraints between
the task groups. We presented a distributed task allocation
algorithm by extending the auction algorithm proposed by
Bertsekas for solving linear assignment problems for uncon-
strained tasks [1]. In our problem model, each robot can do
a fixed number of tasks and obtains a payoff (or incurs a
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Fig. 5. Convergence time of our algorithm as a function of parametera.
The solid line shows the number of rounds for our algorithm toterminate,
where one round means all robots sequentially implement Algorithm 1 for
one iteration.

cost) for each task. The tasks are divided into groups and
each robot can do only one task from each group. We proved
that our algorithm always terminates in a finite number of
iterations and we obtain a solution within a factor ofO(ntε)
of the optimal solution, wherent is the total number of tasks
and ε is a parameter to be chosen. We first presented our
algorithm using a shared memory model and then indicated
how consensus algorithms can be used to make it a totally
distributed algorithm. We also presented simulation results
illustrating our algorithm.

Future Work: One of our future work is to implement
our auction algorithm with consensus techniques so that the
algorithm can be run on each individual robot in a totally
distributed way. The problem, where tasks have set precedence
constraints, that we considered in this paper is a special class
of more general constraints. In the future we hope to extend
our algorithm to tasks with general precedence constraints
such that the time required to complete the tasks is minimized
as well as the overall payoff to the multi-robot system is
maximized.
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APPENDIX

A. Dual Formulation of Problem 1 and its relation to proof
of Theorem 3

Consider Problem 1 as the primal problem, and reformulate
it as follows:

max
{ fi jk}

nr

∑
i=1

ns

∑
j=1

|Tj |

∑
k=1

ai jk fi jk

s.t.

nS

∑
j=1

|Tj |

∑
k=1

fi jk = Ni , ∀i = 1, . . . ,nr (15)

nr

∑
i=1

fi jk = 1, ∀ j,k : j = 1, . . . ,ns,k = 1, . . . , |Tj | (16)

|Tj |

∑
k=1

fi jk ≤ 1, ∀i, j : i = 1, . . . ,nr , j = 1, . . . ,ns (17)

fi jk ≥ 0, ∀i, j,k (18)



Then its dual problem can be directly formulated as follows:

min
{πi ,p jk,si j }

nr

∑
i=1

Niπi +∑
j ,k

p jk +∑
i, j

si j

s.t.

πi + p jk +si j ≥ ai jk ,∀i, j,k (19)

where πi , p jk,si j are dual variables corresponding to
(15),(16),(17). The dual problem can be further transformed
to an unconstrained optimization problem:

min
{p jk,si j }

nr

∑
i=1

Ni(max
j ,k

(ai jk −si j − p jk))+∑
j ,k

p jk +∑
i, j

si j

Denote D = ∑nr
i=1Ni(maxj ,k(ai jk − si j − p jk)) + ∑ j ,k p jk +

∑i, j si j , D∗ = min{p jk,si j } ∑nr
i=1Ni(maxj ,k(ai jk − si j − p jk)) +

∑ j ,k p jk + ∑i, j si j . Similar to the weak duality theorem, the
relationship amongD, B, andA can be represented as follows:

D ≥ B≥ A

Similar to the strong duality theorem, the relationship among
D∗, B∗, andA∗ can be represented as follows:

D∗ = B∗ = A∗

So the proof technique we used for Theorem 3 is similar to
the primal-dual method. During the proof, instead of directly
using the dual objective, we use another objectiveB, whose
value is in-between the dual and primal objective values.

B. Discussion of two unsuccessful auction-based approaches

In this subsection B, we briefly discuss two methods of
directly applying the basic auction algorithm: the original
auction algorithm, which can solve the network flow problem
in a parallelized way, and a greedy algorithm, which applies
the basic auction algorithm sequentially.

1) Parallelized Auction Algorithm:The basic auction algo-
rithm [1] solved the original 1-to-1 assignment problem in a
parallelized way based on its dual problem: each robot itera-
tively makes bids for its favorite tasks (based on corresponding
payoffs and present price of tasks), and the highest bidder for
a task will be assigned to the task at that iteration. In that
algorithm, each robot can make decisions on its own, however,
there must be a centralized auctioneer to communicate with
robots about the task price during each iteration, or there must
be a shared memory for all robots to access the task price.

The auction algorithm for assignment problem has been
extended for asymmetric case [7] (where the number of robots
and tasks are different) and transportation problem [6] with
similar robots and tasks (e.g., one robot can perform multiple
tasks). [28] showed that the general min-cost network flow
problem can be reduced to an assignment problem. So the
first approach one may try is: first reduce Problem 1 to a
min-cost network flow problem as shown in Section IV-B;
then use the method in [28] to reduce the constructed min-
cost network flow problem to a basic assignment problem;
finally use original auction algorithm for the basic assignment
problem. Unfortunately, in the basic assignment problem after
the reduction, each bidding node does not represent one robot.

The auction algorithm can be parallelized and executed, but
cannot be combined with consensus techniques, to form a
distributed algorithm for each robot to implement.

So the next question would be: whether it is possible to
directly attack Problem 1, by modifying the basic auction
mechanism.

2) Sequential Greedy Auction Algorithm:To modify the
basic auction algorithm for Problem 1, one natural approach
would be a greedy algorithm of sequentially applying the basic
auction algorithm. The greedy algorithm sequentially applies
the auction algorithm, and assigns available robots to each
subset of tasks in the precedence order. However, this greedy
algorithm cannot guarantee to find an optimal solution. The
reason is that: one robot may be assigned to a task in an early
subset, but lose the chance of being assigned to a better task
in later subsets. The optimal solution may need to sacrifice the
payoffs for the current subset to pursue long-term payoffs for
all tasks. So when modifying the basic auction algorithm, we
have to consider all subsets of tasks simultaneously instead of
sequentially.
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