
Parallel algorithms to a parallel hardware:

Designing vision algorithms for a GPU

Jun-Sik Kim, Myung Hwangbo and Takeo Kanade

Robotics Institute

Carnegie Mellon University

{kimjs,myung,tk}@cs.cmu.edu

Abstract

A GPU becomes an affordable solution for accelerat-

ing a slow process on a commercial system. The most of

achievements using it for non-rendering problems are the

exact re-implementation of existing algorithms designed for

a serial CPU. We study about conditions of a good paral-

lel algorithm, and show that it is possible to design an al-

gorithm targeted to a parallel hardware, though it may be

useless on a CPU.

The optical flow estimation problem is investigated to

show the possibility. In some time-critical applications, it

is more important to get results in a limited time than to

improve the results. We focus on designing optical flow ap-

proximation algorithms tailored for a GPU to get a reason-

able result as fast as possible by reformulating the problem

as change detection with hypothesis generation using fea-

tures tracked in advance. Two parallel algorithms are pro-

posed: direct interpolation and testing multiple hypothe-

ses. We discuss implementation issues in the CUDA frame-

work. Both methods are running on a GPU in a near video

rate providing reasonable results for the time-critical ap-

plications. These GPU-tailored algorithms become useful

by running about 240 times faster than the equivalent serial

implementations which are too slow to be useful in practice.

1. Introduction

Along with the last fifty years’ development of a com-

puter, computer algorithms have been developed enor-

mously. Computers have become faster by increasing clock

speed, using bigger and faster memory, and predicting up-

coming instructions. Moreover, more cores are put on a

single chip to increase the computing capability of a central

processing unit (CPU). Based on this progress, recent algo-

rithms can handle more data in a shorter time than before.

However, it is still not easy to use the multiple cores on a

CPU efficiently, because the most of the algorithms are se-

rial. More importantly, the computation speed is still one

of the important issues in spite of the development of both

hardware and software.

One noteworthy idea for accelerating processes is to use

different hardware architecture. People have paid attention

to the parallel architecture of a graphical processing unit

(GPU), which has many simple cores. Although each core

of a GPU is slower than that of a CPU, many cores on a

GPU can run in parallel, and thus, its overall performance

can be better than that of the CPU by solving many sim-

ple problems with different data concurrently. Utilizing a

GPU for non-rendering purpose is called “General purpose

computation on Graphics Processing Units (GPGPU)”.

Nowadays there are many GPGPU implementations in

vision research, but most of them are the exact reimplemen-

tation of CPU equivalents. Many vision or image process-

ing algorithms for each pixel in an image are good to use

a GPU. However, when one looks into existing algorithms,

there exist many difficulties in implementing them in paral-

lel, mainly because they are designed for a serial CPU. Our

claim is that there are better ways for a parallel hardware by

changing the formulation of original problems in a parallel

way.

In this paper, we consider which algorithm is good or not

for a GPU implementation, and show that it is possible to

design algorithms which are more efficient on the GPU, but

not on the CPU by changing the viewpoint to the original

problem. In this paper, we introduce two GPU-tailored al-

gorithms for optical flow approximation, which is generally

formulated in a serial way.

2. Algorithm good for a GPU: SIMD principle

Parallel hardware including a GPU usually achieves data

level parallelism based on the “Single Instruction Multiple

Data” (SIMD) principle, which means that all the cores do

the same with different data. To ensure this SIMD princi-

ple, an algorithm should not have data dependency between

threads, which forces the algorithm to be serial. In addition,

it is not good to have internal branches depending on data,

because different data flow implies different instructions of

each core. Another consideration is about accessing data.

If multiple threads try to read data on the same location, it

may be serialized. In writing data on the same location at

the same time, it must be a big problem causing data con-

flict. One may try to avoid this using a critical section such

as a mutex or a semaphore as in accessing shared data in a

CPU, but it makes the threads stand on a line to read/write

data, which breaks the SIMD principle. For example, sim-

ple accumulation is not easy on the GPU. If one tries to

find an intensity histogram from an image, this seems to be

very easy; for each pixel, read its intensity and increase the

counter corresponding to the intensity. However, this does

not work. Multiple threads may read the same counter, add

one, and write it to the same location simultaneously, which

results in a wrong result. This accumulation is a very serial

process.

Thus, a good algorithm for a GPU is that each thread

1) has memory storage exclusively accessed,

2) does not use the result of the other threads, and

3) does not branch internally depending on data.

In developing algorithms, keeping these conditions are

very hard. The NVIDIA CUDA framework alleviates this

hardness by making various memory spaces with different

R/W characteristics, and by using thread blocks which has

multiple threads to communicate each other.

In the rest of this paper, we study optical flow estimation

algorithms, which are generally based on the smoothness

constraint. It breaks the data independency between threads

by relating neighboring pixels’ results to each other.

3. Given problem: Optical flow estimation

Estimating optical flows from an image sequence has

been investigated for a long time, because the optical flow

is one of the most important features used in various appli-

cations such as motion estimation, video compression and

three dimensional reconstructions. However, it is not easy

to solve, because it is an ill-posed problem [4], that is, there

are an infinite number of possible solutions mathematically.

Thus, the problem should be solved by minimizing a pre-

defined cost function considering physical constraints such

as a smoothness constraint and an ordering constraint [6].

Estimating optical flows of all pixels in images becomes a

very large optimization problem.

To solve the problem in a limited time, one possible ap-

proach is to give more strict constraints so that the solution

space can shrink to reasonable size. Gradient based image

alignment algorithms take this approach [8, 3]. They formu-

late the problem as a local optimization minimizing inten-

sity differences between local image patches of two input

images. By adopting Newton-type optimization method,

the optical flows can be estimated within a pixel. To obtain

larger flows, coarse-to-fine approach is applied by making

pyramid images of the input images. One problem in this

approach is the selection of the patch size. Because the im-

age alignment method minimizes the intensity difference,

it can not be applied to homogeneous image region. Thus,

the patch size is sufficiently large so that there are image

variations in the patch. If the patch size becomes larger,

the computation takes longer. The image alignment method

takes quite long, and is not good for images containing large

homogeneous regions in the images.

Another approach is to formulate the problem as a com-

binatorial optimization. Although a combinatorial opti-

mization is NP-hard and can not be solved in a limited time,

it is possible to find a sub-optimal solution by using Markov

random field (MRF) model and practical algorithms such as

a graph cut or a belief propagation [5, 12, 14]. Even though

the practical algorithms give estimation results within a lim-

ited time, it still takes long in practice.

In some applications, it is not required to have very ac-

curate dense optical flows, though. For example, obstacle

avoidance or local path planning of a mobile robot can be

done with rough estimation of the dense optical flows, but

the time constraint is more critical to make the robot moving

continuously [2, 9].

What we would like to do is to get dense optical flows

from two input images on a moving vehicle. The dense

flows may have very large disparities and discontinuities.

This is a challenging problem because the large disparity

gives larger search range, and usually takes a long time.

The discontinuity also makes the problem harder because

it requires to solve a large sized optimization.

We aim to design parallel algorithms to approximate op-

tical flows between images as fast as possible, rather than to

estimate them accurately. At first, we reformulate the prob-

lem as a change detection problem with hypothesis gener-

ation from available information such as features tracked

in advance, and data from an inertial measurement unit

(IMU). Hypotheses are generated with the tracked features

and checked whether they are acceptable or not. This for-

mulation makes the algorithms have only per-pixel opera-

tions which a GPU can deal with efficiently in parallel.

The proposed algorithms are extremely simple, but out

of considerations in the serial implementation because of its

inefficiency. However, they are efficient enough on the GPU

because they are designed considering the SIMD principle

for the GPU.

4. Approximation of optical flows

In developing optical flow approximation algorithms, we

assume that features tracked between images are available.

The matched features can be estimated by various methods

such as a KLT tracker [8], SIFT matching [7], or even a

simple template matching. If available, rotation information

from an IMU or a gyroscope is beneficial.

We observe two important tendencies of the optical

flows: spatial coherency and color coherency. The spatial

coherency means that spatially near pixels tend to have sim-

ilar optical flows. The color coherency is that pixels having

similar colors tend to have similar flows. These are based on

the quite aggressive assumption that the pixels in the same

object have similar colors as well as the similar flows. Using

these properties, we will design algorithms for each pixel

without any dependency between pixels.

4.1. Method 1: Direct interpolation

We assume that the tracked features are good samples of

the input images and the flows that we approximate. Based

on this assumption, we can formulate the problem as a max-

imum likelihood estimation (MLE) problem.

When the color of a pixel p on the position (x,y) is

(r,g,b), and a tracked feature point fi on (xi,yi) in the image

I0 has the color (ri,gi,bi), the likelihood L(p, fi) between

them is defined

L(p, fi) = N(v−v
f
i), (1)

where v and v
f
i are 5-vectors consisting of the position and

color of the pixel and the tracked features, respectively. N

is a likelihood function and we assume that it follows a 5-

dimensional normal distribution whose five variables are in-

dependent in order to make the evaluation as simple as pos-

sible. Thus, Eq. (1) can be rewritten as

L(p, fi) =

Nc(|r− ri|)Nc(|g−gi|)Nc(|b−bi|)Ns(|x− xi|)Ns(|y− yi|)

(2)

where Nc and Ns are 1-dimensional normal distribution

functions for color and spatial information, respectively. By

using the 1-dimensional standard normal distribution N1,

the likelihood function L(p, fi) becomes

L(p, fi;α,β) =

N1(α|r− ri|)N1(α|g−gi|)N1(α|b−bi|) · · ·

N1(β |x− xi|)N1(β |y− yi|).

(3)

Now, the likelihood function has two parameters α and β .

In practice, these parameters control the smoothness of the

object boundary in the approximated optical flow map. If

α/β is large, the approximation becomes smoother. We

experimentally choose α/β = 4 .

The MLE of the optical flow (u,v) of the pixel p can be

calculated easily [10] by weighted averaging of the optical

flows (ui,vi) of the tracked features f as

u(p) = ∑
N(v−v

f
i)ui

N(v−v
f
i)

, and v(p) = ∑
N(v−v

f
i)vi

N(v−v
f
i)

. (4)

Algorithm 1 Direct interpolation algorithm

Require: Tracked feature points fi: Position (xi,yi), color

(ri,gi,bi) and flow (ui,vi), and

two images I0 and I1.

For each pixel p: position (x,y), and color (r,g,b),

1: Calculate the distance |v−v
f
i | for every tracked feature

fi.

2: Estimate the MLE of the optical flows with Eq.(4).

3: Test the MLE hypothesis with the second image I1.

Once the MLE of the optical flows is obtained, it is tested

on the second image I1. We test it as change detection. If the

pixel color of p′ in I1 considering the flows is not changed

from the original pixel p in I0, the flow hypothesis is ac-

cepted. If not, we declined the hypothesis and mark the

pixel as “unclassified.” The decision is made using a simple

threshold.

Although this algorithm is extremely simple, it requires

many repetitive multiplications and additions for every

pixel, which takes a long time in serial implementation.

The overall time complexity is O(nm) with n pixels and

m tracked features. However, because the computation de-

pends only on the property of the pixel, we can make n to

be n/nt where nt is the number of parallel threads running

concurrently. Because of the simplicity of the algorithm, it

is possible to have a large nt . We will discuss the imple-

mentation issues in Sec. 5.1.

4.2. Method 2: Multi­hypotheses and testing

In the direct interpolation algorithm, we assume that the

tracked features are good samples of the color and flow dis-

tribution. However, we can ensure neither the goodness of

the samples nor the quality of the final approximation. What

we can find is only the number of the unclassified pixels for

the quality measure.

Because we check only one hypothesis from the 5-

dimensional likelihood function, if the features are not good

samples, the algorithm fails to find the good approximation.

To resolve this problem, we test more hypotheses rather

than the most likely one.

We build a hypothesis space of optical flows by discretiz-

ing the possible optical flows in pixels. The problem is con-

verted to find the best element in this discretized flow space

(DFS), and it becomes a labeling problem from the given

evidences such as a position, colors and flows of the tracked

features.

Now, we should evaluate every optical flow hypoth-

esis for each pixel. Thus, the likelihood function be-

comes a 7-dimensional Normal distribution including the

2-dimensional optical flow vector (u,v). Consequently, the

feature vector v of each hypothesis has (x,y,r,g,b,u,v), two

(a) (b)

Figure 1. Discretized flow space. (a): the flow vector bounds (in

dashed line) and its DFS; (b): flows are disctretized to the nearest

grid points.

Algorithm 2 Multi-hypotheses and test algorithm

Require: Tracked feature points fi: Position (xi,yi), color

(ri,gi,bi) and flow (ui,vi), and

two images I0 and I1.

1: Find the maximums and the minimums of the flows u

and v, respectively.

2: Build the discretized flow space from the maximum and

minimum values of u and v.

For each pixel p: position (x,y), and color (r,g,b),
3: Evaluate the likelihood of the hypotheses in DFS using

7-dim likelihood function using every tracked feature

fi.

4: Sort the hypotheses by their likelihood.

5: Test the n best hypotheses with the second image I1

from the most likely one.

for a position, three for a color, and two for a flow. The 7-

dimensional likelihood function is simply generalized from

a 5-dimensional likelihood function of the spatial coherency

(3).

To set the DFS between two images, we assume that

all the flows are within the bounds of the flows of tracked

features. The minimum and maximum of ui and vi of the

tracked features defines the pixel-level DFS. For example,

when the flow u in x-direction swings from -4 to 4, and v

in y-direction from -2 to 2, the DFS has 45 (= 9 × 5) la-

bels. Figure 1 shows the concept of the DFS and how to

discretize the flows.

We use a probabilistic voting scheme to evaluate the hy-

potheses with the given tracked features. Every tracked

feature votes for each hypothesis by its likelihood between

them. The score of the hypothesis is the sum of the likeli-

hood values from all the tracked features. This is an evalu-

ation of the posterior probabilities of the hypothesis in top-

down manner, while the direct interpolation is a bottom-up

approach [10].

After evaluating every possible label in the DFS, the la-

bels are sorted by its likelihood, and tested from the most

likely one. Once one hypothesis is accepted, hypotheses

less likely than the accepted one are not tested. Algorithm 2

shows this process.

Compared to the direct interpolation method, this algo-

rithm has much more computations for evaluating every

possible hypothesis. If there are h labels in DFS, the time

complexity becomes O(hnm) rather than O(nm) of the di-

rect interpolation. However, the proposed algorithm still

depends only on the pixel itself, and is very parallel so that

it is good for implementing on a GPU. The implementation

details are discussed in Sec. 5.2.

5. CUDA Implementation details

We use the CUDA library [1] to use a GPU for our im-

plementation, because it is easy to write codes and it offers

good features to utilize such as a shared memory and a con-

stant memory to be read by many threads simultaneously.

In this section, we explain the efficient CUDA implementa-

tion in detail, focusing on the data access patterns which is

important in the CUDA framework.

5.1. Direct interpolation

In implementing the direct interpolation, there are two

kinds of memory accesses: reading/writing the image data

and reading the feature data. A pixel color should be read

and the calculated flows should be written for each pixel.

Because the proposed algorithm is independent on the other

pixels, the read and write for each pixel should be done only

once. However, the feature data are used in approximating

the optical flow of every pixel, and thus, we should access

to each feature data n times for n pixels. Furthermore, it

can not be coalesced because every pixel should access the

same data at the same time.

We use the constant memory space to store the feature

data. Because the feature data are accessed repeatedly, we

can expect a very high cache hit rate, and the overall perfor-

mance becomes better. If the amount of the feature data is

less than 8KB, the access is as fast as registers. We can use

the constant memory because the feature data do not change

between a pair of images and all the pixels should see the

same feature data.

For the image, we use 3 channel color data, and it makes

the coalesced access to the image hard. One of the re-

quirements for the coalesced data access is the alignment

of the data by 32 bits. To make it coalesced, we can use

the shared memory as an input/output buffer.It is known

that this “forced” coalescing is faster than using the texture

memory to access the non-aligned data. Using a texture

memory is also convenient.

Finally, we can consider using the LUT for the Normal

distribution function because it should be evaluated repeat-

edly. We evaluate it using the GPU, because our experi-

ment tells us that direct calculation is faster than accessing

the LUT memory in the constant memory or in the texture

memory. This depends on the complexity of computations

� Pixel index (width x height)

…

…

…

�
Hypotheses index

Block warp

� Pixel index (width x height)

…

…

…

�
Hypotheses index

Block warp

…

…

…

�
Hypotheses index

Block warp
Figure 2. Design of the global accumulator for multiple hypothe-

ses. Note that the adjacent data are accessed by adjacent threads.

in the LUT.

5.2. Testing multiple hypotheses

To deal with multiple hypotheses and their evaluations,

we should access a much larger memory space than the

direct interpolation method. The major bottleneck of this

method is evaluating all the hypotheses for all the pixels.

We should configure the global memory space so as to make

sure the coalesced access pattern.

Figure 2 shows the design of the global accumulator for

the multiple hypotheses. If it is implemented in the conven-

tional CPU in serial manner, it is better to use the transpose

of the memory scheme to expect the high cache hit rate be-

cause the access to the consecutive memory is much faster

and in the serial programming model, the access order is the

multiple hypotheses of the same pixel first. However, in the

GPU parallelized processing, each thread takes care of each

pixel, and transposing the memory map of the accumulator

ensures the coalesced memory access pattern.

Finally, we discuss the process flow of the Algorithm 2.

The major bottleneck is the evaluation of the every hypoth-

esis for each pixels, and it can easily implemented running

on a GPU by using the accumulator design in Figure 2.

However, the process has sorting data and, this is not easy

to implement in each thread because it should have inner

loops and branches depending on data. In addition, com-

plex algorithms like sorting and finding medians, mostly not

single-path, tend to use more registers so that the number of

the concurrent threads would be reduced. Thus, it is better

to sort the hypotheses in the CPU rather than in the GPU,

which makes an additional data transfer between the CPU

and the GPU, or to make the algorithm have a single path.

To make the process have a single path, we convert the

algorithm to find the maximum score values by testing the

changeness in advance. The algorithm has now only a sin-

gle path which is good for a GPU, shown in Algorithm 3.

This algorithm is a little different to the original algorithm

because this gives the results even if the accepted one has

very low score value. However our experiment shows that

Algorithm 3 Multi-hypotheses and test algorithm in GPU

Require: Tracked feature points fi: Position (xi,yi), color

(ri,gi,bi) and flow (ui,vi), and

two images I0 and I1.

1: Find the maximums and the minimums of the flows u

and v, respectively.

2: Build the discretized flow space from the maximum and

minimum values of u and v.

For each pixel p: position (x,y), and color (r,g,b),
3: Evaluate the likelihood of the hypotheses in DFS using

7-dim likelihood function using every tracked feature

fi.

4: Test the hypotheses with the second image I1 if it is

changed or not.

5: Find the best hypothesis among the hypotheses which

are identified “unchanged”.

Figure 3. Two input images and tracked features

there are only few pixels that have the different results with

the original one. By doing this, we can get the result much

faster because the whole process run in the GPU without the

unnecessary data transfer.

6. Experiments

In this section, we show the results of the optical flow ap-

proximation from the tracked features, and how fast it is to

get the results. For comparison, we implemented the same

algorithm both in serial and in parallel using a GPU on the

system with the Intel Xeon 3.2Ghz CPU and the NVIDIA

8800 GTX graphics card.

6.1. Performance

Figure 3 shows the input images and the tracked features

using a conventional KLT tracker. In this case, the image

resolution is 320 × 240 and the number of the tracked fea-

tures is 200. We chose these two images to compare the

results of the two proposed methods directly, because there

is no feature on the pole in the left side of the image, which

violates the assumption of the “goodness of the tracked fea-

tures.”

Figure 4 shows the approximation results using the di-

rect interpolation algorithm. The left figure in Figure 4 is

Figure 4. Approximated optical flows by interpolating directly.

The pole on the left side is not detected when there is no point

on it, while it is detected very well with just one feature.

Figure 5. Approximated optical flows by testing multiple hypothe-

ses (Left) and the results by the belief propagation method [5]

(Right)

obtained by using the given 156 tracked features. For most

part of the image, it approximates the optical flows well, but

can not estimate the flows of the pole, because there is no

sample features on the pole. When one more tracked feature

on the pole is given manually, we can obtain the result in the

right image of the Figure 4, which recovers the flows of the

pole. This shows that the assumption of the good samples

of the tracked features is critical to the performance of the

direct interpolation method. However, it is hard to find how

good the tracked features are before getting the results.

The serial implementation in C++ takes from 2000 to

3000 milliseconds per frame depending on the 320× 240

images with about 150 features. On the NVIDIA 8800 GTX

GPU, this takes about 6.2 milliseconds including transfer-

ring all the data between the CPU and the GPU. Thus,

this parallel algorithm tailored for the parallelized hardware

acclerates the execution at least 300 times. Because the

KLT tracker using a GPU takes less than 10 milliseconds

[11, 13], the overall processing for this interpolation can be

done within a video rate.

Figure 5 shows the results of testing multiple hypothe-

ses. Note that this result does not use the added feature on

the pole. Even though there are no features on the pole, the

proposed method recovers the flows of the pole region accu-

rately. In this case, the number of possible labels in DFS is

eight obtained from the tracked features. The estimation re-

sult using the belief propagation is shown in the right figure

for comparison.

The purely serial implementation takes about 11800 mil-

liseconds. When we implemented the Algorithm 2, which

means that only the evaluation is done on the GPU and the

sorting and the checking changeness is on the CPU, the

evaluation takes about 50 milliseconds and the later serial

Figure 6. Two input images in the “merry-go-round” sequence and

tracked features

processing takes 110 milliseconds. For overall process in-

cluding data transfer between the CPU and the GPU, it takes

about 160 milliseconds, which gives 73 times acceleration.

Although this is not bad for the optical flow approximation

for images with a very large flow vectors, we can make it

much faster by using the Algorithm 3 purely running on the

GPU. By using the Algorithm 3 purely running on the GPU,

we can get the result in 48 milliseconds per frame, which is

246 times acceleration from the pure serial implementation.

Even though this is not in the video rate, this gives more

reliable results with some bad samples of the tracked fea-

tures. For comparison, the belief propagation method [5]

on the GPU takes 282 msec with 30 message passing stages

until convergence to have the result in the right figure in

Figure 5.

One can notice that the time consumption in purely par-

allel implementation is less than the GPU part in the hybrid

implementation. That is because there is additional data ar-

rangement for faster processing for sorting on the CPU in

the hybrid implementation. Note that the less memory ac-

cess/transfer gives more acceleration.

We applied out approximation algorithm to the “merry-

go-round” sequences. In this case, because of the large mo-

tion, the KLT tracking can not be applied. We matched

SIFT features [7] between them and refined the results us-

ing a robust method. Figure 6 shows the input images and

the tracked features.

The number of tracked features is 422 in this case. Fig-

ure 7(a) shows the direct interpolation results. Because of

the many narrow poles in the images, this sequence is very

challenging in finding optical flows between images. For

the large areas, the interpolation method gives reasonable

results, but it fails to find the flows on the narrow poles.

The direct interpolation takes about 14 milliseconds to get

the results because the number of tracked features is more

than the previous one.

On the other hand, testing multiple hypotheses algorithm

generates more reliable results in Figure 7(b). Because the

maximum and the minimum values of the flows are quite

accurate, the DFS built from the information is a good hy-

potheses space. In this case, the number of labels is 25, and

it takes about 120 milliseconds to approximate it. Figure

Figure 7. Approximated optical flows by (a) interpolating directly

and (b) testing multiple hypotheses

Figure 8. Approximated optical flows by testing multiple hypothe-

ses [14]

8 shows the result by Zitnick et al. [14] based on super-

pixel segmentation. Our implementation on a GPU is less

accurate than this state-of-the-art work, but still comparable

with much less computation time than globally optimized

approaches.

6.2. Time complexity

We analyzed the time complexities of the proposed algo-

rithms with respect to the number of tracked features used,

and the image size. As stated in Section 4, the algorithms

have linear time complexities to the number of features, be-

cause every feature should take part in evaluating every hy-

pothesis. Figure 9(a) shows the time consumption, and it is

linear as we expected. Note that the slope of the Algorithm

3 is larger than that of the Algorithm 1, because the for-

mer evaluates multiple hypotheses in 7-dimensional space,

while the latter does it once in 5-dimensional space. For this

experiment, we used 320 × 240 images with 8 labels for the

Algorithm 3, and make 100 trials to measure the time con-

sumed, including data transfers between the CPU and the

GPU. The performance is greatly degraded on the NVIDIA

8600M comparing to the others. Because the 8600M video

processor has fewer parallel processing cores than the oth-

ers, the number of parallel threads becomes much smaller.

Figure 9(b) shows the time complexities of the two al-

gorithms to the size of the two input images. In this case,

we fixed the number of features to be 512. Because the as-

pect ratio of images is fixed, the number of pixels increases

quadratically. As expected, the algorithms’ time complex-

ities increases by the number of the pixels evaluated. In

Fig. 9(b), one can notice that the direct interpolation method

on the 8600M is even slower than the multiple hypotheses

200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Number of features

T
im

e
 [

m
s
]

Direct interpolation (8600M)
Direct interpolation (8800 GTX)
Direct interpolation (GTX 280)
Multiple hypotheses (8600M)
Multiple hypotheses (8800 GTX)
Multiple hypotheses (GTX 280)

(a)

300 400 500 600 700 800 900 1000 1100
0

500

1000

1500

2000

2500

3000

Image width

T
im

e
 [
m

s
]

Direct interpolation (8600M)
Direct interpolation (8800 GTX)
Direct interpolation (GTX 280)
Multiple hypotheses (8600M)
Multiple hypotheses (8800 GTX)
Multiple hypotheses (GTX 280)

(b)

Figure 9. Time complexities of the proposed algorithm (a) to the

number of features on the 320×240 images and (b) to the image

size with 512 features. Blue solid lines denote the direct inter-

polation method, and red dashed lines do the multiple hypotheses

method.

method on the GTX 280. This shows that the performance

can be dramatically improved by using more powerful hard-

ware. One can notice that the performance improvement on

the GTX280 is not significant compared to the 8800GTX,

while it is much bigger between 8600M and 8800GTX. This

is because the number of core processors in the 8600M is so

small that much more parallel thread block should be gen-

erated than the others. The acceleration is made mainly by

increasing number of concurrent threads.

7. Conclusions

A GPU is a parallel hardware which can run the same in-

structions on the multiple data simultaneously. In the tradi-

tional approach to use it, existing serial algorithms is ported

in the exactly same way to the parallel one, and this is dif-

ficult for some algorithms and may be inefficient. It is pos-

sible to design parallel algorithms which run on a GPU ef-

ficiently, even though their serial equivalent may not.

The optical flow estimation is investigated to show this

possibility. Because some applications such as obstacle

avoidance or local path planning do not need a very ac-

curate optical flow map, we simply reformulate the optical

flow estimation problem as change detection between two

images and interpolation using the tracked features in ad-

vance. This formulation enables us to deal with the problem

as a pixel processing, which is more suitable for a parallel

hardware.

We propose two methods: direct interpolation and test-

ing multi-hypotheses. In the direct interpolation, the max-

imum likelihood estimation of optical flows using the pre-

tracked features is tested in the manner of change detection.

This method gives a smooth flow map very fast, but if the

tracked features do not represent the distribution of the opti-

cal flows, there would be many failure in approximating the

flows. On the other hand, by testing multi-hypotheses from

the pre-tracked features, it is more probable to find more ac-

curate flows, even with the bad representation of the feature

distribution. It takes much longer than the direct interpola-

tion method, but runs in a near video-rate.

Because the methods are approximating the optical flows

designed for a parallel hardware, its performance is neither

accurate as the state-of-the-art methods, which takes a long

time to compute it, nor fast in implementing in a serial man-

ner. However, when we use a parallel hardware such as a

GPU, it gives a reasonable result fast enough for the appli-

cations which do not require the very accurate optical flow

estimations.

References

[1] http://www.nvidia.com/cuda/.

[2] N. Ancona. A fast obstacle detection method based on opti-

cal flow. In European Conference on Computer Vision, pages

267–271, 1992.

[3] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International Journal of Computer Vision,

56(3):221 – 255, March 2004.

[4] M. Bertero, T. A. Pogcio, and V. Torre. Ill-posed problems

in early vision. In Proceedings of the IEEE, pages 869–889,

1988.

[5] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-

gation for early vision. Computer Vision and Pattern Recog-

nition, 2004. CVPR 2004. Proceedings of the 2004 IEEE

Computer Society Conference on, 1:I–261–I–268 Vol.1,

June-2 July 2004.

[6] B. K. Horn and B. G. Schunck. Determining optical flow.

Technical report, Cambridge, MA, USA, 1980.

[7] D. G. Lowe. Object recognition from local scale-invariant

features. In International Conference on Computer Vision,

pages 1150–1157, 1999.

[8] B. D. Lucas and T. Kanade. An iterative image registra-

tion technique with an application to stereo vision (darpa).

In Proceedings of the 1981 DARPA Image Understanding

Workshop, pages 121–130, April 1981.

[9] N. Ohnishi and A. Imiya. Dominant plane detection from

optical flow for robot navigation. Pattern Recogn. Lett.,

27(9):1009–1021, 2006.

[10] A. Papoulis. Probability, Random Variables, and Stochastic

Processes. Mc-Graw Hill, 1984.

[11] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. Feature

tracking and matching in video using programmable graph-

ics hardware. Machine Vision and Applications, page pub-

lished online, November 2001.

[12] Q. Yang, L. Wang, and R. Yang. Real-time global stereo

matching using hierarchical belief propagation. page III:989,

2006.

[13] C. Zach, D. Gallup, and J.-M. Frahm. Fast gain-adaptive klt

tracking on the gpu. In Computer Vision and Pattern Recog-

nition Workshops, 2008. CVPR Workshops 2008. IEEE Com-

puter Society Conference on, pages 1–7, June 2008.

[14] C. Zitnick, N. Jojic, and S. Kang. Consistent segmentation

for optical flow estimation. In International Conference on

Computer Vision, pages II: 1308–1315, 2005.

