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Abstract

Deformable model fitting has been actively pursued in
the computer vision community for over a decade. As a re-
sult, numerous approaches have been proposed with vary-
ing degrees of success. A class of approaches that has
shown substantial promise is one that makes independent
predictions regarding locations of the model’s landmarks,
which are combined by enforcing a prior over their joint
motion. A common theme in innovations to this approach
is the replacement of the distribution of probable landmark
locations, obtained from each local detector, with simpler
parametric forms. This simplification substitutes the true
objective with a smoothed version of itself, reducing sensi-
tivity to local minima and outlying detections. In this work,
a principled optimization strategy is proposed where a non-
parametric representation of the landmark distributions is
maximized within a hierarchy of smoothed estimates. The
resulting update equations are reminiscent of mean-shift but
with a subspace constraint placed on the shape’s variabil-
ity. This approach is shown to outperform other existing
methods on the task of generic face fitting.

1. Introduction

Deformable model fitting is the problem of registering a
parametrized shape model to an image such that its land-
marks correspond to consistent locations on the object of
interest. It is a difficult problem as it involves an optimiza-
tion in high dimensions, where appearance can vary greatly
between instances of the object due to lighting conditions,
image noise, resolution and intrinsic sources of variability.
Many approaches have been proposed for this with varying
degrees of success. Of these, one of the most promising is
one that uses a patch-based representation and assumes im-
age observations made for each landmark are conditionally
independent [2, 3, 4, 5, 16]. This leads to better general-
ization with limited data compared to holistic representa-
tions [10, 11, 14, 15], since it needs only account for local
correlations between pixel values. However, it suffers from

detection ambiguities as a direct result of its local represen-
tation. As such, care should be taken in combining detec-
tion results from the various local detectors in order to steer
optimization towards the desired solution.

Our key contribution in this paper lies in the realization
that a number of popular optimization strategies are all, in
some way, simplifying the distribution of landmark loca-
tions obtained from each local detector using a parametric
representation. The motivation of this simplification is to
ensure that the approximate objective function: (i) exhibits
properties that make optimization efficient and numerically
stable, and (ii) still approximately preserve the true cer-
tainty/uncertainty associated with each local detector. The
question then remains: how should one simplify these local
distributions in order to satisfy (i) and (ii)? We address this
by using a nonparametric representation that leads to an op-
timization in the form of subspace constrained mean-shifts.

2. Background
2.1. Constrained Local Models

Most fitting methods employ a linear approximation to
how the shape of a non-rigid object deforms, coined the
point distribution model (PDM) [2]. It models non-rigid
shape variations linearly and composes it with a global rigid
transformation, placing the shape in the image frame:

x; = sR(X; + ®;q) + t, (D

where x; denotes the 2D-location of the PDM’s i land-
mark and p = {s,R,t,q} denotes the parameters of the
PDM, which consist of a global scaling s, a rotation R, a
translation t and a set of non-rigid parameters q.

In recent years, an approach to that utilizes an ensemble
of local detectors (see [2, 3, 4, 5, 16]) has attracted some
interest as it circumvents many of the drawbacks of holistic
approaches, such as modeling complexity and sensitivity to
lighting changes. In this work, we will refer to these meth-
ods collectively as constrained local models (CLM)!.

I'This term should not be confused with the work in [5] which is a
particular instance of CLM in our nomenclature.
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Figure 1. Illustration of CLM fitting and its two components: (i)
an exhaustive local search for feature locations to get the response
maps {p(l; = aligned|I, x)};_;, and (ii) an optimization strategy
to maximize the responses of the PDM constrained landmarks.

All instantiations of CLMs can be considered to be pur-
suing the same two goals: (i) perform an exhaustive local
search for each PDM landmark around their current esti-
mate using some kind of feature detector, and (ii) optimize
the PDM parameters such that the detection responses over
all of its landmarks are jointly maximized. Figure 1 illus-
trates the components of CLM fitting.

Exhaustive Local Search: In the first step of CLM fitting, a
likelihood map is generated for each landmark position by
applying local detectors to constrained regions around the
current estimate. A number of feature detectors have been
proposed for this purpose. One of the simplest, proposed
in [16], is the linear logistic regressor which gives the fol-
lowing response map for the i landmark?:

1
li = 1 d Iv = 7 2
( aligned | /,x) 1+ exp{a C;(I;x) + 3} ()

where /; is a discrete random variable denoting whether the
i" landmark is correctly aligned or not, I is the image, x is
a 2D location in the image, and C; is a linear classifier:
Ci(Lix)=w] [I(y1): .. ; I(ym) ] +bi; 3
with {y;}/", € Qx (i.e. an image patch). An advantage
of using this classifier is that the map can be computed us-
ing efficient convolution operations. Other feature detectors

have also been used to great effect, such as the Gaussian
likelihood [2] and the Haar-based boosted classifier [3].

Optimization: Once the response maps for each landmark
have been found, by assuming conditional independence,

2Not all CLM instances require a probabilistic output from the local
detectors. Some, for example [2, 5], only require a similarity measure or
a match score. However, these matching scores can be interpreted as the
result of applying a monotonic function to the generating probability. For
example, the Mahalanobis distance used in [2] is the negative log of the
Gaussian likelihood. In the interest of clarity and succinctness, discussions
in this work assume that responses are probabilities.

optimization proceeds by maximizing:

n

p({l; = aligned}]; | p) = Hp(ll- = aligned | x;) (4)

i=1

with respect to the PDM parameters p, where x; is param-
eterized as in Equation (1) and dependence on the image /
is dropped for succinctness. It should be noted that some
forms of CLMs pose Equation (4) as minimizing the sum-
mation of local energy responses (see §2.2).

The main difficulty in this optimization is how to avoid
local optima whilst affording an efficient evaluation. Treat-
ing Equation (4) as a generic optimization problem, one
may be tempted to utilize general purpose optimization
strategies here. However, as the responses are typically
noisy, these optimization strategies have a tendency to
be unstable. The simplex based method used in [4] has
been shown to perform reasonably for this task since it is
a gradient-free based generic optimizer, which renders it
somewhat insensitive to measurement noise. However, con-
vergence may be slow when using this method, especially
for a complex PDM with a large number of parameters.

2.2. Optimization Strategies

In this section, a review of current methods for CLM op-
timization is presented. These methods entail replacing the
true response maps, {p(l;|x)}"_;, with simpler paramet-
ric forms and performing optimization over these instead
of the original response maps. As these parametric density
estimates are a kind of smoothed version of the original re-
sponses, sensitivity to local minima is generally reduced.

Active Shape Models: The simplest optimization strategy
for CLM fitting is that used in the Active Shape Model
(ASM) [2]. The method entails first finding the location
within each response map for which the maximum was
attained: g = [p1;...; pn]. The objective of the opti-
mization procedure is then to minimize the weighted least
squares difference between the PDM and the coordinates of
the peak responses:

Q(p) =Y willx; — il )
=1

where the weights {w; }7_, reflect the confidence over peak
response coordinates and are typically set to some func-
tion of the responses at { g}, making it more resistant
towards such things as partial occlusion, where occluded
landmarks will be more weakly weighted.

Equation (5) is iteratively minimized by taking a first or-
der Taylor expansion of the PDM’s landmarks:

x; = x; + JiAp, (6)



and solving for the parameter update:

n -1 n
Ap = (z wiJ;ffJi) S 0 (- x). ()
=1

i=1

which is then applied additively to the current parameters:
p < p + Ap. Here, J = [Jy;...;J,] is the Jacobian and
X = [x‘f; oo ;xﬂ is the current shape estimate.

From the probabilistic perspective introduced in §2.1, the
ASM’s optimization procedure is equivalent to approximat-
ing the response maps with an isotropic Gaussian estimator:

p(lz = aligned | X) ~ N(X> iy 01'21)7 (8)

where w; = o, 2. With this approximation, taking the neg-
ative log of the likelihood in Equation (4) results in the ob-
jective in Equation (5).

Convex Quadratic Fitting: Although the approximation
described above is simple and efficient, in some cases it
may be a poor estimate of the true response map. Firstly, the
landmark detectors, such as the linear classifier described in
§2.1, are usually imperfect in the sense that the maximum of
the response may not always coincide with the correct land-
mark location. Secondly, as the features used in detection
consist of small image patches they often contain limited
structure, leading to detection ambiguities. The simplest
example of this is the aperture problem, where detection
confidence across the edge is better than along it (see exam-
ple response maps for the nose bridge and chin in Figure 2).

To account for these problems, a method coined con-
vex quadratic fitting (CQF) has been proposed recently [16].
The method fits a convex quadratic function to the negative
log of the response map. This is equivalent to approximat-
ing the response map with a full covariance Gaussian:

p(li = aligned | x) ~ N (x; i, ). ©)

The mean and covariance are maximum likelihood esti-
mates given the response map:

= Y ok (x—m)(x

xeW,c
i

Time= ) akx,
XE‘I’xg
(10)
where Wxe is a 2D-rectangular grid centered at the current
landmark estimate x{ (i.e. the search window), and:
i p(l; = aligned | x)

al = : . an
> yew, . p(li = aligned | y)

With this approximation, the objective can be written as the
minimization of:

Q(AP) = lIxf + JiAp — il (12)

=1

(Ii|x) ASM CQF GMM; KDEy KDE; KDE,

Figure 2. Response maps, p(l; = aligned|x), and their approxi-
mations used in various methods, for the outer left eye corner, the
nose bridge and chin. Red crosses on the response maps denote the
true landmark locations. The GMM approximation has five cluster
centers. The KDE approximations are shown for o2 € {20, 5,1}.

the solution of which is given by:

" -1
Ap = <Z JiTEi_lJz) ZJz‘TEi_l (1
=1

=1

i —x5). (13)

A Gaussian Mixture Model Estimate: Although the re-
sponse map approximation in CQF may overcome some
of the drawbacks of ASM, its process of estimation can be
poor in some cases. In particular, when the response map is
strongly multimodal, such an approximation smoothes over
the various modes (see the example response map for the
eye corner in Figure 2).

To account for this, in [8] a Gaussian mixture model
(GMM) was used to approximate the response maps:

K
Y N, Zar), (14)

k=1

p(l; = aligned | x)

where K denotes the number of modes and {m;; } 2 | are
the mixing coefficients for the GMM of the i PDM land-
mark. Treating the mode membership for each landmark,
{zi}1, as hidden variables, the maximum likelihood solu-
tion can be found using the expectation-maximization (EM)
algorithm, which maximizes:

n K

LY lp) = [[D_pilzi = k. lilxi).  (15)

i=1 k=1

The E-step of the EM algorithm involves computing the
posterior distribution over the latent variables {z; }1_;:

p(zi = k) p(li|zi = k, %)

Sz =) pllilz = 4. %)
(16)

plzi =k | li,x;) =

where p(z; = k) = m;, and:

p(li = aligned | Z; = k,xi) = N(Xi s ik, Eik)- (17)



In the M-step, the expectation of the negative log of the
complete data is minimized:

—log {Hp(li = aligned, z;|x;) }] ,

i=1 (18)
where ¢(z) = ], pi(z|l; = aligned,x;). Linearizing
the shape model as in Equation (6), this (Q-function takes
the form:

Q (p) = Eq(z)

n

K
Q(Ap) x Z ZwikHJiAp - yikHQE? + const, (19)
i=1 k=1

where w;;, = p;(z; = k|l; = aligned, x;) and y;;, = pir —
x¢, the solution of which is given by:

n K

n K -1
Ap = <ZZwikJ?2i;Ji> SN wadTs i

i=1 k=1 i=1 k=1

(20)

Although the GMM is a better approximation of the re-
sponse map compared to the Gaussian approximation in
CQF, it exhibits two major drawbacks. Firstly, the pro-
cess of estimating the GMM parameters from the response
maps is a nonlinear optimization in itself. It is only locally
convergent and requires the number of modes to be cho-
sen a-priori. As GMM fitting is required for each PDM
landmark, it constitutes a large computation overhead. Al-
though some approximations can be made, they are gener-
ally suboptimal. For example, in [8], the modes are chosen
as the K -largest responses in the map. The covariances are
parametrized isotropically, with their variance heuristically
set as the scaled distance to the closest mode in the previous
iteration of the CLM fitting algorithm. Such an approxima-
tion allows an efficient estimate of the GMM parameters
without the need for a costly EM procedure at the cost of a
poorer approximation of the true response map.

The second drawback of the GMM response map ap-
proximation is that the approximated objective in Equa-
tion (15) is multimodal. As such, CLM fitting with the
GMM simplification is prone to terminating in local optima.
Although good results were reported in [8], in that work the
PDM was parameterized using a mixture model as opposed
to the more typical Gaussian parameterization, which places
a stronger prior on the way the shape can vary.

3. Subspace Constrained Mean-Shifts

Rather than approximating the response maps for each
PDM landmark using parametric models, we consider here
the use of a nonparametric representation. In particular, we
propose the use of a homoscedastic kernel density estimate
(KDE) with an isotropic Gaussian kernel:

p(l; = aligned|x) ~ Z al, N(x;pi, 0’I), (21
pieW, c

where afh is the normalized true detector response defined
in Equation (11). With this representation the kernel centers
are fixed as defined through Wy (i.e. the grid nodes of the
search window). The mixing weights, O‘iw can be obtained
directly from the true response map. Since the response is
an estimate of the probability that a particular location in the
image is the aligned landmark location, such a choice for the
mixing coefficients is reasonable. Compared to parametric
representations, KDE has the advantage that no nonlinear
optimization is required to learn the parameters of its repre-
sentation. The only remaining free parameter is the variance
of the Gaussian kernel, 02, which regulates the smoothness
of the approximation. Since one of the main problems with
a GMM based representation is the computational complex-
ity and suboptimal nature of fitting a mixture model to the
response maps, if o2 is set a-priori, then optimizing over
the KDE can be expected to be more stable and efficient.

Maximizing the objective in Equation (4) with a KDE
representations is nontrivial as the objective is nonlinear
and typically multimodal. However, in the case where no
shape prior is placed on the way the PDM’s landmarks can
vary, the problem reverts to independent maximizations of
the KDE for each landmark location separately. This is be-
cause the landmark detections are assumed to be indepen-
dent, conditioned on the PDM’s parameterization. A com-
mon approach for maximization over a KDE is to use the
well known mean-shift algorithm [1]. It consists of fixed
point iterations of the form:

i (r).,, -2
NaRPEY R ORI
mi€¥xe ZyE\I’x¢ ozg, N (Xz('T);YvUQI)

i,

(22)
where 7 denotes the time-step in the iterative process. This
fixed point iteration scheme finds a mode of the KDE, where
an improvement is guaranteed at each step by virtue of its
interpretation as a lower bound maximization [6]. Com-
pared to other optimization strategies, mean-shift is an at-
tractive choice as it does not use a step size parameter or a
line search. Equation (22) is simply applied iteratively until
some convergence criterion is met.

To incorporate the shape model constraint into the opti-
mization procedure, one might consider a two step strategy:
(i) compute the mean-shift update for each landmark, and
(i1) constrain the mean-shifted landmarks to adhere to the
PDM’s parameterization using a least-squares fit:

Qp) = Zn: Hx - xET“)H2 . (23)
=1

This is reminiscent of the ASM optimization strategy, where
the location of the response map’s peak is replaced with the
mean-shifted estimate. Although such a strategy is attrac-
tive in its simplicity, it is unclear how it relates to the global



Algorithm 1 Subspace Constrained Mean-Shifts
Require: [ and p.
1: while not_converged(p) do
2:  Compute responses {Eqn. (2)}
. Linearize shape model {Eqn. (6)}

3

4:  Precompute pseudo-inverse of Jacobian (JT)

5. Initialize parameter updates: Ap « 0

6:  while not_converged(Ap) do

7 Compute mean-shifted landmarks {Eqn. (22)}
8 Apply subspace constraint {Eqn. (24)}

9:  end while

10:  Update parameters: p < p + Ap

11: end while

12: return p

objective in Equation (4).

Given the form of the KDE representation in Equa-
tion (21), one can treat it simply as a GMM. As such, the
discussions in §2.2 on GMMs are directly applicable here,
replacing the number of candidates K with the number of
grid nodes in the search window Wxe, the mixture weights
75 With ai%, and the covariances XJ;; with the scaled iden-
tity 02I. When using the linearized shape model in Equa-
tion (6) and maximizing the global objective in Equation (4)
using the EM algorithm, the solution for the so called Q-
function of the M-step takes the form:

Ap =J7 [xgﬂ_l) —x7; .. x%ﬂrl) -x5|, (24)

where JT denotes the pseudo-inverse of J, and xl(-TH) is

the mean shifted update for the i landmark given in Equa-
tion (22). This is simply the Gauss Newton update for the
least squares PDM constraint in Equation (23). As such, un-
der a linearized shape model, the two step strategy for max-
imizing the objective in Equation (4) with a KDE represen-
tation shares the properties of a general EM optimization,
namely: provably improving and convergent. The complete
fitting procedure, which we will refer to as subspace con-
strained mean-shifts (SCMS), is outlined in Algorithm 1. In
the following, two further innovations are proposed, which
address difficulties regarding local optima and the compu-
tational expense of kernel evaluations.

Kernel Width Relaxation: The response map approxi-
mations discussed in §2.2 can be though of as a form of
smoothing. This explains the relative performance of the
various methods. The Gaussian approximations smooth the
most but approximate the true response map the poorest,
whereas smoothing effected by the GMM is not as aggres-
sive but exhibits of a degree of sensitivity towards local op-
tima. One might consider using the Gaussian and GMM
approximations in tandem, where the Gaussian approxima-
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Figure 3. Illustration of a the use of a precomputed grid for effi-
cient mean-shift. Kernel evaluations are precomputed between c
and all other nodes in the grid. To approximate the true kernel
evaluation, x; is assumed to coincide with ¢ and the likelihood of
any response map grid location can be attained by a table lookup.

tion is used to get within the convergence basin of the GMM
approximation. However, such an approach is inelegant and
affords no guarantee that the mode of the Gaussian approx-
imation lies within the convergence basin of the GMM’s.

With the KDE approximation in SCMS a more elegant
approach can be devised, whereby the complexity of the
response map estimate is directly controlled by the variance
of the Gaussian kernel (see Figure 2). The guiding principle
here is similar to that of optimizing on a Gaussian pyramid.
It can be shown that when using Gaussian kernels, there
exists a 02 < oo such that the KDE is unimodal, regardless
of the distribution of samples [13]. As o2 is reduced, modes
divide and smoothness of the objective’s terrain decreases.
However, it is likely that the optimum of the objective at
a larger o2 is closest to the desired mode of the objective
with a smaller o2, promoting its convergence to the correct
mode. As such, the policy under which o2 is reduced acts to
guide optimization towards the global optimum of the true
objective.

Drawing parallels with existing methods, as 02 — oo
the SCMS update approaches the solution of a homoscedas-
tic Gaussian approximated objective function. As o2 is re-
duced, the KDE approximation resembles a GMM approx-
imation, where the approximation for smaller o2 settings is
similar to a GMM approximation with more modes.

Precomputed Grid: In the KDE representation of the re-
sponse maps, the kernel centers are placed at the grid nodes
defined by the search window. From the perspective of
GMM fitting, these kernels represent candidates for the true
landmark locations. Although no optimization is required
for determining the number of modes, their centers and
mixing coefficients, the number of candidates used here is
much larger than what would typically be used in a general
GMM estimate (i.e. GMM based representations typically
use K < 10, whereas the search window size typically has
> 100 nodes). As such, the computation of the posterior
in Equation (16) will be more costly. However, if the vari-
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Figure 4. Fitting Curves for the ASM, CQF, GMM and KDE optimization strategies on the MultiPie and XM2VTS databases.

ance o2 is known a-priori, then some approximations can
be made to significantly reduce computational complexity.

The main overhead when computing the mean-shift up-
date is in evaluating the Gaussian kernel between the current
landmark estimate and every grid node in the response map.
Since the grid locations are fixed and o2 is assumed to be
known, one might choose to precompute the kernel for var-
ious settings of x;. In particular, a simple choice would be
to precompute these values along a grid sampled at or above
the resolution of the response map grid Wx.. During fitting
one simply finds the location in this grid closest to the cur-
rent estimate of a PDM landmark and estimate the kernel
evaluations by assuming the landmark is actually placed at
that node (see Figure 3). This only involves a table lookup
and can be performed efficiently. The higher the granularity
of the grid the better the approximation will be, at the cost
of greater storage requirements but without a significant in-
crease in computational complexity.

Although such an approximation ruins the strictly im-
proving properties of EM, we empirically show in §4 that
accurate fitting can still be achieved with this approxima-
tion. In our implementation, we found that such an approx-
imation reduced the average fitting time by one half.

4. Experiments

Database Specific Experiments: We compared the various
CLM optimizations strategies discussed above on the prob-
lem of generic frontal face fitting on two databases: (i) the
CMU Pose, Illumination and Expression Database (Multi-
Pie) [7], and (ii) the XM2VTS database [12]. The Mul-
tiPie database is annotated with a 68-point markup used
as ground truth landmarks. We used 762 frontal face im-
ages of 339 subjects. The XM2VTS database consists of

2360 frontal face images of 295 subjects for which ground
truth annotations are publicly available but different from
the 68-point markup we have for MultiPie. XM2VTS con-
tains neutral expression only whereas MultiPie contains sig-
nificant expression variations. A 4-fold cross validation
was performed on both MultiPie and XM2VTS, separately,
where the images were partitioned into three sets of non-
overlapping subject identities. In each trial, three partitions
were used for training and the remainder for testing.

On these databases we compared four types of optimiza-
tion strategies: (i) ASM [2], (ii) CQF [16], (iii)) GMM [8],
and (iv) the KDE method proposed in §3. For GMM, we
empirically set X = 5 and used the EM algorithm to es-
timate the parameters of the mixture model. For KDE, we
used a variance relaxation policy of 02 = {20, 10,5, 1} and
a grid spacing of 0.1-pixels in its efficient approximation. In
all cases the linear logistic regressor described in §2.1 was
used. The local experts were (11 x 11)-pixels in size and
the exhaustive local search was performed overa (15 x 15)-
pixel window. As such, the only difference between the var-
ious methods compared here is their optimization strategy.
In all cases, the scale and location of the model was initial-
ized by an off-the-shelf face detector, the rotation and non-
rigid parameters in Equation (1) set to zero (i.e. the mean
shape), and the model fit until the optimization converged.

Results of these experiments can be found in Figure 4,
where the graphs (fitting curves) show the proportion of im-
ages at which various levels of maximum perturbation was
exhibited, measured as the root-mean-squared (RMS) er-
ror between the ground truth landmarks and the resulting
fit. The average fitting times for the various methods on a
2.5GHz Intel Core 2 Duo processor are shown in the legend.

The results show a consistent trend in the relative per-
formance of the four methods. Firstly, CQF has the capac-



ASM ——

GMM ——
.15 CQF —
g KDE —
83
)
E 10
. "
s N ¥
%} 5 i i u,|~ | \ A

W Wﬂ“ (i W il "P'WW W ‘W '“MM \WI‘ | ’W ik II“W ' MJ‘ :"'""m 'm v\« }“r’\‘\yﬂ wh" i ,M;“J‘ i w ‘) m‘ﬁ"%" """
iy
0 1 1 1 1
0 1000 2000 3000 4000 5000

Frame

Figure 5. Top row: Tracking results on the FGNet Talking Face database for frames {0, 1230, 4200}. Clockwise from top left are fitting
results for ASM, CQF, KDE and GMM. Bottom: Plot of shape RMS error from ground truth annotations throughout the sequence.

ity to significantly outperform ASM. As discussed in §2.2
this is due to CQF’s ability to account for directional un-
certainty in the response maps as well as being more ro-
bust towards outlying responses. However, CQF has a ten-
dency to over-smooth the response maps, leading to limited
convergence accuracy. GMM shows an improvement in ac-
curacy over CQF as shown by the larger number of sam-
ples that converged to smaller shape RMS errors. However,
it has the tendency to terminate in local optima due to its
multimodal objective. This can be seen by its poorer per-
formance than CQF for reconstructions errors above 4.2-
pixels RMS in MultiPie and 5-pixels RMS in XM2VTS.
In contrast, KDE is capable of attaining even better accu-
racies than GMM but still retains a degree of robustness
towards local optima, where its performance over grossly
misplaced initializations is comparable to CQF. Finally, de-
spite the significant improvement in performance, KDE ex-
hibits only a modest increase in computational complexity
compared to ASM and CQF. This is in contrast to GMM
that requires much longer fitting times, mainly due to the
complexity of fitting a mixture model to the response maps.

Out-of-Database Experiments: Testing the performance
of fitting algorithms on images outside of a particular
database is more meaningful as it gives a better indication
on how well the method generalizes. However, this is rarely

conducted as it requires the tedious process of annotating
new images with the PDM configuration of the training set.
Here, we utilize the freely available FGNet talking face se-
quence’. Quantitative analysis on this sequence is possible
since ground truth annotations are available in the same for-
mat as that in XM2VTS. We initialize the model using a
face detector in the first frame and fit consecutive frames us-
ing the PDM’s configuration in the previous frame as an ini-
tial estimate. The same model used in the database-specific
experiments was used here, except that it was trained on
all images in XM2VTS. In Figure 5, the shape RMS error
for each frame is plotted for the four optimization strate-
gies being compared. The relative performance of the var-
ious strategies is similar to that in the database-specific ex-
periments, with KDE yielding the best performance. ASM
and GMM are particularly unstable on this sequence, with
GMM loosing track at around frame 4200, and fails to re-
cover until the end of the sequence.

Finally, we performed a qualitative analysis of KDE’s
performance on the Faces in the Wild database [9]. It con-
tains images taken under varying lighting, resolution, im-
age noise and partial occlusion. As before, the model was
initialized using a face detector and fit using the XM2VTS

3http://www-prima.inrialpes.fr/FGnet/data/
0l-TalkingFace/talking_face.html
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Figure 6. Example fitting results on the Faces in the Wi

ild database using a model
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trained using the XM2VTS database. Top row: Male

subjects. Middle row: female subjects. Bottom row: partially occluded faces.

trained model. Some fitting results are shown in Figure 6.
Results suggest that KDE exhibits a degree of robustness
towards variations typically encountered in real images.

5. Conclusion

The optimization strategy for deformable model fitting
was investigated in this work. Various existing methods
were posed within a consistent probabilistic framework
where they were shown to make different parametric ap-
proximations to the true likelihood maps of landmark loca-
tions. A new approximation was then proposed that uses
a nonparametric representation. Two further innovations
were proposed in order to reduce computational complexity
and avoid local optima. The proposed method was shown to
outperform three other optimization strategies on the task of
generic face fitting. Future work will involve investigations
into the effects of different local detectors types and shape
priors on the optimization strategies.
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