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Abstract We present a novel data structure, the Bayes tree, that provides an al-
gorithmic foundation enabling a better understanding of existing graphical model
inference algorithms and their connection to sparse matrix factorization methods.
Similar to a clique tree, a Bayes tree encodes a factored probability density, but
unlike the clique tree it is directed and maps more naturally to the square root in-
formation matrix of the simultaneous localization and mapping (SLAM) problem.
In this paper, we highlight three insights provided by our new data structure. First,
the Bayes tree provides a better understanding of batch matrix factorization in terms
of probability densities. Second, we show how the fairly abstract updates to a ma-
trix factorization translate to a simple editing of the Bayes tree and its conditional
densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for
sparse nonlinear incremental optimization, that combines incremental updates with
fluid relinearization of a reduced set of variables for efficiency, combined with fast
convergence to the exact solution. We also present a novel strategy for incremental
variable reordering to retain sparsity. We evaluate our algorithm on standard datasets
in both landmark and pose SLAM settings.
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1 Introduction

Probabilistic inference algorithms are important in robotics for a number of appli-
cations, ranging from simultaneous localization and mapping (SLAM) for building
geometric models of the world, to tracking people for human robot interaction. Our
research is mainly in large-scale SLAM and hence we will use this as an example
throughout the paper. SLAM is a core competency in mobile robotics, as it provides
the necessary data for many other important tasks such as planning and manipu-
lation, in addition to direct applications such as 3D modeling, exploration, and re-
connaissance. The uncertainty inherent in sensor measurements makes probabilistic
inference algorithms the favorite choice for SLAM. And because online operation
is essential for most real applications, efficient incremental online algorithms are
important and are at the focus of this paper.

Taking a graphical model perspective to probabilistic inference in SLAM has a
rich history [2] and has especially led to several novel and exciting developments
in the last years [27, 10, 13, 12, 11, 31]. Paskin proposed the thin junction tree fil-
ter (TJTF) [27], which provides an incremental solution directly based on graphical
models. However, filtering is applied, which is known to be inconsistent when ap-
plied to the inherently nonlinear SLAM problem [20], i.e., the average taken over a
large number of experiments diverges from the true solution. In contrast, full SLAM
[34] retains all robot poses and can provide an exact solution, which does not suffer
from inconsistency. Folkesson and Christensen presented Graphical SLAM [10], a
graph-based full SLAM solution that includes mechanisms for reducing the com-
plexity by locally reducing the number of variables. More closely related, Frese’s
Treemap [12] performs QR factorization within nodes of a tree that is balanced over
time. Sparsification is applied to prevent nodes from becoming too large, introduc-
ing approximations by duplication of variables.

The sparse linear algebra perspective has been explored by Dellaert et al. [6, 7,
23] in Smoothing and Mapping (SAM), an approach that exploits the sparsity of
the smoothing information matrix. The matrices associated with smoothing are typ-
ically very sparse, and one can do much better than the cubic complexity associated
with factorizing a dense matrix [24]. Kaess et al. [22, 23] proposed incremental
smoothing and mapping (iSAM), which performs fast incremental updates of the
square root information matrix, yet is able to compute the full map and trajectory at
any time. New measurements are added using matrix update equations [16, 15, 17],
so that previously calculated components of the square root information matrix are
reused. However, to remain efficient and consistent, iSAM requires periodic batch
steps to allow for variable reordering and relinearization, which is expensive and
detracts from the intended online nature of the algorithm.

To combine the advantages of the graphical model and sparse linear algebra per-
spective, we propose a novel data structure, the Bayes tree. Our approach is based
on viewing matrix factorization as eliminating a factor graph into a Bayes net, which
is the graphical model equivalent of the square root information matrix. Performing
marginalization and optimization in Bayes nets is not easy in general. However, a
Bayes net resulting from elimination/factorization is chordal, and it is well known
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that a chordal Bayes net can be converted into a tree-structured graphical model in
which these operations are easy. The most well-known such data structure is the
clique tree [30, 1], also known as the junction tree in the AI literature [4], which has
already been exploited for distributed inference in SLAM [8, 27]. However, the new
data structure we propose here, the Bayes tree, is directed and corresponds more
naturally to the result of the QR factorization in linear algebra, allowing us to an-
alyze it in terms of conditional probability densities in the tree. We further show
that incremental inference corresponds to a simple editing of this tree, and present a
novel incremental variable ordering strategy.

Exploiting this new data structure and the insights gained, we propose a novel in-
cremental exact inference method that allows for incremental reordering and
just-in-time relinearization. To the best of our knowledge this is a completely
novel approach to providing an efficient and exact solution to a sparse nonlin-
ear optimization problem in an incremental setting, with general applications be-
yond SLAM. While standard nonlinear optimization methods repeatedly solve a
linear batch problem to update the linearization point, our Bayes tree-based algo-
rithm allows fluid relinearization of a reduced set of variables which translates into
higher efficiency, while retaining sparseness and full accuracy. We compare our new
method to iSAM using multiple publicly available datasets in both landmark and
pose SLAM settings.

2 Problem Statement

We use a factor graph [25] to represent the SLAM problem in terms of graphical
models. Formally, a factor graph is a bipartite graph G = (F ,Θ ,E ) with two node
types: factor nodes fi ∈F and variable nodes θ j ∈Θ . Edges ei j ∈ E are always
between factor nodes and variables nodes. A factor graph G defines the factorization
of a function f (Θ) as

f (Θ) = ∏
i

fi(Θi) (1)

where Θi is the set of variables θ j adjacent to the factor fi, and independence rela-
tionships are encoded by the edges ei j: each factor fi is a function of the variables
in Θi. An example of a SLAM factor graph is shown in Fig. 1(top).

When assuming Gaussian measurement models

fi(Θi) ∝ exp
(
−1

2
‖hi(Θi)− zi‖2

Σi

)
(2)

as is standard in the SLAM literature [32, 3, 9], the factored objective function we
want to maximize (1) corresponds to the nonlinear least-squares criterion

argmin
Θ

(− log f (Θ)) = argmin
Θ

1
2 ∑

i
‖hi(Θi)− zi‖2

Σi
(3)
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Fig. 1 (top) The factor graph and the associated Jacobian matrix A for a small SLAM example,
where a robot located at successive poses x1, x2, and x3 makes observations on landmarks l1 and l2.
In addition there is an absolute measurement on the pose x1. (bottom) The chordal Bayes net and
the associated square root information matrix R resulting from eliminating the factor graph using
the elimination ordering l1, l2, x1, x2, x3. Note that the root, the last variable to be eliminated, is
shaded darker.

where hi(Θi) is a measurement function and zi a measurement, and ‖e‖2
Σ

∆
= eT Σ−1e

is defined as the squared Mahalanobis distance with covariance matrix Σ .
A crucial insight is that inference can be understood as converting the factor

graph to a Bayes net using the elimination algorithm. Variable elimination [1, 4]
originated in order to solve systems of linear equations, and was first applied in
modern times by Gauss in the early 1800s [14].

Algorithm 1 Eliminating a variable θ j from the factor graph.
1. Remove from the factor graph all factors fi(Θi) that are adjacent to θ j . Define the separator S j

as all variables involved in those factors, excluding θ j .
2. Form the (unnormalized) joint density f joint(θ j,S j) = ∏i fi(Θi) as the product of those factors.
3. Using the chain rule, factorize the joint density f joint(θ j,S j) = P(θ j|S j) fnew(S j). Add the con-

ditional P(θ j|S j) to the Bayes net and the factor fnew(S j) back into the factor graph.

In factor graphs, elimination is done via a bipartite elimination game, as de-
scribed by Heggernes and Matstoms [19]. This can be understood as taking apart
the factor graph and transforming it into a Bayes net [29]. One proceeds by elimi-
nating one variable at a time, and converting it into a node of the Bayes net, which is
gradually built up. After eliminating each variable, the reduced factor graph defines
a density on the remaining variables. The pseudo-code for eliminating a variable
θ j is given in Algorithm 1. After eliminating all variables, the Bayes net density is
defined by the product of the conditionals produced at each step:
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P(Θ) = ∏
j

P(θ j|S j) (4)

The result of this process for the example in Fig. 1(top) is shown in Fig. 1(bottom).

3 The Bayes Tree
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Fig. 2 The Bayes tree and the associated square root information matrix R describing the clique
structure in the Bayes net from Fig. 1. A Bayes tree is similar to a clique tree, but is better at
capturing the formal equivalence between sparse linear algebra and inference in graphical models.
The association of cliques with rows in the R factor is indicated by color.

The Bayes net resulting from elimination/factorization is chordal, and it can
be converted into a tree-structured graphical model in which optimization and
marginalization are easy. In this paper we introduce a new data structure, the Bayes
tree, to better capture the equivalence with linear algebra and enable new algorithms
in recursive estimation. A Bayes tree is a directed tree where the nodes represent
cliques Ck of the underlying chordal Bayes net. In this respect Bayes trees are simi-
lar to clique trees, but a Bayes tree is directed and is closer to a Bayes net in the way
it encodes a factored probability density. In particular, we define one conditional
density P(Fk|Sk) per node, with the separator Sk as the intersection Ck ∩Πk of the
clique Ck and its parent clique Πk, and the frontal variables Fk as the remaining vari-
ables, i.e. Fk

∆
=Ck \Sk. We write Ck = Fk : Sk. This leads to the following expression

for the joint density P(Θ) on the variables Θ defined by a Bayes tree,

P(Θ) = ∏
k

P(Fk|Sk) (5)

where for the root Fr the separator is empty, i.e., it is a simple prior P(Fr) on the
root variables. The way Bayes trees are defined, the separator Sk for a clique Ck is
always a subset of the parent clique Πk, and hence the directed edges in the graph
have the same semantic meaning as in a Bayes net: conditioning.

Every chordal Bayes net can be transformed into a tree by discovering its cliques.
Discovering cliques in chordal graphs is done using the maximum cardinality search
algorithm by Tarjan and Yannakakis [33], which proceeds in reverse elimination
order to discover cliques in the Bayes net. The algorithm for converting a Bayes net
into a Bayes tree is summarized in Algorithm 2 and the corresponding Bayes tree
for the small SLAM example in Fig. 1 is shown in Fig. 2.
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Algorithm 2 Creating a Bayes tree from the chordal Bayes net resulting from elim-
ination (Algorithm 1).
For each conditional density P(θ j|S j) of the Bayes net, in reverse elimination order:
If no parent (S j = {})

start a new root clique Fr containing θ j
else

identify parent clique Cp that contains the first eliminated variable of S j as a frontal variable
if nodes Fp∪Sp of parent clique Cp are equal to separator nodes S j of conditional

insert conditional into clique Cp
else

start new clique C′ as child of Cp containing θ j

Gaussian Case In practice one always considers a linearized version of problem
(3). If the measurement models hi in equation (2) are nonlinear and a good lineariza-
tion point is not available, nonlinear optimization methods such as Gauss-Newton
iterations or the Levenberg-Marquardt algorithm solve a succession of linear ap-
proximations to (3) in order to approach the minimum.

At each iteration of the nonlinear solver, we linearize around a linearization point
Θ to get a new, linear least-squares problem in x with the objective function

− log f (x) =
1
2
‖Ax−b‖2 (6)

where A ∈ Rm×n is the measurement Jacobian consisting of m measurement rows
and x is an n-dimensional tangent vector of a minimal representation [18]. Note
that the covariances Σi have been absorbed into the corresponding block rows of A,

making use of ‖x‖2
Σ
= xT Σ−1x = xT Σ−

T
2 Σ−

1
2 x =

∥∥∥Σ−
1
2 x
∥∥∥2

. The matrix A above
is a sparse block-matrix, and its graphical model counterpart is a Gaussian factor
graph with exactly the same structure as the nonlinear factor graph, see Fig. 1. The
probability density on x defined by this factor graph is the normal distribution

P(x) ∝ e− log f (x) = exp
{
−1

2
‖Ax−b‖2

}
(7)

In Gaussian factor graphs, elimination is equivalent to sparse QR factor-
ization of the measurement Jacobian. In Gaussian factor graphs, the chain rule
f joint(θ j,S j) = P(θ j|S j) fnew(S j) in step 3 of Algorithm 1 can be implemented using
Householder reflections or a Gram-Schmidt orthogonalization, in which case the
entire elimination algorithm is equivalent to QR factorization of the entire measure-
ment matrix A. To see this, note that, for x j ∈ R and s j ∈ Rl (the set of variables S j
combined in a vector of length l), the factor f joint(x j,s j) defines a Gaussian density

f joint(x j,s j) ∝ exp
{
−1

2

∥∥ax j +ASs j−b
∥∥2
}

(8)
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where the dense, but small matrix A j = [a|AS] is obtained by concatenating the
vectors of partial derivatives of all factors connected to variable x j. Note that a ∈
Rk, AS ∈ Rk×l and b ∈ Rk, with k the number of measurement rows of all factors
connected to x j. The desired conditional P(x j|s j) is obtained by evaluating the joint
(8) for a given value of s j, yielding

P(x j|s j) ∝ exp
{
−1

2
(x j + rs j−d)2

}
(9)

with r ∆
= a†AS and d ∆

= a†b, where a† ∆
=
(
aT a

)−1 aT is the pseudo-inverse of a. The
new factor fnew(s j) is obtained by substituting x j = d− rs j back into (8):

fnew(s j) = exp
{
−1

2

∥∥A′s j−b′
∥∥2
}

(10)

where A′ ∆
= AS−ar and b′ ∆

= b−ad. The above is one step of Gram-Schmidt, inter-
preted in terms of densities, and the sparse vector r and scalar d can be recognized
as specifying a single joint conditional density in the Bayes net, or alternatively a
single row in the sparse square root information matrix as indicated in Fig. 2.

Solving The optimal assignment x∗ of the linear least-squares solution is the
one that maximizes the joint density P(x) from (7). The optimal assignment x∗ can
be computed in dynamic programming style in one pass from the leaves up to the
root of the tree to define all functions, and then one pass down to retrieve the optimal
assignment for all frontal variables, which together make up the variables x. The first
pass is already performed during construction of the Bayes tree, and is represented
by the conditional densities associated with each clique. The second pass recovers
the optimal assignment starting from the root based on (9) by solving

x j = d− rs j (11)

for every variable x j, which is equivalent to backsubstitution in sparse linear algebra.

4 Incremental Inference

We show that incremental inference corresponds to a simple editing of the Bayes
tree, which also provides a better explanation and understanding of the otherwise
abstract incremental matrix factorization process. In particular, we will now store
and compute the square root information matrix R in the form of a Bayes tree T .
Incremental factorization/inference is performed by reinterpreting the top part of
the Bayes tree again as a factor graph, adding to this the new factors, creating with
a new elimination order a new Bayes tree from this “top”, then reattaching to it
the unaffected subtrees. When a new measurement is added, for example a factor
f ′(x j,x j′), only the paths between the cliques containing x j and x j′ (respectively)
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l1, x1 : x2 l2 : x3 x1
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Fig. 3 Updating a Bayes tree with a new factor, based on the example in Fig. 2. (top left) The
affected part of the Bayes tree is highlighted for the case of adding a new factor between x1 and
x3. Note that the right branch is not affected by the change. (top right) The factor graph generated
from the affected part of the Bayes tree. (bottom left) The chordal Bayes net resulting from elimi-
nating the factor graph. (bottom right) The Bayes tree created from the chordal Bayes net, with the
unmodified right “orphan” subtree from the original Bayes tree added back in.

and the root are affected. The sub-trees below these cliques are unaffected, as are
any other sub-trees not containing x j or x j′ . Fig. 3 shows how these steps are applied
to our small SLAM example (originally in Fig. 2). The upper-left shows that adding
the new factor between x1 and x3 only affects the left branch of the tree. The entire
process of updating the Bayes tree with a new factor is described in Algorithm 3.

To understand why only the top part of the tree is affected, we look at two impor-
tant properties of the Bayes tree. These directly arise from it encoding information
flow during elimination. First, during elimination, variables in each clique collect
information from their child cliques via the elimination of these children. Thus,
information in any clique propagates only upwards to the root. Second, the infor-
mation from a factor enters elimination only when the first variable of that factor is
eliminated.

Combining these two properties, we see that a new factor cannot influence any
other variables that are not successors of the factor’s variables. However, a factor on
variables having different (i.e. independent) paths to the root means that these paths
must now be re-eliminated to express the new dependency between them.
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Algorithm 3 Updating the Bayes tree with new factors F ′.
In: Bayes tree T , new linear factors F ′

Out: modified Bayes tree T ’

1. Remove top of Bayes tree and re-interpret it as a factor graph:

a. For each affected variable, remove the corresponding clique and all parents up to the root.
b. Store orphaned sub-trees Torph of removed cliques.

2. Add the new factors F ′ into the resulting factor graph.
3. Re-order and eliminate the factor graph into a Bayes net (Algorithm 1), and re-assemble into a

new Bayes tree (Algorithm 2).
4. Insert the orphans Torph back into the new Bayes tree.

5 Incremental Reordering

Choosing the right variable ordering is essential for the efficiency of a sparse ma-
trix solution, and this also holds for the Bayes tree approach. An optimal ordering
minimizes the fill-in, which refers to additional entries in the square root informa-
tion matrix that are created during the elimination process. In the Bayes tree, fill-in
translates to larger clique sizes, and consequently slower computations. Fill-in can
usually not be completely avoided, unless the original Bayes net already is chordal.
Finding the variable ordering that leads to the minimal fill-in is NP-hard. One typi-
cally uses heuristics such as the column approximate minimum degree (COLAMD)
algorithm by Davis et al. [5], which provide close to optimal orderings for many
problems.

t1

t3

t4

t5

t6

t2
t1

t3

t4

t5

t6

t2

t4t2 t6

t5

t3

t1

t5t3

t4

t1

t2 t6

Fig. 4 For a trajectory with loop closing, two different optimal variable orderings based on nested
dissection are shown in the top row, with the corresponding Bayes tree structure in the bottom row.
For the incremental setting the left choice is preferable, as the most recent variables end up in the
root, minimizing work in future updates.
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While performing incremental inference in the Bayes tree, variables can be re-
ordered at every incremental update, eliminating the need for periodic batch re-
ordering. This was not understood in [23], because this is only obvious within the
graphical model framework, but not for matrices. Reordering is only performed for
the variables affected by the new factors. Finding an optimal ordering for this subset
of variables does not necessarily provide an optimal overall ordering. However, we
have observed that some incremental orderings provide good solutions, comparable
to batch application of COLAMD.

One particularly good ordering forces the affected variables to be eliminated last.
This strategy provides a good ordering because new measurements almost always
connect to recently observed variables. In particular, odometry measurements al-
ways connect to the previous pose. In the exploration mode it is clear that if the
most recent variables end up in the root, only a small part of the tree (optimally
only the root) has to be reorganized in the next step. The more difficult case of a
loop closure is visualized in Fig. 4. In the case of a simple loop, nested dissection
provides the optimal ordering. The first cut can either (a) include the root, or (b)
not include the root, and both solutions are equivalent in terms of fill-in. However,
there is a significant difference in the incremental case: For the horizontal cut that
does not include the most recent variable t6, that variable will end up further down
in the tree, requiring larger parts of the tree to change in the next update step. The
vertical cut, on the other hand, includes the last variable in the first cut, pushing it
into the root, and therefore leading to smaller, more efficient changes in the next
step. In order to deal with more general topologies than this simple example, we
use a constrained version of the COLAMD algorithm, that allows keeping the last
variables in the root while still obtaining a good overall ordering.

6 Exact Incremental Inference with Fluid Relinearization

In this section we use the Bayes tree in a novel algorithm for optimizing a set of non-
linear factors that grows over time, which is directly applicable to online mapping.
We have already shown how the Bayes tree is updated with new linear factors. We
now discuss how to perform relinearization where needed, a process that we call
fluid relinearization. Then we present a combined algorithm for adding nonlinear
factors over time, while keeping the Bayes tree and the estimate up-to-date.

The goal of our algorithm is to obtain an estimate Θ for the variables (map and
trajectory), given a set of nonlinear constraints that expands over time, represented
by nonlinear factors F . New factors F ′ can arrive at any time and may add new
variables Θ ′ to the estimation problem. We take the most recent estimate Θ as lin-
earization point to solve a linearized system as a subroutine in an iterative nonlinear
optimization scheme. The linearized system is represented by the Bayes tree T .

Solving When solving in a nonlinear setting, we obtain a delta vector ∆ that is
used to update the linearization point Θ , as shown in Algorithm 4. Updates are often
local operations that do not affect the solution of other parts of the map. Therefore
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Algorithm 4 Solving the Bayes tree in the nonlinear case returns an update ∆ that
can be added to the current linearization point Θ to obtain the current estimate for
all variables Θ +∆ .
In: Bayes tree T
Out: update ∆

Starting from the root clique Cr = Fr:

1. For current clique Ck = Fk : Sk
compute update ∆k of frontal variables Fk using already computed values of parents Sk and the
local conditional density P(Fk|Sk).

2. For all variables ∆k, j in ∆k that change by more than a threshold α:
recursively process each descendant containing such a variable.

Algorithm 5 Fluid relinearization: The linearization points of select variables are
updated based on the current delta ∆ .
In: nonlinear factors F , linearization point Θ , Bayes tree T , delta ∆

Out: updated Bayes tree T , updated linearization point Θ

1. Mark variables in ∆ above threshold β : J = {∆ j ∈ ∆ |∆ j ≥ β}.
2. Update linearization point for marked variables: ΘJ :=ΘJ +∆J .
3. Mark all cliques that involve marked variables ΘJ and all their ancestors.
4. From the leaves to the top, if a clique is marked:

a. Relinearize the original factors in F associated with the clique.
b. Add cached marginal factors from any unmarked children.
c. Re-eliminate.

we will consider variables unchanged for which the recovered delta changes by less
than a small threshold α . For a clique that does not contain any variables that are
considered changed, the subtrees will not be traversed. To be exact, the different
units of variables have to be taken into account, but one simple solution is to take
the minimum over all thresholds.

Fluid Relinearization The idea behind just-in-time or fluid relinearization is
to keep track of the validity of the linearization point for each variable, and only
relinearize when needed. This represents a departure from the conventional lin-
earize/solve approach that currently represents the state of the art, and can be viewed
as a completely new algorithm for nonlinear optimization. For a variable that is cho-
sen to be relinearized, all relevant information has to be removed from the Bayes tree
and replaced by relinearizing the corresponding original nonlinear factors. Cliques
that are re-eliminated have to take into account also the marginal factors that get
passed up from subtrees. We cache those marginals during elimination to avoid hav-
ing to re-eliminate unmarked cliques to obtain them. Algorithm 5 shows the overall
fluid relinearization process.

Now we have all components for a fully incremental nonlinear optimization al-
gorithm that allows exact incremental inference for sparse nonlinear problems such
as SLAM. The algorithm is summarized in Algorithm 6, and we provide a brief dis-
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Algorithm 6 Nonlinear iteration with incremental variable reordering and fluid re-
linearization.
In / out: Bayes tree T , linearization point Θ , nonlinear factors F
In: new nonlinear factors F ′, new variables Θ ′

Initialization: T = /0, Θ = /0, F = /0

1. Add any new factors F := F ∪F ′.
2. Initialize any new variables Θ ′ and add Θ :=Θ ∪Θ ′.
3. Linearize new factors F ′ to obtain F ′

lin.
4. Linear update step, applying Algorithm 3 to F ′

lin.
5. Solve for delta ∆ with Algorithm 4.
6. Iterate Algorithm 5 until no more relinearizations occur.

cussion of its complexity here. We assume here that initialization is available and
it is close enough to the global minimum to allow convergence - that is a general
requirement of any direct solver method. The number of iterations needed to con-
verge is typically fairly small, in particular because of the quadratic convergence
properties of our algorithm near the minimum. For exploration tasks with a con-
stant number of constraints per pose, the complexity is O(1). In the case of loop
closures the situation becomes more difficult, and the most general bound is that for
full factorization, O(n3), where n is the number of variables (poses and landmarks if
present). Under certain assumptions that hold for many SLAM problems, the com-
plexity is bounded by O(n1.5) [24]. It is important to note that this bound does not
depend on the number of loop closings. It should also be noted that our incremental
algorithm is often much faster than a full factorization, as we show below.

7 Experimental Results

This section describes the experiments that validate the presented approach, using
both synthetic and real datasets that are publicly available. We compare our estima-
tion and timing results with a state of the art incremental algorithm [23] in order
to highlight the advantages of fluid relinearization and incremental reordering. We
have implemented the batch and iSAM algorithms using the same Bayes tree li-
brary to provide a comparison of the algorithms, rather than a comparison of differ-
ent implementations. All results are obtained with a research C++ implementation,
running single-threaded on a laptop with Intel Core 2 Duo 2.2 GHz processor, and
using the COLAMD algorithm by Davis et al. [5]. We use the thresholds α = 0.005
and β = 0.05 for solving and relinearization, respectively.

We evaluate the timing of our Bayes tree algorithm on the Victoria Park dataset,
an often-used benchmark SLAM dataset [23, 28] courtesy of H. Durrant-Whyte and
E. Nebot. This dataset includes 6969 laser scans with the corresponding odometry
readings. The laser scans are processed to detect the trunks of the trees in the park,
which are used as landmarks. Fig. 5 shows the final trajectory estimate together
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Fig. 5 The Victoria Park dataset (top) and the simulated Manhattan world dataset (bottom) after
optimization, color coded with the number of variables that are updated for every step along the
trajectory. Green corresponds to a low number of variables, red to a high number.

with the detected landmarks. In this figure the trajectory is colored according to
the number of variables our algorithm had to recalculate at each step, where green
represents a small number of variables (order of 10), yellow a moderate number,
and red finally a large number (order of hundreds of variables). A relatively small
portion of the trajectory is colored red, mainly the part at the bottom where the
vehicle closed loops multiple times, re-visiting the same location up to eight times.
In Fig. 6, we compare per-step timing on the Victoria Park dataset between our
algorithm and the original iSAM algorithm [23] (both implemented using the same
library as noted above). The results show that our fully incremental algorithm does
not suffer from the periodic spikes in iSAM. Our algorithm also performs better in
cumulative time, while providing the additional advantage of continuously updating
the linearization point of all variables having significant changes.

To evaluate the accuracy of our algorithm, we use the simulated Manhattan world
from [26], courtesy of E. Olson. Fig. 7 shows that the normalized chi-square values
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Fig. 6 Timing comparison for the Victoria Park dataset. The top row shows per step timing and
the bottom row shows the cumulative time. Our new algorithm (red) provides an improvement in
speed over the original iSAM algorithm (blue), in addition to its advantages of eliminating periodic
batch factorization and performing fluid relinearization. The original iSAM algorithm included a
batch step every 100 iterations, which is clearly visible from the spikes.
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Fig. 7 Comparison of normalized χ2 for the simulated Manhattan world. iSAM shows some spikes
where it deviates from the least squares solution because relinearization is only performed every
100 steps. The Bayes tree solution is always very close to the least squares solution because of the
fluid relinearization (β = 0.05).

follow the least-squares batch solution, providing a nearly exact solution in every
step. While iSAM also converges to the exact solution, it shows some spikes related
to relinearization only being performed in the periodic batch steps. Final cumulative
times for providing a full solution in every step are 19.4s and 47.6s for our algorithm
and iSAM, respectively. Fig. 5 shows the estimated trajectory for the simulated Man-
hattan world, again using the same color coding for the number of variables that had
to be recalculated in each step.

Finally, we evaluated timing results on the Intel dataset, courtesy of D. Haehnel
and D. Fox. This dataset was preprocessed by laser scan-matching, resulting in a
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pose graph formulation without landmarks, containing about 4000 poses. The final
cumulative times are 44.4s and 172.6s for our algorithm and iSAM, respectively.

8 Conclusion

We have presented a novel data structure, the Bayes tree, that provides an algorith-
mic foundation which enables new insights into existing graphical model inference
algorithms and sparse matrix factorization methods. These insights have led us to
a fully incremental algorithm for nonlinear least-squares problems as they occur in
mobile robotics. We have used SLAM as an example application, even though the
algorithm is also suitable for other incremental inference problems, such as object
tracking and sensor fusion. Our novel graph-based algorithm should also allow for
better insights into the recovery of marginal covariances, as we believe that sim-
ple recursive algorithms in terms of the Bayes tree are formally equivalent to the
dynamic programming methods described in [21]. The graph based structure also
provides a starting point for exploiting parallelization that is becoming available in
newer processors.
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