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Abstract. The amount of labeled training data required for image in-
terpretation tasks is a major drawback of current methods. How can we
use the gigantic collection of unlabeled images available on the web to
aid these tasks? In this paper, we present a simple approach based on the
notion of patch-based context to extract useful priors for regions within a
query image from a large collection of (6 million) unlabeled images. This
contextual prior over image classes acts as a non-redundant complimen-
tary source of knowledge that helps in disambiguating the confusions
within the predictions of local region-level features. We demonstrate our
approach on the challenging tasks of region classification and surface-
layout estimation.

1 Introduction

Image interpretation deals with the problem of parsing an image of a scene into
its constituent regions. This problem is often posed as a multi-class region clas-
sification task, i.e., associating a label to every pixel within an image. Many
approaches have been proposed recently to address this problem e.g., [1-5]. Al-
most all of the approaches confine to the use of a small set of labeled images for
modeling the region classes. However, for most practical problems (with many
classes and high variability within the classes) there is simply not enough labeled
data available to learn rich discriminative models for classification. Although
with the rise of the Amazon Mechanical Turk and other online collaborative
annotation efforts, the process of gathering more labeled data has been greatly
eased for several tasks, pixel-wise image labeling remains difficult as it is much
more involved. Thanks to the popularity of social-networking and photo-sharing
websites (Facebook, Flickr), today there exist several billions of unlabeled im-
ages available on the web. Devising algorithms that can automatically benefit
from this wealth of information can help alleviate the labeled data barrier.
Since the images on the web are unlabeled, their effective use in learning bet-
ter models for classification is not straightforward. A lot of research exists in the
area of semi-supervised machine learning to specifically deal with this problem
e.g., transductive support vector machines, graph-based semi-supervised learn-
ing, co-training (see [6] for literature survey). The key idea of these methods is
to exploit labeled samples as well as a large number of unlabeled samples for
obtaining an accurate decision boundary. This intuition is summarized by the
so-called “cluster assumption”, i.e., provided different classes come in clearly
separated clusters, unlabeled data can help to delineate the boundaries of the
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Fig. 1. Given a query image, we retrieve matches for each individual (local) patch by
searching a database of 6 million images. The matches are used to compute contextual
priors that are used in updating a supervised classifier (trained from a small set of
labeled images) to improve its performance.

clusters better [7]. For the problem of image parsing though, the “cluster as-
sumption” fails to hold due to high appearance ambiguity, i.e., regions that look
very similar in terms of appearance can have different labels. This ambiguity
problem has prevented the conventional semi-supervised methods from succeed-
ing at this task [8]. One possible solution to overcome the ambiguity in features
is to increase the size of the elementary patch units used in the clustering pro-
cess. However this is not plausible due to the scarcity of labeled data. That is,
we would end up with well separated clusters but with no labeled data samples
to label them.

To address this trade-off, we propose to decouple the patch size and the
data types involved. As there is only limited amount of labeled data, we use
a small patch size, which provides us with enough data to learn a rich local
classifier. While for the unlabeled data, which is available in large quantities,
we use a larger patch which would allow the ‘cluster assumption’ to hold and
would encode longer range connections not accessible to the local classifier. It
must be noted that the idea of using a larger neighborhood to guide the local
classifier has been studied in many recent works [1, 2, 4,9-14, 5]. The basic insight
shared amongst them is to use information from the neighborhood around a local
patch to derive prior probability over different classes for it. However, almost all
of the approaches have considered deriving such priors in completely supervised
settings i.e., using label information from annotated images, which as highlighted
earlier comes in scarce quantity and thus prevents from learning anything at a
larger scale.

In this paper, we present an approach for deriving unsupervised patch-based
context from a large collection (millions) of unlabeled Internet images for the
tasks of region classification [1] and surface-layout estimation [2]. In section 2,
we explicate our notion of unsupervised patch-based context. In section 3, we



Unsupervised Patch-based Context from Millions of Images 3

describe our approach for extracting the contextual prior and using it for im-
proving performance at the classification tasks. Section 4 presents our results
and demonstrates that useful contextual priors can indeed be extracted from
unlabeled images.

2 Unsupervised Patch-based Context

Consider the image in Figure 1. A local region-based classifier does a good job
at parsing this scene (see Classifier Output in figure). However as it does not
reason about the high-level context of the scene, it makes mistakes in some
of the regions (particularly those with unusual or confusing local patch-based
features). Now let us consider we have access to the set of nearest neighbors
to the query patch that all have the same underlying semantic configuration as
the query but have different local patch-based features. Amongst the retrieved
matches, lets assume the region-based classifier produces better results on some
of them (compared to the result on the query). By marginalizing the outputs of
the classifier on the retrieved matches, we can compute a useful prior probability
over the region-classes for the local patch (referred to as contextual prior).
Two challenges arise:

— How can we retrieve the set of good nearest neighbor matches to a query
patch (given the high intraclass variance and low interclass variance in local
region features)?

— How can we ensure that the retrieved matches all share similar semantic
characteristics as the query (but yet are not corrupted by the same mistakes
as made on the query patch by the classifier)?

To address the first challenge, we consider using features not only from the query
patch but also those extracted in a neighborhood around it while performing
the matching step. The features arising in the neighborhood provide the much-
needed context that helps in constraining the search and resolving ambiguities.
The size of the neighborhood plays a crucial role. Many recent works have con-
sidered image-based context i.e., using the entire image as the neighborhood [15,
13,14,16]. Although global matching works well for some scenes (alley, shores),
it is not possible to find good matches for all other types of scenes (city, out-
door neighborhood). To circumvent this issue, in this paper, we consider using
sub-image neighborhoods for matching [17-19].

In order to retrieve matches that share the same underlying semantics as the
query, we use the outputs of a supervised classifier (trained on a small set of
labeled images) as semantic features for performing the matching step. As the
classifier is trained to perform a specific task at hand, using its outputs on the
local patch as well as in its neighborhoods helps in further constraining the search
to the underlying task being solved. One potential problem with this method
is that the supervised classifier would make similar mistakes on similar image
regions, and thereby relying on those outputs as our features would retrieve
matches that are corrupted by the same errors. This would result in computing
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non-informative priors as marginalizing over the corrupted predictions would
reinforce the mistakes and thus lead to no new information. To circumvent this
problem, we rely only on the ‘confident’ outputs/predictions of the classifier
while performing the matching step. In most general scenarios, the easy regions
within an image are often confidently labeled by a supervised classifier. For a
classifier exhibiting a low recall-high precision characteristic, its highly confident
predictions are mostly correct and thus can be treated as weak form of ground-
truth labels. Therefore by avoiding the non-confident regions and relying only
on the confident predictions to guide the search process, we avoid retrieving
matches that share the similar mistake patterns.

3 Approach

Our overall approach is as follows: Given a set of (few) labeled and (many)
unlabeled images, we first train a supervised classifier (section 3.1) using a subset
of labeled images as training data. We then run this classifier over the entire set of
images (both labeled and unlabeled) to compute the semantic features over them.
The semantic features are used (along with appearance features) to search the
unlabeled images for retrieving nearest neighbor matches to every image patch in
the labeled dataset (section 3.2). The retrieved matches are used to compute the
contextual prior, which is subsequently used to update the supervised classifier
so as to improve its performance (section 3.3).

3.1 Supervised Classifier

We use a multiple segmentation approach [2] to train our supervised classifier.
Given an image and its corresponding superpixel map, simple features based on
color, texture and location are extracted from the superpixel regions and are used
to train a superpixel-similarity classifier. This classifier is used to group similar
superpixels together to form larger segments. The larger segments offer better
spatial support for extracting more complex region-based cues such as vanishing
lines (geometry), shape, and boundary characteristics. These high-level features
(in combination with the low-level cues) are used to train a region classifier so as
to learn the mapping between the regions and their corresponding classes. Mul-
tiple segmentations are generated and the predictions are marginalized across
the segments to assign final label confidences to each superpixel (i.e., probability
p of a super-pixel belonging to one of the classes).

Merits and Limitations: The multiple segmentation approach is simple, fast
yet powerful and has shown good performance at various tasks [20,21,2]. In
our experiments too, we found that it achieves a good level of performance
given limited amount of training data and is on a par with other state-of-the-art
methods evaluated on the two selected datasets (see section 4).

The multiple-segmentation process is based on the hypothesis that some
of the generated segments (in the soup of segments) would offer good spatial
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support that is crucial for classification. Thus it must be noted that the process
encourages homogeneous segments i.e., local regions belonging to a single class
and does not encode higher-order contextual interactions/relations across classes
(in fact such non-homogeneous segments are discouraged in this framework).
This is exactly the knowledge we want to augment it with using the contextual
prior.

3.2 Sub-Image Contextual Matching

Given an image (either labeled or unlabeled), we first divide it into non-overlapping
20 x 20 pixel patches yielding an m X n resolution grid (typically 15 x 20 for
a 300 x 400 resized image). We extract two types of cues for the image at this
resolution. For appearance, we use the GIST feature descriptor [22] which has
been shown to perform well at grouping similar scenes [16]. We create this de-
scriptor for each image at the m x n spatial resolution where each bin contains
that image patch’s average response to steerable filters at 8 orientations and
4 scales. For semantic context, we run the supervised classifier on the original
image and discretize its output confidences to the resolution of the grid (hereby
referred to as semantic feature). We mask out the semantic features in the non-
confident regions and only use the features from the confident regions. A feature
is confident if its max prediction value is above a precomputed threshold for the
predicted class. The thresholds are decided based on the classifier’s performance
on a validation dataset.

Now the feature descriptor for a given patch in the image is built by con-
catenating the gist and the semantic features from a k x k square neighborhood
around it. (In section 4, we provide details about the specific neighborhoods
chosen). Using this feature descriptor, we compute distances for every patch in
the query image to all the patches in the database images. We use L1 metric
for computing the distances separately for the gist and the semantic features
(We update the metric such that the norm in the unconfident regions for the
semantic features is ignored). We scale the distances so that their standard de-
viations are roughly the same so that their influence in ordering the matches is
equal. After sorting the aggregate feature distances, we pick the top K-nearest
neighbors from amongst them. Rather than searching all the patches within all
the 6 million unlabeled images for every query image patch, to circumvent the
huge computational cost, we first retrieve the top 10000 global scene matches to
the query using the approach of [16] and perform the costlier sub-image search
within them. This entire process roughly takes 2 hours per query image (using
unoptimized Matlab code) on a contemporary Xeon processor’. Our experiments
are performed on a cluster of 400 processors. Some sample matches retrieved for
query patches are shown in figure 1,2.

! the computational cost could be reduced by using several systems-level optimizations
recently proposed in computer vision (e.g., branch-and-bound [23], hashing [24, 25]
etc)
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Fig. 2. Results on the region classification task. First and second row: part of the
‘building’ is misclassified as ‘foreground’. Third row: parts of ‘foreground’ (bus) are
labeled as ‘building’. Last row: parts of ‘building’ misclassified as ‘tree’. By retraining
the classifier using the contextual prior, the mistakes have been rectified (Final Result).
Results from [1] are also included for comparison.

3.3 Contextual Prior: Estimation and Usage

Given the top K-nearest neighbors Ni.x retrieved for a query patch ¢ in an im-
age, its contextual prior P, is computed by marginalizing the outputs of the su-
pervised classifier p(.) on the retrieved unlabeled matches i.e., P; = Zfil p(IN;).
As the matching process implicitly enforced the constraint to retrieve neigh-
bors possessing similar underlying label characteristics as that of the query, by
marginalizing their outputs, a good prior over the image classes is derived. This
idea of encouraging similar scenes to have similar semantic labels, can be viewed
as a weak form of manifold regularization [26].

In our experiments, we considered two methods for performing the marginal-
ization step: a) direct marginalization of the classifier’s outputs across the re-
trieved matches; b) marginalizing the outputs on the matches only when they are
‘confident’ (i.e., using N; only when p(N;) is above a threshold). We empirically
found that using around 15 matches in the first scheme and about 50 matches
in the second scheme to perform equally well. We used the first scheme in our
experiments.
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Ground Truth Classifier Output Confident-only Output Contextual Prior Final Result

Fig. 3. Result on Geometric context dataset: Notice that the incorrectly classified
ground and sky regions are corrected after the incorporation of the prior.

The estimated contextual prior acts as a useful cue for classification of the
input image. In our experiments, we use it as an additional feature alongside
the original set of features to retrain the supervised classifier as in [15]. In order
to eliminate the variance in the results due to the randomness in the multiple
segmentation process, we maintain the same segmentations as generated in the
original training process. However it is indeed possible to use these features in
the multiple segmentation process too (i.e., to retrain the superpixel-similarity
classifier), which would further help to generate better segments/segmentations.

4 Results

We analyze the performance of our approach on the challenging region classifi-
cation [1] and the surface-layout estimation [2] tasks. The unlabeled images used
in our work are a collection of 6.5 million images downloaded from Flickr.

4.1 Region Classification

The region classification task is to classify the different regions within an image
into one of the eight categories: sky, grass, road, water, mountain, tree, build-
ing and foreground. In [1], a unified region-based model that combined appear-
ance and scene geometry to automatically decompose a scene into semantically
meaningful regions was used. To compare the results obtained by our supervised
learner to the one used in [1], we repeat the experiment following a similar set-up
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[ [ sky[ tree[road [ grass | water | bldg | mntn [ fgob ]
sky[92.6] 2.1] 0.1 0.0 0.2 4.3 0.0 0.6
tree| 4.9[61.4] 1.2 0.9 0.126.6 0.1 49
road | 0.2] 1.4]88.0 0.5 1.0 4.0 0.0 49

grass| 1.4[10.4] 6.2 74.6 0.8 2.5 0.6 3.5

water[ 7.7] 0.8125.5 4.6 50.9 5.1 1.9 3.5
bldg| 1.9 5.1 2.5 0.6 0.1 3832 0.0 6.6

mntn [25.6[10.0[ 9.0 0.8 6.1 420 0.8 5.7
fgob| 2.2] 4.3116.2 1. 1.1[24.5 0.0 50.2

Baseline (Supervised) classifier

[ [ sky[ tree[road [ grass | water | bldg | mntn [ fgob ]
sky[93.2] 2.9] 0.0 0.0 0471 29 0.0 0.6
tree[ 4.6[66.5] 1.2 2.1 0.0 [ 20.0 0.4 5.1
road| 0.1 0.5]89.1 0.4 09 29 0.0 6.2

grass| 0.5] 6.0 2.7 84.0 1.8 0.6 0.T 4.3

water|[ 7.1 0.3124.5 5.6 50.3 2.9 1.3 8.0

bldg| 1.7 6.6 2.3 1.2 0.1 81.3 0.1 6.8

mntn [26.2[20.1] 8. 2.0 6.1 12.0 3.0 223

fgob| 2.8 4.3]14.0 2.0 1.0 175 0.117583
After re-training with Contextual Prior

Table 1. Confusion matrix (row-normalized) of the supervised classifier before and
after incorporating the contextual prior.

[ [ Teft [front [ right | porous | solid ]

L Lerndlvert[ skv ] —Tor[36 8 36.5[ 7.3 99 o
fron 7.0 53.8] 11.9 7.5 9.
righ 40| 23.6[ 49.9 1.3 11,
B 0.T] 9.7190.2 porou: 2.3 5 3.0 0.T 6.
soli 4 5] 187 7.1 8.6 [ 51.
Main-class ub-class
Baseline (Supervised) classifier
Teft [front |right | porous |solid
grnd [ vert [sk Teft [4T1.7 25. 7. 0.7 -0
rnd 83.5] 16.0| 0.5 front 5. 56.8 10.6 4.3 12.9
vert 9.0 89.4] 1.6 right 2. 25.8 47.5 1.9 12.1
sk 0.6 6.4193.0 porous 1. 6.6 2T 3.2 .
solid 4. 17.7 5.1 8.5 54.4

b-class

Main-class u
After re-training with Contextual Prior

Table 2. Confusion matrix (row-normalized) of the supervised classifier before and
after incorporating the contextual prior.

as used in [1] but using the supervised learner as described in section 3.1. Quan-
titatively, we achieve a pixel-wise accuracy of 76.43%, which is similar to the
result reported in [1] (76.4%). This confirms our baseline learner’s performance
as being on a par with the existing state-of-the-art on this dataset.

For our experiments with the unlabeled data, we divide the dataset of 715
images into 4 random splits - 100 images for training the superpixel-similarity
classifier, 350 images for training the region classifier, 65 images for validation?
and 200 images for testing. We train the supervised classifier using the 350+100
images and test it on the 200 test set. The pixel-based accuracy on the testset
using this classifier is 75.6%. To obtain the semantic features on the training
images (required for the matching step), we train/test a separate classifier on
the training images using cross-validation.

Given a query image, we repeat the process described in section 3.2 to retrieve
the nearest neighbors and to compute the contextual prior for retraining the
classifiers. The updated classifier improves the result on the test set by 2.4% i.e.,

2 The validation imageset is used to compute the confidence thresholds. They are set
so as to achieve a minimum precision value (0.15 for mountains and 0.9 for remaining
classes).



Unsupervised Patch-based Context from Millions of Images 9

Fig. 4. Role of the context neighborhood size: Top few matches retrieved for a selected query image
(with 15 X 20 resolution grid) patch using gist features at 5 x 5,9 x 9 and 13 x 13 neighborhoods
from a set of 60000 unlabeled images. Having too small a neighborhood around the selected patch
(green circle) leads to the top few matches being poor i.e., random matches on sky and seas as the
region with the 5 X 5 sub-image does not have enough spatial context (thus the ‘good’ matches are
lost in the potentially infinite matches). A larger neighborhood helps in retrieving better matches.

from 75.6% to 78.0%. The confusion matrix is shown in table 1. Although the
increase in result seems small (in absolute numbers), it must be emphasized that
the improvements made are significant. More specifically, our approach helps
in correcting the mistakes made in classifying pedestrians/cars, tree branches
or parts of buildings that typically occupy fewer percentage of pixels in the
image (compared to sky and ground) but are crucial for successful image parsing.
Qualitative results for some of the test images are displayed in figure 2,5. Observe
that in the regions where the supervised classifier is unconfident (or incorrect)
in its result, the contextual prior from unlabeled images helps in predicting the
correct result.

4.2 Surface Layout Estimation

The goal of this task is to segment an image into meaningful geometric surfaces:
ground, planar-left, planar-frontal, planar-right, non-planar porous, non-planar
solid, and sky. In [2], an approach based on multiple segmentations was used on a
dataset of 300 images. 50 images were used for training the superpixel-similarity
classifier and the remaining 250 images were used for training/testing the region
classifier in a 5-fold cross validation setup. We use the same splits and setup
in our experiments. The accuracy obtained in our experiments was 87.1% for
the main class and 59.3% for the sub-class. This is slightly different from (lower
than) the one reported in [2]. We attribute the difference to the randomness in
the segment generation process (which affects the results by +/- 1% as reported
in [2]). However we use the same set of segmentations in the retraining process
(with the contextual prior), so as to eliminate the variation in our subsequent
results (due to the randomness).
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Due to severe paucity of labeled data, we could not maintain separate train-
val-test splits in this experiment. We used a classifier trained on the entire set of
250 images to run on all the unlabeled images. The thresholds were set based on
the results obtained in the 5-fold cross validation process (to have a minimum
precision of 0.9 for sky and ground, and 0.7 for the rest of the classes). Given a
query image, we repeat the process described in section 3.2 to retrieve the near-
est neighbors and to compute the contextual prior for retraining the classifiers.
Quantitatively, for this task, we improve the results by 1.2% on the main-class
(i.e., from 87.2% to 88.4%) and by 2.6% on sub-class (i.e., 59.3% to 61.9%).
The confusion matrix is shown in table 2. The qualitative results are shown in
Figure 3,6.

What is the right neighborhood for matching? The size of the neighbor-
hood used for extracting features around a patch in the sub-image matching
approach plays a non-trivial role (See figure 4). Having too small a neighbor-
hood would lead to potentially many matches (as a lot of things get mapped to it
and the good ones are lost amongst them), whereas using a global neighborhood
(i.e., the entire image) would lead to too few or no matches. Indeed choosing the
right size is data and task dependent. We experimented with various sizes of the
neighborhood - 5 x 5, 9 x 9 and 13 x 13 for gist and 9 x 9 and 13 x 13 for the
semantic features. We found the matches retrieved using a 9 x 9 neighborhood
for gist and 13 x 13 neighborhood for semantic features to be good (based on
the performance on validation set). We used these settings in all our experiments.

Standard Semi-Supervised Learning comparison. To compare the perfor-
mance of our approach to a standard semi-supervised learning (SSL) algorithm
that just takes labeled and unlabeled data together (with no intermediate label-
ing and using same data neighborhoods), we experimented with the multi-view
SSL described in [27]. We trained classifiers using the available labeled data
for various splits of our feature set and then applied them to all the unlabeled
images for bootstrapping the initial classifiers with informative patches mined
from them (i.e., patches that are classified with high confidence by at least one
view but not all). This method failed to achieve any performance gains in our
experiments. Due to the high appearance ambiguity of local patches across mul-
tiple feature views (e.g., a local patch of blue in a scene close to the horizon
could either be ‘sky’ or ‘water’ unless a neighborhood around it is revealed), this
method failed to gather informative samples. As a result, no new information is
leveraged from the unlabeled images leading to no improvements in accuracy.

Finally in figure. 7, we show example results comparing our sub-image match-
ing to other matching approaches. In order to support our hypothesis that sub-
image matching helps retrieve improved matches over a global methods, we re-
peated our experiments by using the prior computed from global matches. More
specifically, for each query image, we retrieve the top 50 global scene matches
and compute the contextual prior by marginalizing the classifier outputs over
the matches (on the entire image). For the region classification and the main-
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Result of [1] B

Fig. 5. Results on the region classification task. Top row: parts of the car and the
building are misclassified. However the confidence of the correct prediction is increased
by using the contextual prior from the retrieved matches. Bottom row: parts of the
vehicle and grassland are incorrectly classified but corrected by the retrained classifier.

class surface layout estimation task, using this prior did not help in improving
the result (the change in accuracies was less than 0.2%), while for the sub-class
surface layout estimation task, the results improved by 2% (i.e., from 59.3% to
61.3%). Figure compares the matches retrieved using both the global and sub-
image matching schemes for a few query images. Observe that the global matches
get the gist of the scene right but do not localize the regions and the boundaries
specific to a query patch, whereas using the sub-image approach retrieves much
better matches. Further we also studied a semi-global way to obtain the matches.
Instead of using a straight-forward L1 distance function over the entire image
features, we weigh the distances using a Gaussian centered around the query
patch so as to focus more on the distances in its immediate neighborhood while
still matching weakly on the rest of the image. We found this method to retrieve
good matches too. (However we chose the sub-image method as it performed
equally well and is faster to compute.)
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Ground Truth Classifier Output Contextual Prior Final Result

Fig. 6. Results on the geometric context dataset. (‘X’ indicates non-planar solid and
‘O’ indicates non-planar porous class). Top row: part of the left-facing building is
misclassified as porous due to confusing texture. Second row: left-facing roof of the
building is misclassified as ‘frontal’. Third row: frontal face of the building is confused
with ‘left” and ‘right’ classes. Last row: sky is misclassified as vertical (frontal) class.
In all cases, contextual prior computed from unlabeled images helps in improving the
result.

5 Conclusion

Image interpretation is a hard problem as local evidence learned from a small set
of labeled images is used for making scene-wise decisions. In this paper, we have
presented an approach to alleviate the labeled data barrier by deriving contextual
priors from completely unlabeled images for aiding supervised region-labeling
classifiers. The main components of our approach are sub-image based matching,
and semantic feature based similarity, that together enable us to encode higher-
order context for measuring similarity and retrieving good matches. Beyond the
region labeling tasks explored in this work, the proposed method allows us to
leverage the huge collection of untapped Internet images in multiple interesting
ways. For example, once the nearest neighbor matches to the query patches are
retrieved, one could transfer any weak labels associated with the matches (e.g.,
Flickr tags or captions or any other annotations) onto the query and arrive at a
competely data-driven interpretation of the query image.
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Fig. 7. Global vs Sub-image matching: The matches retrieved using features from
the entire image do well in getting the overall gist of the scene but fail to match
the individual regions within the image. By using the sub-image based approach, we
retrieve better matches. The semi-global approach is also displayed for comparison.



