
Zero-Shot Learning with Semantic Output Codes

Mark Palatucci
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

mpalatuc@cs.cmu.edu

Dean Pomerleau
Intel Labs

Pittsburgh, PA 15213
dean.a.pomerleau@intel.com

Geoffrey Hinton
Computer Science Department

University of Toronto
Toronto, Ontario M5S 3G4, Canada
hinton@cs.toronto.edu

Tom M. Mitchell
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

tom.mitchell@cs.cmu.edu

Abstract

We consider the problem of zero-shot learning, where the goal is to learn a clas-
sifier f : X → Y that must predict novel values of Y that were omitted from
the training set. To achieve this, we define the notion of a semantic output code
classifier (SOC) which utilizes a knowledge base of semantic properties of Y to
extrapolate to novel classes. We provide a formalism for this type of classifier
and study its theoretical properties in a PAC framework, showing conditions un-
der which the classifier can accurately predict novel classes. As a case study, we
build a SOC classifier for a neural decoding task and show that it can often predict
words that people are thinking about from functional magnetic resonance images
(fMRI) of their neural activity, even without training examples for those words.

1 Introduction

Machine learning algorithms have been successfully applied to learning classifiers in many domains
such as computer vision, fraud detection, and brain image analysis. Typically, classifiers are trained
to approximate a target function f : X → Y , given a set of labeled training data that includes all
possible values for Y , and sometimes additional unlabeled training data.

Little research has been performed on zero-shot learning, where the possible values for the class
variable Y include values that have been omitted from the training examples. This is an important
problem setting, especially in domains where Y can take on many values, and the cost of obtaining
labeled examples for all values is high. One obvious example is computer vision, where there are
tens of thousands of objects which we might want a computer to recognize.

Another example is in neural activity decoding, where the goal is to determine the word or object
a person is thinking about by observing an image of that person’s neural activity. It is intractable
to collect neural training images for every possible word in English, so to build a practical neural
decoder we must have a way to extrapolate to recognizing words beyond those in the training set.

This problem is similar to the challenges of automatic speech recognition, where it is desirable to
recognize words without explicitly including them during classifier training. To achieve vocabulary
independence, speech recognition systems typically employ a phoneme-based recognition strategy
(Waibel, 1989). Phonemes are the component parts which can be combined to construct the words
of a language. Speech recognition systems succeed by leveraging a relatively small set of phoneme

1



recognizers in conjunction with a large knowledge base representing words as combinations of
phonemes.

To apply a similar approach to neural activity decoding, we must discover how to infer the compo-
nent parts of a word’s meaning from neural activity. While there is no clear consensus as to how the
brain encodes semantic information (Plaut, 2002), there are several proposed representations that
might serve as a knowledge base of neural activity, thus enabling a neural decoder to recognize a
large set of possible words, even when those words are omitted from a training set.

The general question this paper asks is:

Given a semantic encoding of a large set of concept classes, can we build a classifier to
recognize classes that were omitted from the training set?

We provide a formal framework for addressing this question and a concrete example for the task
of neural activity decoding. We show it is possible to build a classifier that can recognize words a
person is thinking about, even without training examples for those particular words.

1.1 Related Work

The problem of zero-shot learning has received little attention in the machine learning community.
Some work by Larochelle et al. (2008) on zero-data learning has shown the ability to predict novel
classes of digits that were omitted from a training set. In computer vision, techniques for sharing
features across object classes have been investigated (Torralba & Murphy, 2007; Bart & Ullman,
2005) but relatively little work has focused on recognizing entirely novel classes, with the exception
of Lampert et al. (2009) predicting visual properties of new objects and Farhadi et al. (2009) using
visual property predictions for object recognition.

In the neural imaging community, Kay et al. (2008) has shown the ability to decode (from visual
cortex activity) which novel visual scenes a person is viewing from a large set of possible images,
but without recognizing the image content per se.

The work most similar to our own is Mitchell (2008). They use semantic features derived from
corpus statistics to generate a neural activity pattern for any noun in English. In our work, by
contrast, we focus on word decoding, where given a novel neural image, we wish to predict the
word from a large set of possible words. We also consider semantic features that are derived from
human labeling in addition to corpus statistics. Further, we introduce a formalism for a zero-shot
learner and provide theoretical guarantees on its ability to recognize novel classes omitted from a
training set.

2 Classification with Semantic Knowledge

In this section we formalize the notion of a zero-shot learner that uses semantic knowledge to extrap-
olate to novel classes. While a zero-shot learner could take many forms, we present one such model
that utilizes an intermediate set of features derived from a semantic knowledge base. Intuitively,
our goal is to treat each class not as simply an atomic label, but instead represent it using a vector
of semantic features characterizing a large number of possible classes. Our models will learn the
relationship between input data and the semantic features. They will use this learned relationship in
a two step prediction procedure to recover the class label for novel input data. Given new input data,
the models will predict a set of semantic features corresponding to that input, and then find the class
in the knowledge base that best matches that set of predicted features. Significantly, this procedure
will even work for input data from a novel class if that class is included in the semantic knowledge
base (i.e. even if no input space representation is available for the class, but a feature encoding of it
exists in the semantic knowledge base).

2.1 Formalism

Definition 1. Semantic Feature Space
A semantic feature space of p dimensions is a metric space in which each of the p dimensions
encodes the value of a semantic property. These properties may be categorical in nature or may
contain real-valued data.

2



As an example, consider a semantic space for describing high-level properties of animals. In this
example, we’ll consider a small space with only p = 5 dimensions. Each dimension encodes a
binary feature: is it furry? does it have a tail? can it breathe underwater? is it carnivorous? is it
slow moving? In this semantic feature space, the prototypical concept of dog might be represented
as the point {1, 1, 0, 1, 0}.

Definition 2. Semantic Knowledge Base
A semantic knowledge base K of M examples is a collection of pairs {f, y}1:M such that f ∈ F p
is a point in a p dimensional semantic space F p and y ∈ Y is a class label from a set Y . We assume
a one-to-one encoding between class labels and points in the semantic feature space.

A knowledge base of animals would contain the semantic encoding and label for many animals.

Definition 3. Semantic Output Code Classifier
A semantic output code classifier H : Xd → Y maps points from some d dimensional raw-input
space Xd to a label from a set Y such that H is the composition of two other functions, S and L,
such that:

H = L(S(·))
S : Xd → F p

L : F p → Y

This model of a zero-shot classifier first maps from a d dimensional raw-input space Xd into a
semantic space of p dimensions F p, and then maps this semantic encoding to a class label. For
example, we may imagine some raw-input features from a digital image of a dog first mapped into
the semantic encoding of a dog described earlier, which is then mapped to the class label dog. As
a result, our class labels can be thought of as a semantic output code, similar in spirit to the error-
correcting output codes of Dietterich and Bakiri (1995).

As part of its training input, this classifier is given a set of N examples D that consists of pairs
{x, y}1:N such that x ∈ Xd and y ∈ Y . The classifier is also given a knowledge base K of M
examples that is a collection of pairs {f, y}1:M such that f ∈ F p and y ∈ Y . Typically, M >> N ,
meaning that data in semantic space is available for many more class labels than in the raw-input
space. Thus,

A semantic output code classifier can be useful when the knowledge base K covers more of the
possible values for Y than are covered by the input data D.

To learn the mapping S, the classifier first builds a new set of N examples {x, f}1:N by replacing
each y with the respective semantic encoding f according to its knowledge base K.

The intuition behind using this two-stage process is that the classifier may be able to learn the
relationship between the raw-input space and the individual dimensions of the semantic feature
space from a relatively small number of training examples in the input space. When a new example
is presented, the classifier will make a prediction about its semantic encoding using the learned S
map. Even when a new example belongs to a class that did not appear in the training set D, if the
prediction produced by the S map is close to the true encoding of that class, then the L map will
have a reasonable chance of recovering the correct label. As a concrete example, if the model can
predict the object has fur and a tail, it would have a good chance of recovering the class label dog,
even without having seen images of dogs during training. In short:

By using a rich semantic encoding of the classes, the classifier may be able to extrapolate and
recognize novel classes.

3 Theoretical Analysis

In this section we consider theoretical properties of a semantic output code classifier that determine
its ability to recognize instances of novel classes. In other words, we will address the question:

Under what conditions will the semantic output code classifier recognize examples from classes
omitted from its training set?

3



In answering this question, our goal is to obtain a PAC-style bound: we want to know how much
error can be tolerated in the prediction of the semantic properties while still recovering the novel
class with high probability. We will then use this error bound to obtain a bound on the number of
examples necessary to achieve that level of error in the first stage of the classifier. The idea is that
if the first stage S(·) of the classifier can predict the semantic properties well, then the second stage
L(·) will have a good chance of recovering the correct label for instances from novel classes.

As a first step towards a general theory of zero-shot learning, we will consider one instantiation
of a semantic output code classifier. We will assume that semantic features are binary labels, the
first stage S(·) is a collection of PAC-learnable linear classifiers (one classifier per feature), and the
second stage L(·) is a 1-nearest neighbor classifier using the Hamming distance metric. By making
these assumptions, we can leverage existing PAC theory for linear classifiers as well as theory for
approximate nearest neighbor search. Much of our nearest-neighbor analysis parallels the work of
Ciaccia and Patella (2000).

We first want to bound the amount of error we can tolerate given a prediction of semantic features.
To find this bound, we define F to be the distribution in semantic feature space of points from the
knowledge base K. Clearly points (classes) in semantic space may not be equidistant from each
other. A point might be far from others, which would allow more room for error in the prediction of
semantic features for this point, while maintaining the ability to recover its unique identity (label).
Conversely, a point close to others in semantic space will have lower tolerance of error. In short, the
tolerance for error is relative to a particular point in relation to other points in semantic space.

We next define a prediction q to be the output of the S(·) map applied to some raw-input example
x ∈ Xd. Let d(q, q′) be the distance between the prediction q and some other point q′ representing
a class in the semantic space. We define the relative distribution Rq for a point q as the probability
that the distance from q to q′ is less than some distance z:

Rq(z) = P (d(q, q′) ≤ z)

This empirical distribution depends on F and is just the fraction of sampled points from F that are
less than some distance z away from q. Using this distribution, we can also define a distribution on
the distance to the nearest neighbor of q, defined as ηq:

Gq(z) = P (ηq ≤ z)

which is given in Ciaccia (2000) as:

Gq(z) = 1− (1−Rq(z))n

where n is the number of actual points drawn from the distribution F . Now suppose that we define
τq to be the distance a prediction q for raw-input example x is from the true semantic encoding of
the class to which x belongs. Intuitively, the class we infer for input x is going to be the point closest
to prediction q, so we want a small probability γ that the distance τq to the true class is larger than
the distance between q and its nearest neighbor, since that would mean there is a spurious neighbor
closer to q in semantic space than the point representing q’s true class:

P (τq ≥ ηq) ≤ γ

Rearranging we can put this in terms of the distribution Gq and then can solve for τq:

P (ηq ≤ τq) ≤ γ

Gq(τq) ≤ γ

If Gq(·) were invertible, we could immediately recover the value τq for a desired γ. For some
distributions, Gq(·) may not be a 1-to-1 function, so there may not be an inverse. But Gq(·) will
never decrease since it is a cumulative distribution function. We will therefore define a functionG−1

q

such that: G−1
q (γ) = argmaxτq

[
Gq(τq) ≤ γ

]
.

So using nearest neighbor for L(·), if τq ≤ G−1
q (γ), then we will recover the correct class with

at least 1 − γ probability. To ensure that we achieve this error bound, we need to make sure the
total error of S(·) is less than G−1

q (γ) which we define as τmaxq . We assume in this analysis
that we have p binary semantic features and a Hamming distance metric, so τmaxq defines the total

4



number of mistakes we can make predicting the binary features. Note with our assumptions, each
semantic feature is PAC-learnable using a linear classifier from a d dimensional raw input space. To
simplify the analysis, we will treat each of the p semantic features as independently learned. By the
PAC assumption, the true error (i.e. probability of the classifier making a mistake) of each of the p
learned hypotheses is ε, then the expected number of mistakes over the p semantic features will be
τmaxq if we set ε = τmaxq /p. Further, the probability of making at most τmaxq mistakes is given by
the binomial distribution: BinoCDF(τmaxq ; p, τmaxq /p)

We can obtain the desired error rate for each hypothesis by utilizing the standard PAC bound for
VC-dimension1 (Mitchell, 1997). To obtain a hypothesis with (1− δ) probability that has true error
at most ε = τmaxq /p = G−1(γ)/p, then the classifier requires a number of examples Mq,δ:

Mq,δ ≥ p

τmaxq

[
4log(2/δ) + 8(d+ 1)log(13p/τmaxq )

]
(1)

If each of the p classifiers (feature predictors) is learned with this many examples, then with prob-
ability (1 − δ)p, all feature predictors will achieve the desired error rate. But note that this is only
the probability of achieving p hypotheses with the desired true error rate. The binomial CDF yields
the probability of making at most τmaxq mistakes total, and the (1 − γ) term above specifies the
probability of recovering the true class if a maximum of this many mistakes were made. Therefore,
there are three probabilistic events required for the semantic output code classifier to predict a novel
class and the total (joint) probability of these events is:

P (there are p feature predictors with true error ≤ τmaxq /p) ·
P (at most τmaxq mistakes made | there are p feature predictors with true error ≤ τmaxq /p ) ·
P (recovering true class | at most τmaxq mistakes made)

and since τmaxq = G−1
q (γ), the total probability is given by:

(1− δ)p · BinoCDF(G−1
q (γ); p,G−1

q (γ)/p) · (1− γ) (2)

In summary, given desired error parameters (1−γ) and (1−δ) for the two classifier stages, Equation
2 provides the total probability of correctly predicting a novel class. Given the value for γ we can
compute the ε necessary for each feature predictor. We are guaranteed to obtain the total probability
if the feature predictors were trained with Mq,δ raw-input examples as specified in Equation 1.

To our knowledge, Equations 1 and 2 specify the first formal guarantee that provides conditions
under which a classifier can predict novel classes.

4 Case Study: Neural Decoding of Novel Thoughts

In this section we empirically evaluate a semantic output code classifier on a neural decoding task.
The objective is to decode novel words a person is thinking about from fMRI images of the person’s
neural activity, without including example fMRI images of those words during training.

4.1 Datasets

We utilized the same fMRI dataset from Mitchell (2008). This dataset contains the neural activity
observed from nine human participants while viewing 60 different concrete words (5 examples from
12 different categories). Some examples include animals: bear, dog, cat, cow, horse
and vehicles: truck, car, train, airplane, bicycle. Each participant was shown a
word and a small line drawing of the concrete object the word represents. The participants were
asked to think about the properties of these objects for several seconds while images of their brain
activity were recorded.

Each image measures the neural activity at roughly 20,000 locations (i.e. voxels) in the brain. Six
fMRI scans were taken for each word. We used the same time-averaging described in Mitchell
(2008) to create a single average brain activity pattern for each of the 60 words, for each participant.

1The VC dimension of linear classifiers in d dimensions is d + 1

5



In the language of the semantic output code classifier, this dataset represents the collection D of
raw-input space examples.

We also collected two semantic knowledge bases for these 60 words. In the first semantic knowl-
edge base, corpus5000, each word is represented as a co-occurrence vector with the 5000 most
frequent words from the Google Trillion-Word-Corpus2.

The second semantic knowledge base, human218, was created using the Mechanical Turk human
computation service from Amazon.com. There were 218 semantic features collected for the 60
words, and the questions were selected to reflect psychological conjectures about neural activity
encoding. For example, the questions related to size, shape, surface properties, and typical usage.
Example questions include is it manmade? and can you hold it?. Users of the Mechanical Turk
service answered these questions for each word on a scale of 1 to 5 (definitely not to definitely yes).

4.2 Model

In our experiments, we use multiple output linear regression to learn the S(·) map of the semantic
output code classifier. Let X ∈ <N∗d be a training set of fMRI examples where each row is the
image for a particular word and d is the number of dimensions of the fMRI image. During training,
we use the voxel-stability-criterion that does not use the class labels described in Mitchell (2008) to
reduce d from about 20,000 voxels to 500. Let Y ∈ <N∗p be a matrix of semantic features for those
words (obtained from the knowledge base K) where p is the number of semantic features for that
word (e.g. 218 for the human218 knowledge base). We learn a matrix of weights Ŵ ∈ <d∗p. In
this model, each output is treated independently, so we can solve all of them quickly in one matrix
operation (even with thousands of semantic features):

Ŵ = (XTX + λI)−1XTY (3)

where I is the identity matrix and λ is a regularization parameter chosen automatically using the
cross-validation scoring function (Hastie et al., 2001)3. Given a novel fMRI image x, we can obtain
a prediction f̂ of the semantic features for this image by multiplying the image by the weights:
f̂ = x · Ŵ
For the second stage of the semantic output code classifier, L(·), we simply use a 1-nearest neighbor
classifier. In other words, L(̂f) will take the prediction of features and return the closest point in a
given knowledge base according the Euclidean distance (L2) metric.

4.3 Experiments

Using the model and datasets described above, we now pose and answer three important questions.

1. Can we build a classifier to discriminate between two classes, where neither class appeared in
the training set?

To answer this question, we performed a leave-two-out-cross-validation. Specifically, we trained the
model in Equation 3 to learn the mapping between 58 fMRI images and the semantic features for
their respective words. For the first held out image, we applied the learned weight matrix to obtain
a prediction of the semantic features, and then we used a 1-nearest neighbor classifier to compare
the vector of predictions to the true semantic encodings of the two held-out words. The label was
chosen by selecting the word with the encoding closest to the prediction for the fMRI image. We
then performed the same test using the second held-out image. Thus, for each iteration of the cross-
validation, two separate comparisons were made. This process was repeated for all

(
60
2

)
= 1, 770

possible leave-two-out combinations leading to 3,540 total comparisons.

Table 1 shows the results for two different semantic feature encodings. We see that the human218
semantic features significantly outperformed the corpus5000 features, with mean accuracies over
the nine participants of 80.9% and 69.7% respectively. But for both feature sets, we see that it is
possible to discriminate between two novel classes for each of the nine participants.

2Vectors are normalized to unit length and do not include 100 stop words like a, the, is
3We compute the cross-validation score for each task and choose the parameter that minimizes the average

loss across all output tasks.

6



Table 1: Percent accuracies for leave-two-out-cross-validation for 9 fMRI participants (labeled P1-
P9). The values represent classifier percentage accuracy over 3,540 trials when discriminating be-
tween two fMRI images, both of which were omitted from the training set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean
corpus5000 79.6 67.0 69.5 56.2 77.7 65.5 71.2 72.9 67.9 69.7
human218 90.3 82.9 86.6 71.9 89.5 75.3 78.0 77.7 76.2 80.9

Bear & Dog Prediction Match

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

Is it an

animal?

Is it man-

made?

Do you see

it daily?

Is it

helpful?

Can you

hold it?

Would you

find it in a

house?

Do you

love it?

Does it

stand on

two legs?

Is it wild? Does it

provide

protection?

A
n

s
w

e
r

Bear Predicted

Bear Target

Dog Target

Dog Predicted

Figure 1: Ten semantic features from the human218 knowledge base for the words bear and dog.
The true encoding is shown along with the predicted encoding when fMRI images for bear and dog
were left out of the training set.

2. How is the classifier able to discriminate between closely related novel classes?

Figure 1 shows ten semantic questions (features) from the human218 dataset. The graph shows the
true values along with the predicted feature values for both bear and dog when trained on the other
58 words. We see the model is able to learn to predict many of the key features that bears and dogs
have in common such as is it an animal? as well as those that differentiate between the two, such as
do you see it daily? and can you hold it? For both of these novel words, the features predicted from
the neural data were closest to the true word.

3. Can we decode the word from a large set of possible words?

Given the success of the semantic output code classifier at discriminating between the brain images
for two novel words, we now consider the much harder problem of discriminating a novel word from
a large set of candidate words. To test this ability, we performed a leave-one-out-cross-validation,
where we trained using Equation 3 on images and semantic features for 59 words. We then pre-
dicted the features for the held-out image of the 60th word, and then performed a 1-nearest neighbor
classification in a large set of candidate words.

We tested two different word sets. The first was mri60 which is the collection of all 60 concrete
nouns for which we collected fMRI data, including the 59 training words and the single held out
word. The second set was noun940, a collection of 940 English nouns with high familiarity,
concreteness and imagineability, compiled from Wilson (1988) and Snodgrass (1980). For this set
of words, we added the true held-out word to the set of 940 on each cross-validation iteration. We
performed this experiment using both the corpus5000 and human218 feature sets. The rank
accuracy results (over 60 cross-validation iterations) of the four experiments are shown in Figure 2.

The human218 features again significantly outperform corpus5000 on both mean and median
rank accuracy measures, and both feature sets perform well above chance. On 12 of 540 total
presentations of the mri60 words (60 presentations for each of nine participants), the human218
features predicted the single held-out word above all 59 other words in its training set. While just
a bit above chance level (9/540), the fact that the model ever chooses the held-out word over all
the training words is noteworthy since the model is undoubtedly biased towards predicting feature
values similar to the words on which it was trained. On the noun940 words, the model predicted
the correct word from the set of 941 alternatives a total of 26 times for the human218 features and
22 times for the corpus5000 features. For some subjects, the model correctly picked the right

7



Rank Accuracy

human218 corpus5000 human218corpus5000
40%

50%

60%

70%

80%

90%

100%

A
c
c
u

ra
c
y

Mean Rank

Median Rank

50% Chance

mri60 Word Set noun940 Word Set

Figure 2: The mean and median rank accuracies across nine participants for two different semantic
feature sets. Both the original 60 fMRI words and a set of 940 nouns were considered.

Table 2: The top five predicted words for a novel fMRI image taken for the word in bold (all fMRI
images taken from participant P1). The number in the parentheses contains the rank of the correct
word selected from 941 concrete nouns in English.

Bear Foot Screwdriver Train Truck Celery House Pants
(1) (1) (1) (1) (2) (5) (6) (21)
bear foot screwdriver train jeep beet supermarket clothing
fox feet pin jet truck artichoke hotel vest
wolf ankle nail jail minivan grape theater t-shirt
yak knee wrench factory bus cabbage school clothes
gorilla face dagger bus sedan celery factory panties

word from the set of 941 more than 10% of the time. The chance accuracy of predicting a word
correctly is only 0.1%, meaning we would expect less than one correct prediction across all 540
presentations.

As Figure 2 shows, the median rank accuracies are often significantly higher than the mean rank
accuracies. Using the human218 features on the noun940 words, the median rank accuracy is
above 90% for each participant while the mean is typically about 10% lower. This is due to the fact
that several words are consistently predicted poorly. The prediction of words in the categories ani-
mals, body parts, foods, tools, and vehicles typically perform well, while the words in the categories
furniture, man-made items, and insects often perform poorly.

Even when the correct word is not the closest match, the words that best match the predicted features
are often very similar to the held-out word. Table 2 shows the top five predicted words for eight
different held-out fMRI images for participant P1 (i.e. the 5 closest words in the set of 941 to the
predicted vector of semantic features).

5 Conclusion
We presented a formalism for a zero-shot learning algorithm known as the semantic output code
classifier. This classifier can predict novel classes that were omitted from a training set by leveraging
a semantic knowledge base that encodes features common to both the novel classes and the training
set. We also proved the first formal guarantee that shows conditions under which this classifier will
predict novel classes.

We demonstrated this semantic output code classifier on the task of neural decoding using semantic
knowledge bases derived from both human labeling and corpus statistics. We showed this classifier
can predict the word a person is thinking about from a recorded fMRI image of that person’s neural
activity with accuracy much higher than chance, even when training examples for that particular
word were omitted from the training set and the classifier was forced to pick the word from among
nearly 1,000 alternatives.

We have shown that training images of brain activity are not required for every word we would like
a classifier to recognize. These results significantly advance the state-of-the-art in neural decoding
and are a promising step towards a large vocabulary brain-computer interface.

8



References

Bart, E., & Ullman, S. (2005). Cross-generalization: learning novel classes from a single example
by feature replacement. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, 1, 672–679 vol. 1.

Ciaccia, P., & Patella, M. (2000). PAC nearest neighbor queries: Approximate and controlled search
in high-dimensional and metric spaces. Data Engineering, International Conference on, 244.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research.

Farhadi, A., Endres, I., Hoiem, D., & Forsyth, D. (2009). Describing objects by their attributes. Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR).

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning. Springer.
Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from

human brain activity. Nature, 452, 352–355.
Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes

by between-class attribute transfer. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR).

Larochelle, H., Erhan, D., & Bengio, Y. (2008). Zero-data learning of new tasks. AAAI Conference
on Artificial Intelligence.

Mitchell, T., et al. (2008). Predicting human brain activity associated with the meanings of nouns.
Science, 320, 1191–1195.

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S.

(2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.
Plaut, D. C. (2002). Graded modality-specific specialization in semantics: A computational account

of optic aphasia. Cognitive Neuropsychology, 19, 603–639.
Snodgrass, J., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agree-

ment, image agreement, familiarity and visual complexity. Journal of Experimental Psychology:
Human Learning and Memory, 174–215.

Torralba, A., & Murphy, K. P. (2007). Sharing visual features for multiclass and multiview object
detection. IEEE Trans. Pattern Anal. Mach. Intell., 29, 854–869.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov), 2579–2605.

Waibel, A. (1989). Modular construction of time-delay neural networks for speech recognition.
Neural Computation, 1, 39–46.

Wilson, M. (1988). The MRC psycholinguistic database: Machine readable dictionary, version 2.
Behavioral Research Methods, 6–11.

9


