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Abstract

Obtaining labeled data for training classifiers is an expensive task that must be done
in any new application. It is yet even more expensive for structured models, such as
Conditional Random Fields, where some notion of coherence in the labeled data must
be maintained. To address this issue, semi-supervised methods are often applied to
reduce the needed number of labeled examples to train adequate models. Previous
work in this area have resulted in complex training procedures that do not scale to
handle large amounts of examples, features, labels, and interactions that are necessary
for vision tasks. In this paper, we present and analyze two novel approaches for semi-
supervised training of structured models that can satisfy the above requirements. While
we unfortunately do not observe significant benefit from using unlabeled data in our
real-world experiments, the simple algorithms we present here may be useful in other
applications where the necessary assumptions are satisfied.
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1 Introduction

Structured prediction models such as Conditional Random Fields have demonstrated
to be strong tools for a variety of vision tasks. However, the ability of these sophis-
ticated models to capture dependencies among the data comes at the price of a more
sophisticated training process. Because the predictions are structured, the labeled data
needed for training these models must also encode this structure, e.g. it is not useful to
train a CRF from a random sample of pixels from an image. This expensive labeling
approach is not viable in the long term for applications to many different domains.

This problem motivates a semi-supervised approach where unlabeled examples, in
addition to a handful of labeled examples, are incorporated into the learning process,
as illustrated in Figure 1. The basic idea is that the unlabeled examples provide extra
information to the learning algorithm which is not solely captured from the labeled
examples and thus leads to an overall better model.

Labeled Random Fields Unlabeled Random Fields

L J
¥

Semi-Supervised Algorithm

Figure 1: Semi-supervised structured prediction: we wish to incorporate information
from many unlabeled random fields (right) in conjunction with a handful of labeled
random fields (left) during the learning process.

Many semi-supervised methods impose some notion of smoothness or regulariza-
tion in the model. For example, in the manifold regularization framework [3], a penalty
term is added which practically enforces that similar training examples in feature space
should produce similar scores; we further discuss this in Section 3.1. And in the en-
tropy regularization framework [8], a different penalty term is added to train the model
such that the unlabeled examples strongly prefer certain labels while the labeled exam-
ples are still consistent with their given labels. There has been a lot of recent work on
semi-supervised approaches in both the learning [20, 6, 18, 27] and vision [24, 17, 23]
communities that are closely related to/inspired from these frameworks; however, most
approaches have focused on the unstructured case. Due to the more complex training
procedures of structured models, even in the standard supervised case, it is unsurpris-
ing that there has been relatively much less attention in the semi-supervised setting
[16, 25, 1, 19, 5]. Perhaps due to the large input space for visual analysis, e.g. there
are easily thousands of pixels in only one example training image, only one of these
approaches [16] has analyzed semi-supervised structured models with visual data.

This work investigates the problem of effectively training these structured predic-



Figure 2: Example Geometric Context classification: (a) Input image (b) The support-
ing ground (green), vertical structures (red) and Sky (blue) are classified.

tion models in a semi-supervised manner for use in real-world vision tasks. Specifi-
cally, we require the optimization procedure to scale with large datasets and random
fields which are almost certainly needed for vision tasks. In our experiments we exam-
ine the application of Geometric Context surface estimation [9], as illustrated in Figure
2, for evaluation purposes. First we investigate the use of a common semi-supervised
framework: manifold reglarization [3]. While previous work [!] has also examined
this approach, the authors’ proposed optimization procedure involves solving a very
large matrix inversion and a convex program, both of which are in practice too compu-
tationally expensive to solve in most useful scenarios. Instead, we present a much sim-
pler gradient-based optimization procedure that scales in practice for use in real-world
datasets. Unfortunately, while we successfully demonstrate the approach on synthetic
datasets, we find in our experiments that this approach often performs worse than a
solely supervised structured model. In response to this, we present and analyze a sec-
ond gradient-based technique for using unlabeled random fields. Unfortunately, we do
not find any significant benefit with using unlabeled data during the training procedure.
While we observe negative results in our experiments, the techniques presented here
are applicable to other max-margin structured prediction tasks (e.g. sequence labeling)
and/or may be useful when the data satisfy the necessary assumptions.

The paper is structured as follows. We first review and introduce notation regard-
ing random fields. In Section 3, we present our gradient-based procedure for semi-
supervised learning with manifold regularization and analyze its performance. Finally,
in Section 4, we describe and analyze the second procedure for semi-supervised struc-
tured prediction.

2 Background

We start with the definition of a Conditional Random Field (CRF) from Lafferty et
al.[14]. We consider the joint-conditional distribution of our random variables Y; € L,
e.g. the label of a pixel in the image, conditioned on the data X, e.g. the features we
extract from the image. This distribution is defined by an undirected graph with nodes
Y and edges indicating interactions between variables. Let C' be the set of cliques in the
graph, then each clique ¢ € C in the graph is associated with a potential function ¢.(y.)



that measures compatibility of an assignment y,, e.g. the labels of a subset of pixels.
To simplify notations, it is implicit that the potential functions ¢, are also a function of
all the data z. The distribution is then defined by log P(y|z) = ®(y, x) — log Z, where

(I)(yax) = Zd’c(yc)a (D
ceC

and Z = 3,y [].cc exp(oc(ye)) is the normalizer and ) is the exponential space
of possible label configurations.

In this work, we follow the approach of [22, 21] and learn a non-parametric model
that is some general function v of the features:
be(ye) o< Y(fe(ye))s (2)

where f. € RY can intuitively be thought of as features extracted from clique c that
describe the assignment y,; it is also implicit that f, has access to all the data z. As will
be further discussed in the next section, v is obtained through a boosting style proce-
dure and therefore the final form of v is a weighted combination of simpler functions
h: v =3, n:he. Also, we focus on max-margin learning of the model, instead of max-
imum a-posteriori (MAP) learning. Hence these models are referred to as Max-Margin
Markov Networks (M3Ns) [26].

Given labeled training data (z, §), we learn ¢ by minimizing the convex structured-
margin loss represented by the functional

Lly] = r;leag(fb(y, z) + M(y,9)) — ®(9,2), 3)

where M (y, ) is the structured-margin term analogous to the scalar-margin in Support
Vector Machines (SVMs); in our experiments, we use the Hamming loss M (y,§) =
> Ilyi # ¥i), where I is the indicator function. Simply, the objective is to find the
function ¢ that minimizes the difference of the overall score computed with the ground
truth labels (second term) and the best overall score compute from any possible labeling
by some margin of score (first term). Note that as with most boosting algorithms,
we do not have any explicit regularization of 1 over the labeled training data. As is
typically done, we instead regularize by having ¢ composed of functions h; with small
complexity such as trees with small depth or neural networks with small number of
hidden nodes/layers, efc.

Labeling random fields is an expensive task in most applications. The remainder
of this paper analyzes two approaches for incorporating both labeled cliques C'7, and
unlabeled cliques C'yy during the learning process.

3 Semi-supervision by regularization

As previously discussed, semi-supervised methods can be viewed as imposing a form
of regularization over the entire dataset (both labeled and unlabeled examples) during
the optimization procedure while still achieving good loss over the labeled examples.
That is, the objective is to minimize a functional O:

¢* = argmin O] = argmin L[] + AQ[¢)], “)
» »



where L is the loss over the labeled examples and €2 regularizes v over all examples
with A controlling the influence of this term. While any regularization function could be
applied here, we examine the manifold regularization framework for semi-supervised
structured prediction as Altun et al.[1] demonstrated some benefit with this approach.

3.1 Manifold regularization

One method to incorporate unlabeled data into the learning process is with manifold
regularization from Belkin et al.[3]. Informally, the motivation behind this framework
is to regularize the model over the intrinsic distribution of the data. With the assump-
tions that the data is supported on a lower-dimensional manifold and that the labels
change smoothly, this regularization can then be enforced with the graph Laplacian.
The Laplacian is defined over all the labeled and unlabeled data to enforce smoothness
in how the labels change among neighboring examples in feature space. The Laplacian
can augment any loss function, e.g. hinge-loss (SVMs), enabling a flexible framework
for semi-supervised learning.

Altun et al.[1] give a structured version of this regularization term, which we refer
to as the Structured Graph Laplacian (SGL), that extends to structured loss functions
as with M3Ns:

Q['(/J] = Z Z Z Z Wc,c’(ycayé’)(¢c(yc) - ¢C’ (yé’))Qv (5)

yeY ceSy' ey c'es

where W is a similarity matrix such as We o (ye, vl ) = exp(525 || fe(ye) — for (yl)|?)
and S = Cp U Cy. The main drawback of the optimization procedure presented in
[1] is the requirement to invert a v X -y matrix, where - is the number of labeled and
unlabeled cliques times the number of configurations per clique. For example, v can
be greater than 1,000, 000 in the 7-label Geometric Context application. Instead, in
the remainder of this section we will present an alternate optimization procedure using
gradient-based methods. Because no matrix inverters or convex program solvers are
needed, this approach scales for models used in vision tasks with large datasets with
large feature dimensions and many labels. We first consider the gradient of the second
term, the SGL.

3.2 Regularizer functional gradient

In general, Equation 5 contains an exponential number of terms due to the number of
cliques and possible label configurations; however, this sum cannot be that expressive
in practice. Since it is NP-complete to perform inference with arbitrary potentials,
let alone learning them, we must consider simpler potential functions. Typically one
option is to consider potentials over small maximal clique sizes and/or graphs with no
cycles. Another recent option from Kohli er al.[10] allows for efficient approximate
inference over large cliques, though using less expressive potentials that follow the
Pott’s/associative model:

Pe(ye) = (6)

U(fe(a) >0 ,yi=a,Vyi €y, a €L
0 , otherwise.



That is, the potential can be non-zero only if all the labels in the clique are the same.
Networks with these potentials are called Associative Markov Networks (AMNSs). Be-
cause these type of potentials have demonstrated to be useful in many vision tasks
[10, 13, 2, 21], we focus on this case. An alternative way, to express the potential is
d)c(yc) = Zaeﬁ ga (yc)w(fc(a))’ where ga (yC) = Hiec I[yz = a]; this form will be
useful in Section 3.3.

Firstly, we can simplify the Equation 5 by noting that the vast majority of the label
configurations will have zero potential, and we can therefore go from enumerating
over all label configurations to enumerating over all labels ¢ € L in the training set.
Secondly, because the SGL is enforcing that neighboring cliques in feature space have
similar score, it is reasonable to ignore pairs where the cliques are assigned different
labels, i.e. not enforcing that the features that describe a tree should produce the same
score as the features that describe a building. Thirdly, it is also reasonable to ignore
terms where cliques have different number of nodes, such as ignoring comparisons of
node potentials with edge potentials. In the high-order case, a possible strategy would
be to compare only the same potentials from cliques/segments generated from the same
clustering method, such as segments from mean-shift that use the same bandwidth.
Finally, as the similarity function W decays as a function of distance, it is common
[3] to only consider a clique feature’s k-nearest neighbors, which can be efficiently
precomputed in practice, instead of considering a term between all points in feature
space.

Using these justifications, we can greatly simplify the form of the SGL as

=33 Y Wewla,a)(6e(a) — 6 (a)?, )

ceESacL 'EN; q

where N, , are the neighbors of f.(a). Because we will be using gradient-based meth-
ods, we can sequentially evaluate each term in the SGL in practice and do not have
to represent the entire term in matrix form. Specifically we use tools from [7, 22], to
compute the negative functional gradient —V ; of the SGL:

~ VA YD weadfe(a) @®)

ceS acl

where 0y (4 is the Direc-delta function centered at location f.(a) in function space,
and w, , is the SGL functional gradient residual for clique ¢ when labeled a:

Z ch (a,a)(¢e (a ) Pe(a)). ©)

c E./\/’C,a

As will be discussed shortly, we will fit a function at each feature location with response
equal to its functional gradient residual. Consider a term w,. , with one neighbor ¢’ and
the case when ¢.(a) > ¢ (a). This implies the residual is negative w., < 0 and
that we will update with a function that has negative response evaluated at f.(a). This
is a sensible update as we are decreasing ¢.(a) to have a value closer to ¢ (a), i.e.
we are making the function ¢/ smoother with respect to its neighbors in features space.
Similarly with the term w. , > 0, we will update with a function that increases at
evaluation ¢ (a).



3.3 Loss functional gradient

We can similarly take a negative functional subgradient (since the max operator is non-
differentiable) of the first term L[¢)] in Equation 4. As further discussed in Munoz et
al.[21],

— VLW = D> €alie)dsia) — LaW)d 1. (a); (10)
ceCr ael
where y* = argmax ®(y, x) + M (y, 3) results from the inference procedure; in our
yey
experiments we use graph-cuts [12, 4]. Consider the case when §. = a and ¥} =

b. This also results in a sensible update as we will update with a function that has
positive response when evaluating with the true labels f.(a) and negative response
when evaluating with the incorrectly inferred labels f.(b). We can also use Robust
Potts [1 1] potentials that are not as strict and allow partial inhomogeneous cliques with
positive score; we refer to [21] for a more in-depth discussion.

3.4 Putting it all together

We are now ready to compute the complete negative functional gradient of our original
objective:

= VO] = =V L[Y] = AV R[Y]. (1n

By collecting the residuals with respect to the labeled and unlabeled cliques ¢ € Cp,
¢ € Cy, respectively, from Equations 8 and 10 we have:

- VfO[T/)] = Z |: Z ac,a(sfc(a) + Z Bc’,a(sfc/(a):|a (12)

acl ceCp c'eCy

where o o and 3. , are the functional gradient residuals for the labeled and unlabeled
cliques, respectively:

Qcaq = Ea(gc)fga(y:)‘i’)\wc,aa (13)
ﬂc’,a = ch’,a- (14)

With these definitions, we can conclude the learning procedure by using functional
gradient boosting tools from [22, 7]. At each iteration ¢, we take a step 7, in the
direction of the negative functional gradient. Practically, we move by projecting this
functional gradient onto the space of candidate functions # by using the function h} €
‘H that best maximizes its inner product with the negative functional gradient:

hy = argmax(h,,—V;O[])
ht€H
= argimax Z a6,aht(fc(a)) + Z BC’,aht(fC’(a))'
he€t er acl
ceCp, ceCy

Simply, this expression suggests that we should update ¢ with a function that has
signed responses proportional to the residuals «, 3 at each feature location. Practi-
cally, this suggests to create a labeled training set with non-zero target values «, 0 to



train a regressor; in our experiments we use OpenCV'’s regression trees constrained in
the range [—1, 1]. Finally, to ensure the positivity constraints ¢ > 0 of our potentials,
we use exponentiated functional gradient descent [22]. Simply, this means that we
evaluate our potentials as ¥ (f.(a)) = exp(>_nthi(fe(a))). We refer to [22] for more
in-depth discussion. The entire training procedure is described in Algorithm 1.

Algorithm 1 Semi-supervised AMNs with manifold regularization

Inputs: Set of training labels: £, Labeled cliques: C'r,, Unlabeled cliques: Cy, Step
size: n;, Semi-supervised regularization: A, Number of iterations: 7’
Output: AMN model ¥
=1
fort=1...Tdo
y* = argmaxyey ®(z,y) + M(y,y)
Initialize training set D = ()
for a € L do
// Compute residuals over labeled cliques
for cc C, do
Compute residual «.. , (Equation 13)
if ac, #0 then
D« DU{(fc(a),aca)}
end if
end for
// Compute residuals over unlabeled cliques
for ¢ € Cy do
Compute residual . , (Equation 14)
if 5.4 #0 then
D« DU {(fc’ (a)v Bc/,a)}
end if
end for
end for
h; < trainSupervisedLearner(D)
Y < - exp(nihy)
end for
return

3.5 Experimental analysis
3.5.1 Toy examples

To validate the approach we used the popular 2-circles and 2-moons, as depicted
in Figure 3, synthetic datasets for semi-supervised learning. Here a small portion of
samples are labeled such that when passed to a supervised algorithm it would then usu-
ally result in a linear decision boundary that does not represent the true distribution of
each class. Since both examples follow the manifold assumption, we can use manifold
regularization to learn correct accurate models. In Figure 4, we illustrate the conver-



2-circles dataset 2-moons dataset

o§ § 55
» 1a. .o
i H ..‘?’. ’f... 3_ e

(a) (b)

Figure 3: Toy synthetic datasets: (a) 2-circles (b) 2-moons. Colored points
represent the two classes and black points are the unlabeled examples provided during
training.

gence of the learning procedures when using a random field with: a) only node po-
tentials, b) and with edge potentials from 2-nearest-neighbors, c¢) and with high-order
clique potentials defined over clusters from mean-shift segmentation. In the training
set, we also add an extra edge and high-order clique that contain mixed labels for con-
text. The features of all cliques are their respective centroids. All models eventually
converge to the ideal classifier, though we found the structured models naturally make
smoother progress due to the influence of the potentials.

3.5.2 Geometric context

We evaluated the approach on the the Geometric Context problem from Hoiem et al.[9].
In this problem, we determine whether a pixel belongs in one of three classes: Ground,
Vertical (object standing on the ground), Sky. In the following we explain how we cast
this as a random field problem. In [9], the authors first group pixels into superpixels
to use as the sites to classify. They then perform 15 different segmentations: by incre-
ments of 5 segments between 5 and 50, and then by increments of 10 segments until
100. Each segment is composed of a group of superpixels. For each superpixel and
segment, they extract 50 and 94 features, respectively, which capture location, shape,
color, texture, and perspective. We use these same features. In our random field, a
node variable represents each superpixel’s class label, and high-order cliques are de-
fined over the superpixels (nodes) contained within one segment. We consider two
sets of clique potentials: one shared across all the nodes and one shared across all the
high-order cliques. For the high-order cliques, we use the Robust Potts [ 1] potentials
with truncation parameter of 0.1|c|, i.e. we allow 10% of the nodes to disagree with
the clique’s mode label while still allowing positive potential.

The Geometric Context evaluation dataset consists 250 images. Five-fold evalu-
ation is performed by separating the dataset five times with 200 training images and
50 testing images. When validating parameters (tree-depth, step-size, number of itera-
tions, and manifold regularization parameter), we examined random subsets of the 200
training images from a particular fold.

In the following experiment we compare a supervised model trained with only 5
labeled images with a semi-supervised model trained with 5 labeled and 50 unlabeled
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Figure 4: Convergence analysis for toy data sets. From left to right: Rows 1 & 4: Con-
vergence with model trained using only node potentials, Rows 2 & 5: Convergence
with model trained using edge and node potentials, Rows 3 & 6: Convergence with
model trained with high-order, edge, and node potentials. The last column is the it-
eration when convergence is achieved for the slowest model; all other iterations were
chosen to contrast differences in progress and not when convergence is achieved.
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Figure 5: Analysis of Laplacian regularizer averaged over 10 random trials. Green line:
statistics from supervised model trained with 5 labeled images (constant). Red line:
statistics from semi-supervised model with manifold regularization trained 5 labeled
images and 50 unlabeled images. Seven different regularization parameters (\) are
varied (horizontal axis, log scale). Classification is done on one 25-image test set.

images (none were taken from the fold’s 50 testing images). For the semi-supervised
model, we used a conservative estimation to construct the Laplacian. We construct
the graph Laplacian over each clique’s 7 nearest neighbor and define 0 = 0.08 in the
distance function. Unfortunately, in our validation search we could not find a regu-
larization parameter A that consistently produced better classification performance in
any of the folds. We also observed that the best performance is achieved by setting
A — 0, i.e. essentially training a supervised model. For the sake evaluation purposes,
we picked a fold and trained model models where we varied the regularization A and
compared with the supervised model on the test split. Figure 5 presents this analysis
averaging over 10 trials where the labeled and unlabeled images are randomly selected;
the Macro F1-score is defined as the average of the three labels’ F1-scores. The perfor-
mance on the test split was consistent with the observation from validation: we obtain
no essentially no overall improvement by using unlabeled data.

10



4 Semi-supervision by gradient modeling

4.1 Motivation

One reason reason why the previous experiments may have shown no benefit with
using the unlabeled examples is that the datasets do not follow the manifold assump-
tion. Even though we “cheated” in our post-analysis to verify that our features across
labeled and “unlabeled” examples from the same classes were similar to each other,
this is not sufficient. Lafferty and Wasserman [15] analyzed this topic and show that a
model trained with the Laplacian regularizer in the absence of the manifold assumption
does not achieve lower risk than a model trained solely with the labeled examples. In
response to this, we explore an alternate method to employ semi-supervised learning.
The main idea behind this approach is to take better directions at each step of the boost-
ing procedure. Instead of regularizing over the unlabeled data, we remove this penalty
term and instead use the unlabeled data directly at each iteration to help interpret/model
the gradient. Figure 6 gives an comparison between the two approaches to help guide
our discussion.

Structured Loss + /1 Regularization Structured Loss
(L) © (£
v

I \ P 20 W h Y
1 1 1 1
1 Supervised Learner 1 1 | Supervised Learner + /{ Semi-supervised Learner | |
! (2) ! ! (2) () !
1 1

\ Projection ’ ! Projection ,I

Figure 6: Gradient-based approaches for semi-supervised learning: (a) Compute the
direction that also explicitly minimizes the penalty over the unlabeled data. (b) Using
the unlabeled data at each iteration to better estimate the gradient direction.

4.2 Approach

With the algorithm from the previous section (Figure 6a), we take a step in a direc-
tion that achieves smaller loss and smaller regularization penalty with respect to the
unlabeled data. This procedure explicitly tries to model the nature of the data with
the penalty term. Instead we propose to move in a direction that achieves smaller loss
while implicitly capturing the nature of the data (Figure 6b). Recall the supervised
loss (Equation 3). At each step of the boosting procedure we attempt to move in the
direction of the functional gradient via the projection procedure of fitting a function
according to the residuals centered at various feature locations. With limited number

11



of labeled examples, this gradient may be sparse and the function approximation may
not be able to truly capture the nature of the data. Therefore, at each step we try to
better interpret the gradient by using the unlabeled data to fit a better function. Figure
7 demonstrates this idea.

A

(@ (b)

Figure 7: Improving the projection step during functional gradient descent. The hori-
zontal line are the feature locations, the vertical lines are the functional gradient resid-
uals at those locations, filled circles are labeled examples, and empty circles are un-
labeled examples. (a) A function is fit to the dataset dictated by the loss’ functional
gradient (Equation 10) over the labeled examples. (b) We can better interpret the func-
tional gradient by using the unlabeled examples to fit a function that better models the
data distribution.

Therefore, instead of fitting a single function during the projection step, we suggest
using a combination of two h = ¢; + Ag,, where g; is trained over solely the loss
residuals and g, is trained over the loss residuals and all unlabeled data with A control-
ling its influence. Just as we could originally train any supervised learning algorithm,
we can similarly train any semi-supervised learning algorithm for g, and treat it as
another black-box. In Laffery and Wasserman’s analysis they show that a simple clus-
tering procedure using the labeled and unlabeled data for semi-supervised regression
achieves lower risk than an estimator that solely uses the labeled data. Given labeled
and unlabeled examples, they suggest to create a set of convex clusters over the entire
dataset. When given an example at test time, find its nearest cluster and output the
average response from the labeled examples contained within that cluster (note that
the labels are values since we are doing regression). That is, the unlabeled examples
are solely used for creating the clusters. Figure 8 demonstrates this idea. Inspired by
this suggestion, we use simple k-means as our clustering tool. Since defining the num-
ber of clusters in advance is unclear, we average multiple the responses from multiple
clusterings. The final procedure, similar to Algorithm 1, is described in Algorithm 2.

4.3 Experiments

We again analyize the Geometric Context dataset. Unlike with manifold regulariza-
tion, we observed much more stability when tuning A = 0.2 with different values over
different trials. That is, we did not observe rapid worsening performance when in-
creasing A as seen with manifold regularization. In the following experiment we ran
the fully 5-fold evaluation and compare a supervised model trained with only 5 labeled
images and a semi-supervised model trained with 5 labeled and 50 unlabeled images.
The semi-supervised classifier g, averaged responses from k-mean clusterings with

12
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Figure 8: Semi-supervised classification by clustering. (a) Training set consists of 2
labeled points (red, green circles) and many unlabeled points (empty circles). We wish
to classify the triangle. (b) Ignoring the labeled data, the supervised algorithm (g;)
results in classifying the test point green. (c) The semi-supervised clustering algorithm
(gu) clusters of all training points; the test point is closer to the cluster labeling it red.

Algorithm 2 Semi-supervised AMNs with gradient modeling
Inputs: Set of training labels: £, Labeled cliques: C'r,, Unlabeled cliques: Cy, Step
size: n;, Semi-supervised regularization: A, Number of iterations: 7’
Output: AMN model:
=1
fort=1...T do

y* = argmaxyey ®(z,y) + M(y,y)
Initialize training set D = ()
fora € L do
for c € C, do
Compute residual . = £ () — &a(y7)
if pcqo # 0 then
D+ DU{(fc(a),pe.a)}
end if
end for
end for
g1 < trainSupervisedLearner(D)
gu < trainSemiSupervisedLearner(D,Cy)
hi <= g1 + Agu
Y < 1 - exp(nihe)
end for
return

k ={6,9,12,15}. Figure 9 presents this analysis over 10 trials where the labeled and
unlabeled images are randomly selected. Unfortunately, we again do not see positive
benefit from incorporating unlabeled examples during the learning process. One reason
there may be no improvement is that the clustering classifier is a poor modeler of the
gradient. It remains future work to analyze other semi-supervised algorithms.
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Figure 9: Analysis of semi-supervised gradient estimation from 5-fold evaluation.
Green line: macro Fl-score from supervised model trained with 5 labeled images.
Red line: macro F1-score semi-supervised model with clustering procedure (see text)
trained 5 labeled images and 180 unlabeled images. Each fold randomly chooses the
training set 10 times.

5 Conclusion

In this paper we presented two functional gradient-based procedures for semi-supervised
structured prediction. Specifically, we first showed how manifold regularization for
structured models can be efficiently optimized instead of using convex program solvers.
The second method uses black-box semi-supervised algorithms to better model the
gradient. Both these approaches easily scale to handle large amounts of examples,
features, labels, and interactions that are necessary for visual analysis. Unfortunately,
we observed in our analysis of Geometric Context [9] that both semi-supervised ap-
proaches do not improve classification performance over solely supervised models.
Future work includes evaluating these techniques on other datasets where necessary
data assumptions may hold true and experimenting with different classifiers that im-
plement the functional gradient.
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