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Abstract—In this paper, we present provably-good distributed
task allocation (assignment) algorithms for a heterogenas
multi-robot system where the tasks form disjoint groups and
there are constraints on the number of tasks a robot can do
(both within the overall mission and within each task group) Our
problem is motivated by applications where multiple robotswith
heterogeneous capabilities have to work together to accortfiph
tasks. Thus, for our purposes, a task group is a&ompound task
composed of more than one atomic tasks where one robot is
required for each atomic task. Since robots have limited baery
life, we assume that the number of (atomic) tasks that a robot
can do within a mission has an upper bound. Futhermore, each
robot has a constraint on the number of tasks it can do from
each group (this models the fact that multiple robots may be
needed to simultaneously perform the atomic tasks that make
up the compound task). Each robot obtains a payoff (or incurs
a cost) for each task and the overall objective for task alloation
is to maximize the total payoff (or minimize the total cost) d all
the robots.

In general, existing (centralized or distributed) algorithms for
task allocation either assume that (atomic) tasks are indegndent,
or do not provide performance guarantee for the situation wtere
task constraints exist. We show that our problem can be solk
in polynomial time by a centralized algorithm by reducing it
to a minimum cost network flow problem. We then present
a decentralized algorithm (that extends the auction algothm
of Bertsekas for linear assignment problems [1]) to providean
almost optimal solution. We prove that our solution is within a
factor of O(nie) of the optimal solution, where n; is the total
number of tasks and € is a parameter that we choose (the
guarantees are the same as that of the original auction algidhm
for unconstrained tasks). The decentralized algorithm assmes a
shared memory model of computation that may be unrealisticdr
many multi-robot deployments. Therefore, we show that by uimg
a maximum consensus algorithm along with our algorithm, we
can design a totally distributed algorithm for task allocation with
group constraints. The key aspect of our distributed algorihm
is that the overall objective is (nearly) maximized byeach robot
maximizing its own objective iteratively (using a modifiedaynff
function based on an auxiliary variable, called price of a gR).
Our algorithm is polynomial in the number of tasks as well as
the number of robots.

Index Terms—Multi-robot assignment, Task allocation, Auc-
tion algorithm.
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(or robots) and a set of tasks, with each robot obtaining some
payoff (or incurring some cost) for each task, find a one-to-
one assignment of agents to tasks so that the overall payoff
of all the agents is maximized (or cost incurred is minimjzed
The basic task assignment problem can be solved (near)
optimally in polynomial time by centralized algorithms [4$]

and decentralized algorithms [1]. Generalizations of thedr
assignment problem where the number of tasks and agents are
different and each agent is capable of doing multiple tasks ¢
also be solved optimally by both centralized and deceagdli
algorithms [5], [6], [7]- However, in all of these works, & i
assumed that the tasks are independent of each other and an
agent can do any number of tasks. In practice, robots have
limited battery life and thus there is a limit on the number
of tasks that a robot can do. Furthermore, the tasks may not
be independent and may occur in groups, where there is a
constraint on the number of tasks that a robot can do from
each group. Therefore, in this paper, we introduce and study
the multi-robot task allocation problem with group constts,
where robots have constraints on the number of tasks they can
perform (both within the whole mission and within each task
group).

More sepecifically, the multi-robot (task) assignment prob
lem for grouped tasks (MAP-GT) that we study can be stated
as follows: Given n robots and ptasks, where (a) the tasks
are organized into gdisjoint groups, (b) each robot has an
upper bound on the number of tasks that it can perform within
the whole mission and also within a group, and (c) each robot,
ri, has a payoff, @ for each task, t, find the assignment of the
robots to tasks such that the sum of the payoffs of all thetsobo
is maximized For concreteness, a task group can be thought
of as acompound taslcomposed of more than one atomic
task where one robot is required for each atomic task. As
an illustrative example, consider the problem of transpgrt
objects from a start location to a goal location where an
object needs to be carried by multiple robots. Such pick and
place tasks are common in many application scenarios like
automated warehouse, automated ports, and factory fldors. |
three robots are required to carry an object then the overall
task of carrying the object can be decomposed into three

For autonomous operations of multiple robot systems, tastomic tasks of robots holding the object at three different
allocation is a basic problem that needs to be solved gftaces and moving with it. Thus, the three atomic tasks
ficiently [2], [3]. The basic version of the task allocatiorform a task group where each task in a group has to be
problem (also known as linear assignment problem in comipierformed by one robot and the robots have to execute the

natorial optimization) is the followingGiven a set of agents

tasks simultaneously. The energy costs incurred by thetsobo



in transporting an object may be different because the vtgigh This paper is organized as follows: In Sectionsec:rw, we
and load carrying capabilities of the robots may be differediscuss the related literature on multi-robot task allmcat
and the force transmitted from the object to the robots may be Section 1ll, we give a formal definition of the multi-robot
different depending on the holding location. Thus, the @b assignment problem for groups of tasks with constraintden t
of assigning robots to tasks fpick and placeoperations for number of tasks that a robot can do. In Section IV, we present
object transport to minimize total energy cost can be matelthe assignment algorithm with shared-memory model and in
as a MAP-GT with each robot constrained to do at most oigection V, we briefly discuss how to extend the algorithm to
task within each task group (please see Section IlI-A, fer totally distributed algorithm with consensus techniguas
detailed discussion on example application scenarios). Cgection VII, we demonstrate the performance of our algorith
work here focuses on the design and theoretical analysisviath some example simulations. Finally, in Section VIII, we
algorithms (both centralized and distributed) for mudtbot present our conclusions and outline future avenues of relsea
task assignment for grouped tasks.

We first show that the multi-robot assignment problem for 1. RELATED WORK
grouped tasks can be reduced to a minimum cost networ
flow problem. Thus, MAP-GT can be solved optimally in
polynomial time by using standard algorithms for solvin
network flow problems [5]. We then present a decentraliz
iterative algorithm for solving MAP-GT where it is assume

kTask allocation is important in many applications of multi-
obot systems, e.g., multi-robot routing [9], multi-roloteci-

&on making [10], and other multi-robot coordination peinks

see [11], [12]). There are different variations of the rAult
ohot task assignment problem that have been studied in

that the robots have access to a shared memory (or ther WS literat d di th i bout the task
a centralized auctioneer). Our algorithm is a generabmadif € lterature depending on the assumplions about the 1asks
and the robots (see [2] for a taxonomy of task allocation

the auction algorithm developed by Bertsekas [1] for sayvin ) o .
linear assignngent problems.pWe grove thatdnérg)priate(?y problems). One axis of dividing the task assignment problem

designing and updating an auxiliary variable for each tas ,Sf ?S I(()nlme \Iiersus (l;fflfme.hln ((j)ffllnhe task _allocz?_tlon theblset
called the price of each task, each robot optimizing its o asks are known betorenand, Whereas in oniine problems

objective function leads to a solution where the overall otg‘e tasks arise dynamically. In this paper, we will consider
i

jective of all the robots is maximized. Mathematically, th e doffhne dt_ask a!locat:cotr1h pro?lem tellr;d t?erefrc]) re V.Vrﬁ V\{'”
price of a task is the Lagrange multiplier (or dual variable) Vide our discussion of the relevant fiterature here 1o
ffline and online task allocation problems. Moreover, our

corresponding to the constraint that each task can be done gyine and ) ) X X
exactly one robotThe shared memory maintains the globaq jective is to design algorithms for task allocation with
vable performance guarantees. Therefore, we will e&bo

values of the price of each task. However, assumption loorithms that id f i
the availability of such a shared memory may be unrealist%‘ aigorithms that provide performance guarantees.

for many deployments of multi-robot systems. Therefore, w ffline Task Allocationin offline task allocation, the payoff's

also present a totally distributed algorithm, where eadioto ? ;rob_ot f(l)r ?ach t_ask |fs tﬁssufr;:_ed E{O bke ITanWP befo(rg;and.
maintains a local value of the global price and updates itgusi N the Simpiest version of the offine task afocation proble
(also known as the linear assignment problem), each robot

a maximum consensus algorithm. In our distributed algorjth
can perform at most one task and the robots are to be

each robot iteratively assigns itself (and informs its héigrs) ianed to tasks such that the overall pavoff is maximized
to the tasks that is most valuable to it based on her payoff aﬁﬁs 9 pay '

. : . : e linear assignment problem is essentially a maximum
local price information. We prove that this algorithm corges . ; L .
to the same solution as the algorithm with the shared memal ighted matching problem for bipartite graphs. This peabl

assumption. This is analogous to the work in [8], where {&an be solved in a centralized manner using the Hungarian

decentralized algorithm of [1] for linear assignment pesbl agonthm [4] [5]. Bertsekas [1] gave a decentrahzgd H!@m
e . Iﬂ&assumlng a shared memory model of computation, i.e., each

processor can access a common memory) that can solve the
linear assignment probleralmost optimally In subsequent

Our algorithm for MAP-GT provides a solution thatriear- papers, the basic auction algorithm was extended to more
optimal namely, within a factor 0O(n;€) of the optimal solu- general task assignment problems with different number of
tion wheren is the number of tasks arglis a parameter to be tasks and robots and each robot capable of doing multiple
chosen. This approximation guarantee is called near-aptimasks [1], [7]. Recently, [8], [12] have combined the austio
since we can choose to make the solution arbitrarily closealgorithm with consensus algorithms in order to remove the
to the optimal solution. The running time of our algorithm foshared memory assumption and obtain a totally distributed
the shared memory model @(nrmlog(m)w. algorithm for the basic task assignment problem. Howeuer al
For the totally distributed model, we will need to multiplyet of this work assume that the tasks are independent of each
complexity by the diameter of the communication networkther. For the more general case, where the tasks are ogeglaniz
of the robots, which is at most,. Thus, our algorithm is into disjoint groups such that each robot can be assigned to
polynomial in the number of robots and number of taskat most one task from each group and there is a bound on
However, it is pseudo-polynomial in the payoff values. Byhe number of tasks that a robot can do, [13] generalized the
appropriately scaling the payoffs we can make the algorithauction algorithm of [1] to give an algorithm with near opéim
polynomial in the payoffs. solution.

consensus algorithm.



In the above discussion, the total payoff of a robot dependée will first introduce some notations. Suppose that theee ar
on the individual tasks assigned to a robot, but it does robots,R={rq,...,rn }, andn; tasks,T = {ti,...,tn}, for
not depend on the sequence in which the tasks should the robots. Let; € R be the payoff for the assignment pair
done or the combination of tasks that the robots perforrr;,t;), i.e., for assigning robot; to taskt;j. Without loss of
For multi-robot routing problems, where the individual obb generality, we assume that any robot can be assigned to any
payoffs depend on the sequence in which the tasks &ask. Each task can be performed by exactly one robot. Each
performed, [9] has given different auction algorithms witlobot can perform at mos\t tasks (we callN;, the budget
performance guarantees for different team objectives. Whef robotr;). Since, performing each task needs a single robot,
the objective is to minimize the total distance traveled by ave should havez{‘;l N; > ny, for all tasks to be performed.
the robots they provide a 2-approximation algorithm. Fér dlet fi; be the variable that takes a value 1 if task, is
other objectives the performance guarantees are linedrein assigned to robot;;, and 0 otherwise. The task s€tforms
number of robots and/or tasks. For example, when allocating disjoint groups/subset§Ty,...,Tn,} SO thatuﬂilTk =T.
m spatially distributed tasks ta robots, for minimizing the We assume that each robagt, can perform at modt, ; tasks
maximum distance traveled by a robot, their algorithm givédsom task groupTy, which we call the task group constraints.
a performance guarantee O{n). matehmatically, the task group constraints can be written a
Online Task Allocation Even the simplest version of the .
online task allocation problem, which is (a variation offth . fij <Neip Vi=1,....0, k=1,....n @

. . . . JitjET
online linear assignment problem is NP-hard [2]. As stated
before, this is the online MWBMP where the edge weights afd1e overall objective is to assign all tasks to robots so et
revealed randomly one at a time, i.e., the tasks arrive rahdo total payoff from the assignment is maximized. The multitob
and a robot already assigned to a task cannot be reassigh@gk assignment problem with grouped tasks can be formally
Greedy algorithms for task allocation, wherein the task fifated as follows:

assigned to the best available robot has been used in a nunlighlem 1. Given ne robots andn, tasks with the tasks

of multi-robot task allocation systems (e.g., MURDOCH ['_14]forming ns disjoint groups, maximize the total payoffs of
AL,LIANlCE [15]) and therefor,e, have the same competitivespot-task assignment such that each task is performed by
ratio of 5 as [16], if the payoff's are non-negative and satisfgyacily one robot, each robot performs at mosN; tasks in

some technical assumptions. Note that the greedy algoritiga overall mission and at mobi; tasks from a task group
gives a solution that is exponentially worse in the number ’

robots, when the objective is to minimize the total payo#][1 '
This is different from the offline linear assignment problem Problem 1 can be written as an integer linear program (ILP)
where both the maximization and minimization problems caven below
be solved optimally in polynomial time. N

There are other variations of the task allocation problem max ZZaij fij
studied in the multi-robot task allocation community, ashae i=1j=
operation research community that have been shown to be NP-
hard, and for many of them there are no algorithms with worst

case approximation guarantees [2]. Therefore, a subskanti St e i = L Vi=L..m (2)
amount of effort has been invested in developing and testing ne
heuristics for dynamic task allocation [17], [18], [19]. §%e fii < N, Vi=1...,n, ()
algorithms are based on distributed constraint optinorati =1
(DCOP). Auction-based heuristics for multi-robot tasloadl- z fii < N, Vi=1,...,n,k=1,...,ns, (4)
tion in dynamic environments have also been proposed, where Ji ek
the robots may fail during task execution and the tasks need fij € {0,1}, Wi,j. (5)

to be reassigned [20], [21]. . Lo . _
Task allocation is important in many applications of multill the above formulation, the optimization variables dje

robot systems, e.g., multi-robot routing [9], multi-roksteci- Equation (2) states that each task can be assigned to exactly

sion making [10], and other multi-robot coordination prerils one r(_)bot and_also implies that all tasks should be assigned.
(see [11], [12]). There are different variations of the rult Equation (3) gives the budget constraints of the robot. Note

robot assignment problem that have been studied in tWeat the above problem is a generalization of the linear

literature depending on the assumptions about the tasks S‘ﬁé'gnme”t p_roblem (LAP). In LAP, Equation (4) is not presen
the robots (see [2], [11], [22] for surveys), and there aldete and in Equation (3)N; = 1.

multi-robot task allocation systems (e.g., Traderbot [223], Remark 1. Generally speaking, the assignment paygffcan
Hoplites [25], MURDOCH [14], ALLIANCE [15]) that build be considered as the difference between assignment benefit

on different algorithms. bij; and the assignment costj ci.e., aj = bjj —¢jj. Thus, if
cost gj is the only component to be considered, (i.g;,=b
lll. PROBLEM STATEMENT 0), Problem 1 would become an assignment problem in the

In this section, we give the formal definition of our multi-form of cost minimization. Note that some papers use the term
robot task assignment problem with task group constrainfsyoff for the benefitijp and the term utility for g. In the



context of this paper, we will use the terms payoff and ytilit ~ assumed to be doing at most one task at a time from
interchangibly a group. The costs of different tasks to one robot are
independent of each other, and can be defined as twice
the distance from the robot base location to the task
location. The objective is to minimize the total costs
(traveling distance) of the assignments while satisfying
all the constraints.
Tightly-coupled tasksIn such tasks, multiple robots
must simultaneously work on a given task to perform
it successfully. Examples of such task include multi-
robot collaborative manipulation/assembly tasks. Since,
for any task, robots must simultaneously perform the
atomic tasks, each robot can only be assigned to at most
one atomic task from each task set. If we assume that
the robots are designed to be heterogeneous and each
robot has a certain degree of generality and specialty for
N tasks, the payoffs for the different robots for a task will
max ZI Zaij fij be different. The objective here is to maximize the overall
== payoff of the assignment.

ne One example scenario of Problem 1 is the sensing informa-
st. Zfij = 1L Vj=1....n (6) tion collection by multi-robot systems. Consider the nassi

i= of sending robots equipped with sensors to collect sensing
information from spatially distributed regions. Insidecka
region, there exist different task locations where robotstm
collect sensing information simultaneously with (almast®
same time stamp. In this scenario, tasks are naturally faymi
> 0.Vi ©) groups due to t_he spatial distribution of regiqns _anq each

=" robot can be assigned to at most one task location inside each

Note that the constraints above implicitly imply that (ag thregion. If one robot was assigned to more than one task in one
number of tasks in any subset must be no more than tiggion, it can only collect sensing information from ditet
number of robots (otherwise at least one task in the sub$egations with different time stamp, which violates the s
cannot be performed), i.e., ”@5|Tk| <n;, and (b) the requirement. Assume that the sensing information cotiecti
number of subsets must be no less than Ahyotherwise tasks are go-and-return style, and the payoff of assignitey o
ri cannot be assigned g tasks), i.e.ns > ma){‘;l N;. robot to one task locations depends on the traveling distanc
as well as the value of the sensing information. The objectiv
here is to assign robots to all task locations in differegiors

L _ . ) so that the total payoffs are maximized while the mission
TGC arise in two different kinds of scenarios: (a) each ta%quirements are met

group consists of tightly-coupled tasks, i.e., tasks whatfots

must perform simultaneously, and thus each robot can on
be assigned to one of them; (b) there exist group preceden
constraints among tasks, i.e., only after all tasks in onegr A. Overview

are finished by robots, the subsequent group of tasks cann Section IV, we design an algorithm to get the optimal

get started. To fully explore the parallelism and increager almost-optimal) solution for multi-robot task assigemn

the efficiency, each robot can be assigned to at most oggh task group constraints. First, we show how to reduce

task in each group. These constraints were motivated bypgoblem 1 to a min-cost network flow problem, which can

combination of the following tasks in multi-robot systems: pe solved in polynomial time usingentralizednetwork flow

« Go-and-return tasksin such tasks, the robots have taalgorithm (Section IV-B). Second, we look atisstributedway

repeatedly visit a given site and return to base locatiotn find the optimal solution, where a centralized controiter
Such tasks arise in a variety of application scenario®t required, and instead each robot can make decisions on
including transportation of packages in automated warié,s own in a distributed way. In Section IV-C, we design an
house, collection of sensing information using mobilalgorithm, which extends the basic auction algorithm in [1]
sensors, where the locations to be visited are spatialind prove that the algorithm can achieve an almost-optimal
clustered. The spatial clustering gives a natural groupisglution. The algorithm is implemented in each single rpbot
of the tasks. Each robot has to return to some base the decision-making process is distributed. Howevah ea
location to unload the products (e.g., a package the robobot does not only need to know its local information, such
has picked up or collected sensing information) befoies its budget, payoffs between each task and itself, but also
moving to another task location. Thus each robot can beed a shared memory (i.e., a centralized component) tegcce

The MAP-GT problem defined above can be solved in
polynomial time in the number of tasks and number of robots
by a centralized algorithm by reducing it to a network flow
problem. We will then use a dual decomposition-based method
to design a decentralized algorithm for MAP-GT and also
show that the algorithm can be made totally distributed. For*
clarity of exposition, we will first present the solutions to
MAP-GT under the following assumptions: (&; = 1 for
all task groups, i.e., each robot can do at most 1 task from
each group and (b) each robot has to perform exasthasks
during the mission. In Section VI, we will show how these
assumptions can be removed. Thus MAP-GT problem with
assumptions (a) and (b) above can be written as:

fij = Ni,Vi:L...,nr (7)

f” S 1, \V/i:].,...,nr,k:].,...,ns (8)

A. Motivation

‘é(é. ALGORITHM DESIGN AND PERFORMANCEANALYSIS



some global information of each task, i.e., the highestibgld above, will lead to the optimal solution for Problem 1 in
price of each task from all robots, which are auxiliary valés Section Il due to the following facts:

created and maintained during the algorithm implementatio , ine demand and supply constraints are equal to the
In Section V, we modify the algorithm by adding consensus  ~gnstraint (1) and (2);

techniques among networked multi-robot system. So rolwts d , the capacity constraints of floy; are equal to constraints
not need to know the global price information of each task, i, (3) and (4);

instead, each robot just needs to get the local task infeomat | e objective function mif; 3 ; cij fij here is equal to the
through local peer-to-peer communication with its neigisbo objective function mag; ¥ a; fij, sincec; = —aj for
In this way, we remove the shared memory requirement, edges inE; and the cost of edges i, is O.

which makes the algorithm totally distributed. Meanwhile

the distributed algorithm can still achieve the almostiopat So after solving the m"?'COSt network flow problem_, the
solution quality. non-zero (value 1) flow inE, corresponds to the optimal

assignment of Problem 1 in Section Il
_ . _ The min-cost network flow problem is a classical problem
B. Centralized Solution: Reduction to network flow problemhat has been studied extensively. Centralized polynetined

For any MAP-GT problem mentioned above, we can coflgorithms exist that can be used to compute the optimat solu
struct a min-cost network flow problem. A min-cost networkion [26]. So we can directly use the off-the-shelf algarith
flow problem is defined as follows: [26] to solve Problem 1 in a centralized way.

The MAP-GT problem can be reduced to a network flow Using this method, a centralized controller is required so
problem by the following construction (shown in Figure 1)that all robots input the information of payoffs and budgets

Consider a directed grap8 = (V,E), with a set of nodes t0 the controller, the controller solves the whole problem,
V =RUTUS and edge& = E;|JE,, where and then it sends back commands to robots for their task

assignments. However, in some applications, there is often
need for decentralized/distributed algorithms so thatoteb
can make decisions by themselves in the field according to
the information they possess.

o Nodes: R={rili=1,...,n:} represent robotg, = {tj|j =
1,...,n} represent tasksS = {Tixli = 1,...,n,k =
1,...,ng} is introduced to represent each task subget
for each robot;.

« Edges: E = {(r,Tiwli=1,...,nr,k=1,...,ns}, and
E> = {(Tixtj) Vi, ],k s.t.,tj € T}

« Source and sink node#ll nodes inR are source nodes
with supply Ni, and all nodes ifl are sink nodes with  In this section, we extend the basic auction algorithm [1]
demand 1. to provide a decentralized and almost-optimal solution for

« Capacity and cost of edge$he capacity of all edges in Problem 1. The outline of this section is as follows: First,
E is 1. The cost for edges i&; is 0, while for edges we discuss the basic idea of auction algorithm and several
(Tixotj) in Ez is —aj. important concepts (introduced in [7]), e.g., robot is (adt)

« Flow: fij, associated with each edge betwekp and happy, and the assignment is (almost) at equilibrium; secon
tj, represents the flow from nodgy to nodetj, where Wwe design a decentralized auction-based algorithm for -Prob
tj € T. lem 1, where each robot can bid on its own for tasks, and

prove the algorithm can achieve an almost-optimal solution
1) Basic Idea and Concepts of Auction AlgorithAxiction

algorithm matches, robots andy; tasks with constraints (1)-

(4) through a market auction mechanism, where each robot is

an economic agent acting in its own best interest. Although

each robot; wants to be assigned to its favorit tasks, the
different interest of robots will probably cause conflicthis

can be resolved through introducingpace variable to each

task, and an auction mechanism of robots’ bidding for tasks.

Suppose the price for tagk at iterationt is pj(7), and the

robot assigned to the task must pay(7). So the net value of

taskt; to robotr; at iterationt becomesvj(1) = a;j — p;(7)

instead of jusig;j. The iterative bidding from robots leads to

the evolution ofp; (1), which can gradually resolve the interest

Fig. 1. Reduction to the min-cost network flow problem. Fapthy purpose, conflicts among robots (as shown later in this section).

just robotry, its corresponding nodeg x and edges are shown. For each other Every robotr; wants to be assigned to a task s& =

robotr;, there are another set of nodgkk|k=1,....,ns}, edges{(r;,Ti k) k= {tj|j € Ji} with maximum net values while satisfying its
1,...,ns} and {(Tik.tj)|vtj € T}, which are omitted+N; and —1 represent

nodes’ supply and deman¢D, 1] shows that the capacity of flow along the ConStraintSJ” =N; and %i NTk<1,vk=1,...,ns
edges is 1. )
N;

(i — pi(1) = ¥ (M), _,

C. Decentralized Solution: Auction-based Algorithm Dasig

. . maxajj — pj(1)) (10)
Solving the constructed min-cost network flow problem & ""’nSJGTk)( ) i(0)



where 5 (max™)) is used to get the sum of thig biggest Algorithm 1 Bidding Procedure For Robot

values. When (10) is satisfied, we say robois happy If all 1
robots are happy, we say the whole assignment and the price
at iterationt areat equilibrium

Suppose we fix a positive scalarWhen each assigned task
for robotr; is within € of being in the set of;’'s maximum
values, that is,

. (Np)
(& = pi(D] € 3} = (MaX)yy_p(MaX@j — pj(T)) — &)
(11)

(after sorting both the left and right sets of (11) above, any,
value in the left set is no less than its corresponding vatue i8
the right set), we say robat is almost happyIf all robots °
are almost happy, we say the whole assignment and the pri%
at iterationt arealmost at equilibrium

2) Auction-based Algorithm Desigiippendix B discusses
two methods of directly applying the basic auction algarith 2

11

achieve good solution quality. In this subsection, we mewa

Qg R WD

: Input: &j, pj(1), Ti for all j,k,

s<ILIT,P> // I': indices of tasks assigned tp during
Il ri’s previous iteration; T: their corresponding subset
I/ indices; P: their corresponding bidding prices from r

: Il Update the assignment information:

:¥me{1,..., I} // m-th previously assigned task

if P(m) < pye(my(7) then
/I another robot has bid higher than’s previous bid
removel(m), corresponding™ (m), P(m) from 1Y, IT,
and P, respectively

- end if

: DenoteN/ = |I!] // number of tasks still assigned tp r

:S// Collect information for new bids

T Denotev; (1) = & — p;(T) // value of § to r;

: Select the best candidate task from each sufsethere
kgIT: j; =argmaxer, vj(T)

4 . 12: Store the index of second best candidate from €gch
to Problem 1, but they are either not decentralized or cannot

Ji=argmaxer, jj: vi(T)

13: Select theN; — N/ best candidate tasks frofij;|k ¢ 17}

decentralized algorithm for Problem 1, which directly nfisi 4 K — arg(ma%Ni*NJ)kwvjlﬁ(r) i1 arg(maxN—M)) is the

the bidding procedure of auction algorithm.
A single iteration of our auction algorithm for each

robot r; at iteration T is described in Algorithm 1. We 15

can define the auction-based algorithm for our assignment

problem by setting all robots to run copies of Algorithm 116
sequentially. The algorithm terminates when all robotsehav
been assigned to their tasks (i.8/,= N; for all tasks). The

sequential auction is known as one-at-a-time or Gaussebei
implementation. One alternative is to let all robots bid®
simultaneously and assign tasks to its highest bidder, twhié°
is known as all-at-once or Jacobi implementation. The Jacobt

implementation is convenient for parallel implementatibuat

/loperator to get indices of the;N N/ biggest values
: Store the index ofN; — N/ +1)-th best candidate task from
{Jilkg1T):
K' = argmaxy k) Vj; (T)
: /] Start new bids

17: Bid for t = {tj; |k € K*} with price:
48 bj; = Py (1) + Vi, (1) — max{v;, (1), vy, (1)} +¢

: I Update assignment information and price information:

: Add {jilkeK*} tol', K* to 1T, and {bj; k€ K*} to P

: Setpj:(T+1) = by for ke K* and setpj(7+ 1) = pj(7)
for j & {jilke K"}

tends to terminate slower as discussed in [7].

Algorithm 1 can be summarized as follows.

| During the first part of Algorithm 1 (from Line 2 to 7),
robotr; needs to update its assignment information from
its previous iteration, since other robots may bid higher
price for its assigned tasks after its previous iteratién. |
that is the case, some previous assignments of tasks fo
ri will be broken and; needs to give new bids.

Il During the bidding part of Algorithm 1 (from Line 10
to 21), robotr; keeps theN/ assigned tasks since its
previous iteration, and bids fdax; — N/ tasks with the

iy is the (Ny — N/ + 1)-th best from{j;|k & 1T},
(1)}

bj; — Pji (1) = Vi (1) — max{vi. (1), vy, (1)} + £ > €

Vs

vjlﬁ(r) > max{vji,(r), it

r So the tasks receiving’s bids must be assigned 1
at the end of the iteration. The bidding value qu is
related to the proof of the optimality of the algorithm,
which will be discussed in Section IV-C3.

3) Algorithm Performance Analysidn this subsection, we

best values from different subsets (which do not contawill answer the following questions about Algorithm 1:(a)IW
any of N/ assigned tasks). This part guarantees that afélgorithm 1 terminate with a feasible assignment solution i
the iteration, all constraints for robot are satisfied: (a) a finite number of iterations? (b) How good is the solution
robot r; is assigned to exactlyt; tasks (\/ previously when Algorithm 1 terminates?

i N/ i - ()
_aSS|gr_1ed tasks plus —N newly_ assigned tasks); (i) Lmea 1. When Algorithm 1 terminates for all robots, the
is assigned to at most one task in each subset. Meanwhi & : . .

. . achieved assignment must be a feasible solution for Prothilem
each task is assigned to at most one robot, because each -

. . . 1.€., (1)-(4) are satisfied.
task either does not change assignment status (assigned
to previous robot or remains unassigned) or switch from Proof: When Algorithm 1 for robot; terminates, it means
the previous assigned robot to rolsptThe bidding price that r; has already been assigned b tasks and no other
for each task is at least bigger than its previous price: robot would bid higher forr;’'s assigned tasks. Since the
sincejy is the best candidate task Tp and is among the algorithm terminates for all robots, according to summary

Ni —N/ best from{j;|kZ 1T}, j. is the second best if, (Il) of Algorithm 1, all the constraints have been satisfied f



all robots. So the achieved assignment is a feasible salut@bove). We have
satisfying (1)-(4)

Lemma 1 implies Algorithm 1 is sound, i.e., when it outputs
a solution, the solution is feasible. The next result assbet
Algorithm 1 always terminates in finite number of iterationSuppose in any feasible assignmei?iﬁ,andl\ﬂm are the number
assuming the existence of at least one feasible assignmentdf assigned tasks far in T\ T* and T, respectivelyN; =
the problem. The proof relies on the observations below: I\]I* + l\fi°°. It is easy to see that ead¥f (i € 1* ) has reached

(a) When a task is assigned, it will remain assigned durif@e Piggest possible valug,c= N > 5ic= Ni. So
the whole process of the algorithm. The reason is that N® > N® > [T
during the bidding and assignment process, the assign- = !
ment status of a task can either transfer from unassig
to assigned, or be reassigned from one robot to anot
but cannot become unassigned from assigned.

(b) Each time when a task receives a bid, its new price wi
increase by at leagt according to the algorithm, i.e.,

Ni = Ni* + Nioo

i€ 13 i€

IS i€
ed . : : :
Elérmeans in any feasible assignment, the number of assigned
tasks inT® for R® is bigger than the number of tasks Ti¥.
ﬁy contradiction, we know that Algorithm 1 must terminate in
a finite number of iterations if there exists a feasible sotut
for Problem 1.1
pj: (T+1) = by = pj (1) +Vj: (1) —max{vi: (1),vj (1)} +€ Lemma 1 and Theorem 1 together prove that Algorithm 1
k koK K K k is both sound and complete, and also give a positive answer
to the first question (at the beginning of Section IV-C3), whe
there exists at least one feasible solution for the problem.
So if one task receives infinite number of bids, its price Infeasibility check:in the case when there does not exist
will become+oo. any feasible solution, the robots can detect that situation
(c) If a robotr; bids for infinite number of times, all tasks in@ distributed way during the bidding procedure. The bidding
the subsets, wheng does not have fixed assigned taskgrocedure itself would guarantee that task group const(@)n
will receive infinite number of bids. The reason is thaf aways satisfied since each robot would bid for at most one
there are finite number of tasks, and thus there mJagk from each group. Constraint (6) might be violated due
be at least one task receiving infinite number of bidé? the fact thaty;Ni <n. In that case, Algorithm 1 would

If there exists one task (from such subsets), which do@Ytput an almost-optimal solution given the budget consisa
not receive infinite number of bids, its price would b@f robots, and leaves some tasks unassigned. Moreover, the

receiving infinite number of bids. So it has to receiv®Y checking whether there still exist tasks with initial aer
more bids, which leads to the contradiction. So all task¥ice. The infeasibility caused by budget constraint (7) ba

in those subsets receive infinite number of bids and th@§tected whenever a robot start continuing bidding for & tas
have the price offe (according to (b)). with negative values to it. At that time, the robot can check

_ _ _ the price of other tasks: if all tasks have non-zero price, th
Theorem 1. If there is at lest one feasible solution forrghot can detect that there does not exist any feasibleisolut
Problem 1, Algorithm 1 for all robots will terminate in a figit since it implies thats; Ni < ny; if the number of tasks with

number of iterations. zero price (tasks which have not received any bidshys

Proof: If the algorithm continues infinitely, there must be somi'e robot can detect the infeasibility if it continues buigli
subsets{Tuk € K=} where all tasks have-« price according for tasks with negative values far,, rounds since |F implies _
to (c) above. Denotd™ = Uy.x~T. SUppose some robotsthat the structure of task groups prevents a feasible soluti

. - cK® . . . . .
{rili € 1} already getN* tasks fromT \ T*, and are still satlsfymg task group constramt as we_II as bu_d_get comgtrai
bidding for its remainind\® tasks fromiT®. (Please note, here !N this case, the rpbot (_1etect|ng the |nfeaS|I_3|I|ty coulddse
N® = N; — N does not necessarily equal in Algorithm 1 out a message to its _nelghl_aqr_s to stop the bidding prqcedure.
since all those tasks iT® are not stably assigned to amﬁlease note that this infeasibility mainly comes from thieist
robot.) DenoteR® = {rifi € 1}, budget constraint that each rolspmust be assigned to exactly

Each task; € T remains assigned (according to (a) above) tasks. When we relax this budget constraint in Section VI so
1 .

Each robotr; € R° needs to be stably assigned 5 more hat each robot can perform at mdgttasks, this infeasibility

tasks, but all tasks i cannot fill up all ¥~ N positions. would not exist. _
So Next we want to prove the performance of Algorithm 1.

The result relies on the following theorem.

> pje(1)+¢

T < § N2
iE Theorem 2. After each iterationt of robot r, ri’'s newly

Please note that the above inequality is strict, since the‘fjlr%S'gned tasks together with the task pricg¢p-1) keep

must be at least one robote R that has remaining tasksri almost happy, i.e., (11) is satisfied.
unassigned (otherwise the algorithm terminates). Proof.

On the other hand, each robot must already be assigned t&irst, let us prove it holds true for the first iteration. Aeth
exactly one task in each subsktk ¢ K® (according to (c) beginning of the first iteratiorr; does not have any assigned



tasks. According to the bidding part of Algorithm 1, the etdd ~ First, we want to give an upper bound for the optimal
taskstk = {tj; |k € K} with the price before the iteration cansolution.

maker; happy: N (N)
W 3 (31, Pry) < (M g (maxa; —py))
(& = P (DI € KT} = (MaX)yy _p (MaX(@j — pj(T))) k=1
neo N
Pj; (T+1) = bj; = pj () + v (1) —max{vj,, (1), v (D} +&, = Zl 2 (@i =Py < 21 max rjrgx(a” Pi))
andvj(t+1)=v(1),V] & {ji ke K*}, so o N n[ N
aij, — P (T+1) = max{vp, (1),vj (1)} —¢ = i;k;(an.k Z ; i Jk=1,..no(MAX&} = Pj))

= maX{Vji,(T—Fl),le/((T—i_l)}_S Since it holds true for any set of price and any feasible

So the value of any task itx to robotr; is within € of the assignment, we hava* < B*, whereA* is the optimal total
maximum value of any task in its own subset and other subspayoffs of any feasible assignment.
{Tk|k ¢ K*}, so

N N
, A= max (&l )

* (N} k
{@i; — Py (T+DKEK"} > (MaX)y g (max@ —pj(1) —¢) o 2
which means (6) is satisfied. B* = rﬂn B

Second, we prove that the unchanged tasks assigned to Pi=h N .
. . . : . . : - . CN)

sincer;i’s pr_ewousnera‘uon, mus§ still be in the new a§S|gnment —  min (Z Pi+ S (MaX)yy. o (Mmax@ij — pj)))
of r;. That is, those tasks are still among tasks, which nrake Piti=Lene oy & €Tk

almost happy after the iteration. Denote the index set afe¢ho
tasks agy . Since these tasks did not receive any bid from other
robots since;’s previous iteration, their prices (and hence thein N (N ne
values) tor; do not change. Meanwhile any other tasks’ pr|c Z(aﬂik - ) Z.Zl( max )(max(a” —_ZiNif
either remain the same or increase after receiving bids, S N = o ':n
their values tor; reduce. So tasks itf must still be in the (N) L
new assignment to makg almost hg(ppy. Since the bidding le A = z P +- (k:m’ax J(maxai; — pj))—i;Me
process to get newly assigned tasks is the same, the newly
assigned tasks must also be in the new assignment to make > ZMS >A — ZN.
almost happy (due to similar proof for the first iteration).

So the conclusion is true for each iteratiowf rj, i.e., after
each iterationr of rj, ri’s newly assigned tasks together wit
the task pricep;(t+ 1) keepr; almost happyll

. n N nr
Since Theorem 2 holds true for all robots, we get the A > zaﬂ_' SA Y Ne
corollary below. G5 N« &

Corollary 1. When Algorithm 1 for all robots terminates, thesg it is within 5™, Nie of an optimal solutiorl
achieved assignment and price are almost at equilibrium. p|ease note, if aII the payoffs are integers, and weeset

Theorem 3 below answers the second question (at ﬂi@.:lNi the achieved assignment will be optimal.
beginning of Section IV-C3), and gives performance guaant

On the other hand, according to Corollary 1, we have

Zk—lau, is the total payoffs of the achieved assignment
y AIgonthm 1, and

for Algorithm 1. V. DISTRIBUTED AUCTION ALGORITHM

Theorem 3. When Algorithm 1 for all robots terminates, the In this Section, we briefly discuss how to combine our
achieved assignmert(i, (Ti1,...,Tin))|i = 1,...,n } must be algorithm with consensus techniques to make the algorithm
within 31, Nie of an optimal solution. totally distributed. In Algorithm 1, each robaet can bid on

its own, however, it needs to access glopglr) information
either from a shared memory or from communicating with
a centralized auctioneer. Recently, consensus algorittans
been introduced to combine with the auction algorithm, st th

(Uty) N Tm<LVimii=1,....n;m=1..ns the shared memory/centralized auctioneer can be remoyed [8

= [12]. Next we briefly talk about the basic idea.
Consider a connected netwoék of all robots, each robot

(Ut N (Utljk) =0ifi#] (12) can finally get some global information, based on repeated

k=1 k= local interaction with its neighbors. For example, in madim
Denote {pj|j = 1,...,nt} as the set of task prices whenconsensus [27], each robgte R has an initial value of task
Algorithm 1 termmates for all robots anfipj|j = 1,...,nt} | as pJ, and wants to get the maximum initial value among
as any set of task prices. all robots, pj = max;cr p (denoter* the robot which gets the

Proof: Denote (i, (li1,...,lin,))li =1,...,n}) as any fea-
sible assignment, i.e.,



initial value pj). The maximum initial valugoj can propagate reach the true values due to propagation, so Theorem 2 holds
to the whole connected network, if every robot keeps updatitrue for the true price values. Thus Theorem 3 also holds true
its value using the local maximum value among its neighborsSo each robot in a connected network can make deci-
as follows. sions based on updated local price information from its own

Suppose that at iteration, each robot; has the value of neighbors. Therefore the auction algorithm becomes yotall
task j as pj(r). Starting from initial valuepj(0), the robot distributed for both decision process and the information
needs to update its value: collecting process.

pi(1+1) = max p¥(1) (13) VI. EXTENSIONS
ket

In this section, we discuss a few extensions to the basic

where#* = {i} U.#, and .4 is the set offi's neighbors in problem formulation in Problem 1, including the relaxatimn
network G. Eventually, each robot can get the true maximurudget constraint (7) and task group constraint (8).
value of tasktj, and the number of iterations that each robot

ri gets the true valu@; would be the length of the shortesta, Relaxation of budget constraint

path fromr; to r*, which is at most the number of robats In Problem 1, each robot has budget constraint, i.e., the
Similar idea applies to the auction algorithm as showq,mber of tasks robot; can perform is exactNi. In this

below. subsection, we relax this constraint so that each robot tmigh
Modification of Algorithm 1 to form a distributed algorithm: not exhaust all its budget, in other words, the number ofstask

Suppose at iteratiom, the price of task; thatr; maintains ropotr; is assigned to is bounded By (but can be any non-
is pj(7), then the vector of prices that maintains is that negative number smaller thaw):

(P4 (1), P5(1), ..., P, (T)], wheren is the number of tasks. At o

the beginning of Algorithm 1, we can add a part where z fif <N, Vi=1,....n

updates its price information of each tagk pj(7), using j=1

maximum-consensus approach as shown in Equatior;l3. To solve the extended problem in a centralized or decen-

may use underestimated price for bidding during some itert‘?é\lized way, we just need to modify the input instances in

tlo_ns ?ue tlo twc_) facto_rs: @ dm?lr:tagnls the price _Ofba"htaSk_Sthe following way: since the total budgets of robots must
using local maximum instead of global maximum; (b) the pri no less than the number of tasks, iFN > ry, we
d 5;N —n virtual tasks (denote the set of virtual tasks

of each task at each iteration may increase (due to new bi
as Ty) to the original tasks. Every single virtual task is

However, the current true price information will eventyall
propagate taj in at mostnr_ i.terati.ons (given the netwprk is forming a separate task group. The payoffs between any
connected). So after c_omblmng with consensus techmqhes,virtual task and any robot is set to be identical, i@,; =

performance of Algorithm 1 does not change except that tg{_e

: i, V two robotsiy,iz, and taskj € Ty. Then we can apply
mosim 2] 1,12, j \Y;
convergence t|_me may be delayed by at mbsimes, where the same algorithms described in Section IV-B and IV-C. The
A < n, is the diameter of the robot network.

S virtual tasks are auxiliary and only exist in the input to the
After the modification, the only knowledge each robot ”eedaﬁgorithm, and get removed in the output assignment saiptio

to know is its own budget, as well as the payoffs betwegn, it 5 robot is assigned tovirtual tasks after the algorithms
itself and each task. The price update and bidding proced%ﬁninate, the robot would hazeremaining unused budgets.
can be implemented either in synchronous or asynchronousne soundness and completeness of the method above
way. During each bidding iteration, each robot needs {frectly come from the soundness and completeness of the
communicate with its direct neighbors to update the Iocﬁki]orithms in Section IV. The optimality of the method can

maximum task price. The average number of messages egehproved as follows. According to Theorem 3, for the new
robot needs to communicate is the average node degree '“imﬁlt instance with virtual tasks. we have

network. The size of each message is the number of tasks.
Almost-optimality of the modified algorithr@imilar proof A = z z aj > A — z Nie
as for Theorem 1 can be used to prove that the new algorithm ey :
with consensus technique would also terminate in finite NUMwhereJ! is the set of tasks assigned to robtincluding

the price in the theorem from true values to robots’ estimajig qur assignment solutiod’ and the optimal solutioA*/,
from local maximum, i.e., all robots are almost happy withich leads to

respect to its maintained task price each time after itsibgld

iterations; since we assume the robot connection network is A= Z aj > A" — ZNif

connected, the accurate task price information at itematio A :

(i.e., the global highest bid price of the tasks at that time) whereJ; is the set of tasks assigned to roligt excluding
would eventually propagate to the whole network within ghe possibly assigned virtual tasks.

most A iterations. When the algorithm terminates, the price To solve the extended problem in a distributed way, we
information stored by all robots does not change and musnnot directly use the method above. The reason is that each



robot does not know other robots’ budget, and thus does fggorithm 2 Bidding Procedure For Robot

know how many virtual tasks there are in the modified inputt:
instance. The way to resolve this issue is to change thergddi
procedure: each time a robot detects that it is bidding fash t
with non-positive value, it should stop bidding for thattand

Input: &j, pj(1), Tk for all j,k,

<1417, P>/ 1': indices of tasks assigned tp during

Il ri’s previous iteration; T: their corresponding subset
I/ indices; P: their corresponding bidding prices from r

meanwhile reduce its budget by one. The reason is that if we: // Update the assignment information:

set the payoffs of virtual tasks to be zero in the above method: ¥V me {1,...,[1'|} // m-th previously assigned task

a robot would bid for virtual task if and only if the values of 4: if P(m) < pjt(y(7) then

other tasks are negative; and robots would not compete éor the:  // another robot has bid higher than’s previous bid
same virtual tasks. So the modified bidding procedure above  removel'(m), correspondind” (m), P(m) from It IT,
can lead to the same solution in a distributed way without andP, respectively

assuming that a robot knows other robots’ budgets. 7: end if

8: DenoteN/ = |I'| // number of tasks still assigned tp r
9: /I Collect information for new bids

10: Denotev;(1) = & — pj(1) // value of § to r;

In Problem 1, all tasks are forming disjoint groups, and;. seject the bestN; candidate tasks from each subset
task group constraint means that each robot can be aSS|gned-|-k. I = arqmax(Nki))jeT vj(t) Il arg(max(Nki)) is the
= : 1 :

to at most one task from each group. In this subsection, we /loperator to get indices of they\ biggest values

rela>§ this congtramt so that each robsptcan be a55|gn_ed to 12: Store the index of theN; +1)-th best candidate from
multiple tasks in each groufx, but the number of tasks it can eachTy: ’

be assigned to in each group is bounded\Ry. ji = arg maxer g vj(1)

Z fij <Ngi, Vi,k:i=1,....,nr,k=1,....ns 13: Select theN; best candidate tasks frodi = UyJ;:

4T ' 14 K* = arg(max™), .. v(1) / arg(max™)) is the //oper-
ator to get indices of the jNbiggest values

: Store the index ofNy; + 1)-th best candidate task from
J*
K' = argmaye y-\k+) Vk(T)

16: // Start new bids

17: Bid for tx = {tx|k € K*} with price:

B. Relaxation of task group constraint

(14)

To address this extension, we need modify how the can-
didate bid tasks are selected (line 11 and 12) in the bidding
procedure of Algorithm 1. First, instead of selecting thatbe
candidate task from each subskt we select the bedt;
tasks fromT, to form a setJ;; second, instead of storing the
index of the second best candidate task from each giQup 18 by —
we store the index of théNy; +1)-th best candidate task,, ~ ¥~ P(T) + W(T) —maxvie (1), v;
for future bid price update. The modified bidding procedure //task k belongs to task grou g o ,
is shown below in Algorithm 2: 19: // Update assignment information and price information:

The proof of soundness, completeness, and optimality 8¢ Add {klke K*} tol*, {g(k)|ke K*} tolT, and{bfk e K*}
Algorithm 2 is similar to the proof for Algorithm 1. The toP
difference is that in the optimality proof, instead of shogi 2% S€tPk(T +1) = by for ke K* and setp;(7 +1) = pj(7)
that the besN; candidate tasks are selected from different task for J € K*
group to satisfy the basic task group constraint (8), we need
to show that the selectdd tasks are the best candidate tasks
satisfying the extended task group constraint (14). the mean and standard deviation of performance ratio of our
solution to the optimal solution, as well as the convergence
VII. SIMULATION RESULTS time of the algorithm.

In Section IV, we designed Algorithm 1 for the MAP-GT Figure 2 shows how the solution of assignment payoffs
problem, and proved the performance guarantee the desigfBanges with the control parameterWhene is as small as
algorithm. According to Theorem 3, we know thatis a 0.1, the assignment payoffs achieved by our algorithm amos
control parameter which directly influences the perforneesfc €qual the optimal solution. When increases, the difference
our algorithm. In this section, we run simulations in a stith Petween our solution and the optimal solution is increased.
example to check how the control parameteinfluences the Figure 3 shows how the convergence time of our algorithm
auction algorithm’s solution quality and convergence time changes withe. The number of iterations decreases with

Considern, = 20 robots, each robdt; needs to perform which means with higheg, Algorithm 1 converges faster.

N; = 3 tasks from a set ofy = 60 tasks. The task sek From Figure 2 and 3, we can see that there is a tradeoff
can be divided intms = 20 disjoint subsets, with 3 tasks inbetween the solution quality and the convergence time, lwhic
each subset. We randomly generate payaffsrom a uniform can be adjusted by. With biggere, the algorithm converges
distribution in (0, 20). & in Algorithm 1 is a control parameter, faster at sacrifice of solution quality; while with smalkerthe
related to the convergence time and performance guarahte@lgorithm solution is better at the cost of slower conveagen
the algorithm. In our simulations, we tested different eslu time. In this exampleg = 1 can achieve a good balance
of . For eache, we generated 100 samples with differenpetween the above two performance indicators.

payoffs drawn from the uniform distribution, and we comgare To test the effect of mag; — mina;j, we fixed &, and

)]

o ~

- (1)} + € /] Suppose
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Fig. 2.  Total payoffs of assignment by our algorithm as a fiemcof Fig. 5. Convergence time of our algorithm as a function ofapsetera.

parametek, which is the minimum possible price increase during th(eiihip The solid line shows the number of rounds for our algorithmeioninate,

procedure. The optimal solution can be achieved when we %ﬂ,”,;"% where one round means all robots sequentially implemenbrilgn 1 for
N, . A

where min_diff is the minimum difference between any two individualone iteration.

payoffs g;j. The lower bound of our solution is given by Theorem 3.

cost) for each task. The tasks are divided into groups and
each robot can do only one task from each group. We proved
that our algorithm always terminates in a finite number of
iterations and we obtain a solution within a factor@fn;)
of the optimal solution, whereg; is the total number of tasks
1 and ¢ is a parameter to be chosen. We first presented our
T algorithm using a shared memory model and then indicated
Control Parameter e how consensus algorithms can be used to make it a totally
Fig. 3. Convergence time of our algorithm as a function ofapaetere. Fj'Str'bu_tEd algorlthm. We also presented simulation tesul
The solid line shows the number of rounds for our algorithmetaninate, illustrating our algorithm.
where one round means all robots sequentially implemenbrilgn 1 for Future Work: One of our future work is to implement
one iteration. . L . .

our auction algorithm with consensus techniques so that the
algorithm can be run on each individual robot in a totally

adjusted the payoff distribution bounds, i.e., we draw fiaydlistributed way. The problem, where tasks have set preceden
values from a uniform distributetD,a), wherea is adjustable constraints, that we considered in this paper is a spea@abcl
for different samples. Figure 4 and 5 show the results gf more general constraints. In the future we hope to extend
performance ratio as well as the convergence time. Actuafy’ algorithm to tasks with general precedence constraints
the effect of adjusting is equivalent of adjusting, i.e., when Such that the time required to complete the tasks is minithize
we increasa by B times, it is equivalent to decreaseby f  aS vyel_l as the overall payoff to the multi-robot system is
times, because it is just the scale changa ahde. maximized.
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Fig. 4. Total payoffs of assignment by our algorithm as a fiomc of . .
parametera, which is the up-bound of the uniform distribution where we CoONsider Problem 1 as the primal problem, and reformulate

draw payoffs. We fixe = 0.5, and generate 100 samples for each differerit as follows:

a€{1,2,...,10,20,...,100}. ne ns [Til
max aijk fijk
{fij} i; JZlkZl
VIIl. SUMMARY s.t.
In this paper we introduced a class of multi-robot task ns [Tl .
assignment problems called task assignment with set prece- » » fix = N, Vi=1....n (15)
dence constraints, where the tasks are divided into disjoin 1:1‘?1
sets or groups and there are precedence constraints between d f — L Vik:i=1 _ _

o . ik = j=1,...,ns, k=1 ... |T;j| (16
the task groups. We presented a distributed task allocation i; 1k VT =500 e [Ti1(16)
algorithm by extending the auction algorithm proposed by ul
Bertsekas for solving linear assignment problems for uncon z fik < L Vi,j:ri=1,...,n,j=1,..,ns (17)
strained tasks [1]. In our problem model, each robot can do K=1

a fixed number of tasks and obtains a payoff (or incurs a fijk

Y

0, Vi, j,k (18)



Then its dual problem can be directly formulated as followsthe auction algorithm can be parallelized and executed, but
cannot be combined with consensus techniques, to form a

Ny
min _ ZlNim—F % Pk + ZSJ- distributed algorithm for each robot to implement.
{78 Piesi S ) ] So the next question would be: whether it is possible to
s.t. directly attack Problem 1, by modifying the basic auction
- mechanism.
T6 + Pjk +Sj > ajk, Vi, ], K (19)

2) Sequential Greedy Auction AlgorithnTo modify the
where T15,pi,S; are dual variables corresponding tdasic auction algorithm for Problem 1, one natural approach
(15),(16),(17). The dual problem can be further transfatmevould be a greedy algorithm of sequentially applying thadas

to an unconstrained optimization problem: auction algorithm. The greedy algorithm sequentially &l
Nr the auction algorithm, and assigns available robots to each
{ min } ZlNi(m?x(a”k —Sj—Ppjk)) + % Pjk + ZSJ- subset of tasks in the precedence order. However, this greed
Pik:Sij = B I ]

algorithm cannot guarantee to find an optimal solution. The
Denote D = 31, Ni(max k(aijk — Sj — Pjk)) + ¥ jkPjk + reason is that: one robot may be a_ssigneq to a task in an early
51jSj, D = min{pjk,sj}XinLlNi(ma&,k(aijk —sj - i) + ;ubset, but lose the cha}nce of bglng assigned to a beft.ter task
S ikPik+ YijSi- Similar to the weak duality theorem, theln later subsets. The optimal solution may need to sacrifiee t
relationship amon@, B, andA can be represented as followsPayoffs for the current subset to pursue long-term payaifs f

all tasks. So when modifying the basic auction algorithm, we
D>B=>A have to consider all subsets of tasks simultaneously idsiéa

Similar to the strong duality theorem, the relationship agio S€quentially.
D*, B*, andA* can be represented as follows:
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