
Geometric Reasoning for Single Image Structure Recovery

David C. Lee
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
dclee@cs.cmu.edu

Martial Hebert Takeo Kanade
Robotics Institute

Carnegie Mellon University

Abstract

We study the problem of generating plausible interpreta-
tions of a scene from a collection of line segments automat-
ically extracted from a single indoor image. We show that
we can recognize the three dimensional structure of the inte-
rior of a building, even in the presence of occluding objects.
Several physically valid structure hypotheses are proposed
by geometric reasoning and verified to find the best fitting
model to line segments, which is then converted to a full
3D model. Our experiments demonstrate that our structure
recovery from line segments is comparable with methods us-
ing full image appearance. Our approach shows how a set
of rules describing geometric constraints between groups
of segments can be used to prune scene interpretation hy-
potheses and to generate the most plausible interpretation.

1. Introduction
It is easy for us to recognize the structure in Figure 1, as

well as locate a few doors. However, automatic recognition
of structure from a collection of line segments is challeng-
ing, as not all lines defining the building structure are per-
fectly detected by low level image processing. To further
complicate the problem, extra edges may lie on surfaces
of walls or even on objects that are not part of the target
structure (Figure 2). We can still interpret the collection of
line segments because 1) we perform geometric reasoning
and only consider physically plausible interpretations, 2) we
have the ability to look globally at the overall structure, and
3) we have prior knowledge on how the world, in our case
the interior of a building, is structured.

As images are projections of the real world, it is desir-
able to interpret them only in ways which can be realized in
the real world. Geometric inference, when jointly done with
semantic labeling, may be more demanding, but it may sig-
nificantly reduce the problem space and make the problem,
in fact, easier.

In this paper, we tackle the problem of interpreting col-
lection of line segments to recognize the structure of build-

Figure 1. Line segments. Can you recognize the building struc-
ture? Can you find doors?

Figure 2. Levels of completeness of line drawings. Left: Com-
plete. Middle: Missing. Not all structure edges in the real world
are present in the image. Right: Missing and Spurious. Not all
lines in the image are structure edges or even part of the target
structure.

ings. We search for building models that translate to physi-
cally plausible three dimensional building models. We per-
form geometric reasoning to generate many physically valid
structure hypotheses from line segments. Each hypothesis
is tested to find the one that best matches the collection of
line segments. We have also done preliminary experiments
to detect objects, using the recovered structure as a “scene
frame”, which provides geometric context to objects in the
scene.

2. Prior Work
Line drawings have been studied from the early days of

computer vision. Guzman [8] was the first to interpret line
drawings to separate collection of polyhedral objects into
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parts. Huffman [12] and Clowes [1] came up with a formal
scheme of labeling lines into convex, concave, and occlud-
ing for polyhedral objects, with which 3D description of
objects can be recovered and impossible objects can be re-
jected. Mackworth [17] introduced the concept of gradient
space and surface based constraints. Waltz [24] expanded
the problem by allowing line drawings to include shadows,
cracks, and missing edges (Figure 2). Kanade [13] dealt
with “origami world”, which includes hollow shells and pla-
nar sheets, and utilized heuristics, such as parallel lines in
image are parallel in space. Sugihara [23] provided an alge-
braic optimization approach for interpreting line drawings.
However, these approaches were limited to synthetic line
drawings and were not applied to real images.

Kosecka’s group have a number of papers on images of
the Manhattan world by using information from line seg-
ments. Kosecka and Wei [14] developed a method to re-
cover vanishing points and camera parameters from a sin-
gle image by using line segments found in Manhattan struc-
tures. Using the recovered vanishing points, rectangular
surfaces aligned with major orientations were detected by
Wei and Kosecka [15] and more recently by Micusik et
al. [18]. Han and Zhu [9] have also worked on finding rect-
angles aligned with vanishing points from line segments.
They used top-down grammars, which helped finding rect-
angles forming regular patterns, such as grid or box pat-
terns. However, these approaches operate directly in 2D im-
age space (except when multiple images were used) and do
not attempt to extract three dimensional information from a
single image.

A number of papers address the problem of recovering
three dimensional structure from a single image. Three di-
mensional information can be extracted from a single image
when there is a reference in the image [3]. A commonly
used reference is the ground plane. Hoiem et al. [10] and
Delage et al. [6] take a two-step approach for recovering 3D
structure of outdoor images and indoor images respectively:
1) estimate image region orientation (e.g., ground, vertical)
using statistical methods on image properties, such as color,
texture, edge orientation, position in image, etc. 2) “pop-
up” vertical regions by “folding” along the crease between
ground and vertical regions. Saxena et al. have taken a dif-
ferent approach by estimating absolute depth directly from
image properties [21], and smoothly connecting regions un-
der weak assumptions, such as connectivity or coplanarity,
without the explicit assumption of a ground plane [22].

An interesting observation was made by Nedovic et
al. [19] that a typical scene can be categorized into a limited
number of categories of 3D scene geometry, which they call
“stages”. Categories of stages include sky+ground, box,
corner, and person+background, and the stage information
can potentially serve as a guide for a more complete depth
estimation or a more detailed scene understanding.

Figure 3. Examples of building models under Indoor World model.
All building models are built by connecting three basic types of
corners. Top left: concave(-) corner. Top middle: convex(+) cor-
ner. Top right: occluding(>) corner. Bottom row: combinations
of corners.

3. Indoor World Model
Most indoor environments satisfy the Manhattan World

assumption [2], i.e., most planes lie in one of three mutu-
ally orthogonal orientations. In addition, indoor environ-
ments usually have a single floor plane and a single ceiling
plane with constant ceiling height. Combining the “Man-
hattan World” and “single-floor single-ceiling” models, we
propose the “Indoor World” model as an useful approxima-
tion for indoor scenes.

This world model applies to most indoor environments
and has a number of desirable properties. First of all, it is
easy to represent a physically valid model of a scene in two
dimensional image space, which can be effortlessly trans-
lated into a three dimensional model. By geometric reason-
ing on the configuration of edges, we can represent a scene
structure in two dimensions that encodes a physically valid
three dimensional structure. Examples of such representa-
tion of scenes are depicted in 3.

Another desirable property is the symmetry that it intro-
duces between the shape of the ceiling and the floor. Build-
ing models under this assumption have symmetric floor and
ceiling shape. Evidence to infer building structure from
a single image mostly comes from the position of bound-
aries between planes, but floor-wall boundaries are often
occluded by objects such as desks, chairs, and bookcases,
as shown in Figure 14. Even in those cases, ceiling-wall
boundaries are rarely occluded, so observing ceiling-wall
boundaries and assuming symmetry between them allows
us to infer the location of floor-wall boundaries.

4. Geometric Reasoning
As the world is made up of solid objects, projections of

the world onto an image obey a set of rules. In particular,
projections of buildings under the Indoor World assumption
are geometrically constrained by a small set of rules defined



on connection of walls, which we define as corners. An in-
door scene can be fully represented by corners, so geomet-
ric constraits on corners will guarantee the entire structure
to be valid.

There are three types of corners: convex(+), concave(-
), and occluding(>). A convex(+) or concave(-) corner is
formed when two walls meet at one place in 3D space and
an occluding(>) corner is formed when one wall is in front
of another wall but appears to be adjacent in the image. The
type and position of a corner is constrained depending on
where the corner is in the image.

The simplest constraint on a corner is that it should con-
sist of two junctions, one above the horizon and one below
the horizon. This rule holds because the camera itself is
between the floor and the ceiling. Regions divided by ver-
tical vanishing lines also create constraints. In each of the
three regions divided by two vertical vanishing lines, only
a total of four types of corners can exist, as illustrated in
Figure 4. These rules are derived from facts about the phys-
ical world and geometry, such as, the camera must be in an
empty quadrant of a wall in order for it to be able to observe
the corner, and walls should have non-zero thickness.

These constraints are simple to adhere to, even at an early
stage of inference when no consideration about the 3D co-
ordinates are made. Also, they can be applied only to local
and primitive corner structures, even when no consideration
about the global structure of the scene has been made. Yet,
performing geometric reasoning according to these con-
straints will guarantee that our entire building model en-
codes a valid model, which can be easily converted to a
valid 3D model without ambiguity.

5. Finding Building Structure
Finding the building structure is done in three steps; line

segments and vanishing points are found, many plausible
building model hypotheses are created, and each hypothe-
sis is tested against an orientation map, which is a map of
local belief of region orientations, to find the best match-
ing hypothesis. Each step will be explained in detail in the
following sections.

5.1. Line Segment Detection and Vanishing Point
Estimation

We extract line segments using the Matlab toolbox by
Kovesi [16], which runs Canny edge detector, links edge
pixels, and fits line segments. We then recover vanishing
points from these line segments.

From the three vanishing points, we can recover the ori-
entation of the three axes of the building in the camera co-
ordinate by formulas in Appendix. This allows us to recon-
struct an accurate 3D model, even when none of the camera
axes are aligned with world coordinates.

Figure 4. Regions divided by vanishing lines and restrictions on
types of corners. Top: Line drawing, vanishing points, and van-
ishing lines. Bottom: Types of possible corners in each of the three
regions. Enclosed in small boxes are depictions of corners as they
would appear in the image, and next to it are the top-down view
of each corners. In each of the three regions, four types of corners
can exist: one convex(+), one concave(-), and two occluding(>)
corners.

We loosely follow Rother [20] to find three orthogonal
vanishing points. Two pairs of lines are randomly sampled
in RANSAC fashion and the intersection of each pair of
lines generates a candidate vanishing point. Orthogonal-
ity of the two vanishing points is verified using formulas in
Appendix and the third vanishing point is computed to be
orthogonal to the two vanishing ponts. Then the three candi-
dates are evaluated using the cost function proposed in [20].
Finally, the x, y coordinates of the best RANSAC solution
are fine tuned using non-linear optimization (Matlab fmin-
search) with the same cost function. To ensure orthogonal-
ity under optimization, vanishing points are translated into a
rotation matrix, which can then be parameterized with three
unbounded parameters using Rodrigues’ formula [7]. The
highly non-convex nature of the cost function is not a big is-
sue, as the RANSAC solution was already close to the true
solution.

For uncalibrated images with no available camera intrin-
sic parameters, three pairs of lines are sampled to create
a proposal, and orthogonality is loosely enforced by con-
straining three vanishing points to be apart from each other.
Once three vanishing points are found in image space, the
focal length of the camera can be recovered by finding a
focal length that makes the angles exactly 90 degrees.

In practice, this method returned vanishing points within
a few pixels of the true vanishing points for all 102 test im-
ages when camera parameters were available, and 40 out of
44 images when camera parameters were not available. It
failed when there were no lines in one of the three direction,
or when many lines were not in the principal directions.



Figure 5. Solid lines are the minimal set of lines needed to de-
fine a corner. Three lines are needed for convex(+) and concave(-)
corners. Four lines are needed for occluding(>) corners.

5.2. Generating Building Hypotheses

For this and the following section, we define “orientation
of a line segment” to be the orientation of the line in the
world, which can be estimated by the vanishing point that
lies on the extension of the line segment in the image. Sim-
ilarly, “parallel” line segments means parallel in the world.
“Orientation of a surface’ is defined as the normal orienta-
tion of the surface in the world and “pixel orientation” as
the orientation of the surface projected to the pixel.

Building models can be generated by connecting line
segments to create corners, and connecting corners to create
building models. A corner consists of five lines, but not all
five lines need to be present to define a corner. Concave(-)
and convex(+) corners need three lines, and occluding(>)
corners need four lines to be defined (Figure 5). A new cor-
ner is proposed when a minimal set of lines defines a corner,
while obeying the constraints on corners described in Sec-
tion 4.

The process of generating hypotheses is illustrated in
Figure 6. We start by creating building hypotheses with
zero corners, i.e., scenes with just one wall. Two paral-
lel line segments, one above the horizon and one below the
horizon, are extended until the image boundaries to define
the floor-wall and ceiling-wall boundary of a wall. Next, we
search for line segments that can be extended to “attach” to
existing walls to propose a new corner. Note that an ex-
isting wall already defines two lines, so only one additional
line need to be added to propose a concave(-) or a convex(+)
corner, and two for an occluding(>) corner. By repeatedly
attaching more corners to an existing structure, we can cre-
ate a scene with many corners. This process is described in
Algorithm 1.

5.3. Evaluating Building Hypotheses

We test all building hypotheses to find the best fitting
hypothesis to a given collection of line segments. This is
done by evaluating the fitness of hypotheses to an orienta-
tion map (Figure 7), which is a map that expresses the local
belief of region orientations computed from line segments.
The fitness of a hypothesis to an orientation map is defined
as the total number of pixels which the orientation agrees
between that encoded by the hypothesis and that given by
the orientation map. The hypothesis with the largest fitness
is chosen as the best fitting hypothesis.

Two line segments having different orientation support-

Figure 6. Generating hypotheses. Left: The process of a hypoth-
esis being generated by four line segments. Right: A sample of
generated building hypotheses.

Algorithm 1 Generating building hypotheses
Set H0 ← ∅, where H0 is the set of hypotheses with zero
corners.
for all pair of line segments (li, lj) do

if li above horizon ∧ lj below horizon ∧ li and lj have
overlap then

Add scene with no corner (li, lj) to H0

end if
end for
for k = 1 to n, where n is maximum number of corners
in scene do

Set Hk ← ∅, where Hk is the set of hypotheses with k
corners.
for all h ∈ Hk−1 do

Find sets of lines that create corners that attaches to
h and satisfies geometric constraints.
H ′ ← Set of all scenes with a new corner attached
to h
Hk ← Hk ∪H ′

end for
end for
return H ← H0 ∪H1 ∪ · · · ∪Hn

ing a pixel is a strong indication of the pixel orientation to
be perpendicular to the orientation of the two lines. For ex-
ample, we, as human, believe pixel (1) in Figure 7(a) is on
a horizontal surface because a green line above it and a blue
line to the right supports pixel (1) to be perpendicular to the
orientation of both lines. Pixel (2) seems to be on a vertical
surface because green lines above and below and red lines
to the left support it. Notice that, although there is a blue
line below pixel (2), its support is blocked by the green line
between the blue line and the pixel. The support of a line
extends until it hits a line which has the same orientation as
the normal orientation of the surface it is supporting. This
is because a line can not be on a plane that is perpendicular
to it. This logic usually produces accurate orientation map,
except around occluding boundaries.



More formally, let Lx = {lx,1, lx,2, · · · , lx,nx} be the
set of line segments of orientation x, where x ∈ {1, 2, 3}
denotes the one of the three orientations. A “sweep”
S (lx,i, vy, α) of a line lx,i towards vanishing point vy by
amount α is the set of pixels that is supported by line lx,i

to be orientation z (Figure 8). x, y, and z take values in
{1, 2, 3} and all three should be different (x 6= y, x 6= z,
and y 6= z).

Given a line segment lx,i with end points p1 and p2,
S (l, vy, α) is the convex hull created by p1, p2, p′1, and p′2,
where p′1 and p′2 is given by

p′1 = p1 + α (vy − p1) ,

p′2 = intersection (line (vx, p
′
1) , line (vy, p2)) ,

where line (·, ·) denotes a line passing through two
points and intersection (·, ·) denotes the point of intersec-
tion of two lines.

The sweep extends until the sweep region contains a line
that “blocks” the sweep. The amount of sweep α̂x,i and
−β̂x,i, towards and away from its sweep direction is:

α̂x,i = max (α) , β̂x,i = max (β) ,

such that α ≥ 0, β ≥ 0, and no lines in Lz intersect
S(lx,i, vy, α) and S(lx,i, vy,−β).

The set of pixels that is supported by all lines inLx swept
towards vy to be orientation z is:

Px,y,z =
⋃

lx,i∈Lx

S(lx,i, vy, α̂x,i) ∪ S(lx,i, vy, β̂x,i).

A pixel is believed to have orientation z when two lines
of different orientation x and y support the pixel, and only
when it is exclusively supported to be z. The final orienta-
tion map Oz for orientation z is given by:

Rz = Px,y,z ∩ Py,x,z

Oz = Rz ∩Rc
x ∩Rc

y.

Figure 7(b) shows O1, O2, and O3 colored in red, green,
and blue.

5.4. Converting Building Models to 3D

Two dimensional building model hypotheses always en-
code valid 3D models, so computing 3D coordinates can be
done easily without ambiguity. 3D coordinates can be com-
puted sequentially for floor, then walls using the constraint
that floor and walls are connected, and finally the ceiling,
using formulas in Appendix. However, small errors can ac-
cumulate during this sequential process, and we follow De-
lage et al. [5] to globally minimize the distances between
connected planes using linear programming. Recovered 3D
models are visualized in Figure 9.

(1)

(2)

(a) (b)

Figure 7. Line segments and Orientation map. (a) Line segments,
vanishing points, and vanishing lines. (b) Orientation map. Lines
segments and regions are colored according to their orientation.
(Best viewed in color)
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Figure 8. The shaded area denotes the sweep S (l, vy, α) of line
l towards vanishing point vy by amount α, and it potentially sup-
ports the region to be orthogonal to vx and vy .

Figure 9. 3D models

6. Experiments

We have collected 54 images of indoor scenes. We have
also included objects in the image that obstruct the view of
the scene frame. We have manually labeled the ground truth
orientation for every pixel, ignoring the occluding objects.
The percentage of pixels that have the correct orientation
for each image is reported in Figure 10. On average, 81%
of the pixels were classified correctly. 76% of the images
had less than 30% misclassified pixels, and 44% had less
than 10% misclassified pixels. Qualitatively, around 70%
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Figure 10. Percentage of pixels with correct orientation.

of the images returned acceptable 3D models. Notice that
even when objects occlude the floor-wall boundary, the un-
derlying building structure could be recovered (Figure 14).
In these cases, the unobstructed view of the ceiling-wall
boundary have helped finding the underlying building struc-
ture. Typical failure cases are: hallways being cut off early
when there are no lines supporting down the hallway, miss-
ing corners, or misaligned boundaries (Figure 15).

We have compared our results with other works on re-
covering indoor structure from a single image. We had com-
parable results as Delage et al. [6], with their experimental
setup and dataset, which had 48 images of indoor campus
scenes. RMS error between the estimated and ground truth
floor boundary was measured in pixel space, and is plot-
ted as a function of the position of the true floor boundary
(Figure 11). Comparing with Hoiem et al. [11], using their
classifier trained for indoor images, we have a higher per-
centage of correctly classified pixel orientation on 20 out of
48 images, and a mean percentage of 80% versus 87%. In
both cases, our results are comparable, while relying only
on line segments and not on image properties such as colors
and image gradients, which can be scene specific.

We have also tested on the 44 images downloaded from
the web, also collected by Delage et al. Qualitatively,
around 20 of them returned acceptable 3D models. Fail-
ures were due to many objects that cluttered the scene, and
scenes that do not match our building model. Sample results
are shown in Figure 16.

7. Populating the Scene Frame with Objects
Now that we have the scene structure, we would like to

use it as a “frame” that defines the scene, and populate it
with objects in the scene. Recovering the “scene frame” is
a stepping stone toward a more complete scene understand-
ing, as it provides a global geometric context of the scene.
Our ultimate goal is to recognize all the objects in a scene.
Most objects of interest fall into one of the two categories:
objects that lie on the floor, and objects that are attached to
a wall. Objects that lie on the floor interacts with the scene
frame by being supported at the point it contacts the floor

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Height of ground truth (pixels)

R
M

S
 e

rr
or

 in
 lo

ca
lis

at
io

n 
(p

ix
el

s)

 

 
Our result
Delage et.al.

Figure 11. Comparison of floor boundary error

Figure 12. Examples of doors and people in a scene frame.

of the frame, which determines its 3D location. These ob-
jects need to be in an empty space of the frame, and not
inside walls. Locations of objects attached to walls are also
constrained by the scene frame. We have done preliminary
experiments on one object for each category, namely people
and doors. Doors were found by finding rectangles gener-
ated by line segments which have the correct size and are
attached to walls. People were found by running a publi-
cally available detector by Dalal and Triggs [4] and pruning
out ones with incorrect size, and ones inside walls. Two
examples are shown in Figure 12. Eventually, we would
like to tie structure recovery and object recognition into a
unified framework for a complete scene interpretation.

8. Conclusion

We have proposed a framework to interpret collection of
line segments to recover three dimensional building struc-
ture. We have shown that, by geometric reasoning, and by
using the prior knowledge of indoor environments, we can
recover the structure of a building, using only line segments.
An interesting future problem would be to use our recovered
structure as a “scene frame” to recognize more components
in the scene and step towards the grand goal of complete
scene interpretation.
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Appendix: Formulas for 2D to 3D conversion
All units of metrics are in camera height, i.e., the dis-

tance between the floor and the camera measured perpen-
dicular to the floor equals 1, since absolute distances can
not be measured from images. Lower case: 2D homoge-
neous coordinates. Upper case: 3D coordinates. Vanishing
points with subscript 1 (v1, V1) indicates the vertical van-
ishing point. K: camera intrinsic parameter matrix

• Ray
P = λK−1p, λ > 0

• Normal direction of the three major axes given coordi-
nates of three vanishing points (xk, yk) in image.

vk = (xk, yk, 1)T ⇔ Vk =
K−1vk

‖K−1vk‖ 2

• 3D coordinate of a point on the floor. Note that the
height is normalized to 1.

P =
K−1p

V T
1 K

−1p

• Height h between two points p1 and p2, with p1 being
a point on the floor. p1, p2, and v1 should roughly be
in line when applying this formula, as we assume P1

and P2 are vertically aligned in 3D.

P2 = λK−1p2

= P1 + hV1

=
K−1p1

V T
1 K

−1p1
+ hV1

[
−V1 K−1p2

] [ h
λ

]
=

K−1p1

V T
1 K

−1p1

Solving least-squares gives h.



Figure 13. Examples (Best viewed in color)

Figure 14. Examples with occluding objects. Unobstructed view of the ceiling-wall boundary helps finding the underlying building struc-
ture. (Best viewed in color)

Figure 15. Failure examples. (Best viewed in color)

Figure 16. Examples of images downloaded from the web. Top row: Success. Bottom row: Failure. (Best viewed in color)


