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Abstract 
Email client software is widely used for personal task 
management, a purpose for which it was not designed and is 
poorly suited.  Past attempts to remedy the problem have 
focused on adding task management features to the client UI. 
RADAR uses an alternative approach modeled on a trusted 
human assistant who reads mail, identifies task-relevant 
message content, and helps manage and execute tasks.  This 
paper describes the integration of diverse AI technologies 
and presents results from human evaluation studies 
comparing RADAR user performance to unaided COTS tool 
users and users partnered with a human assistant.  As 
machine learning plays a central role in many system 
components, we also compare versions of RADAR with and 
without learning.   Our tests show a clear advantage for 
learning-enabled RADAR over all other test conditions.  

 
Email and Task Management 

Once widely hailed as the “killer app” for networked 
computing, email now gets more attention as a source of 
inefficiency, error, and stress.  Complaints about excessive 
time spent processing, storing, finding, and collating 
messages are commonplace among office workers at every 
level and across organization type (Balter 1998).  Business 
self-help books (e.g., Song et al. 2007) coach readers on 
regaining control of their lives from the “tyranny of email.”  
Studies of email overload show that the problem can 
negatively impact work performance (Dabbish and Kraut 
2006) and that it imposes substantial costs on organizations 
and national economies (Spira and Goldes 2007).   Early 
exploration of the problem focused on the ever-increasing 
volume of email that users send and receive.  More recent 
investigations emphasize the centrality of email in 
workplace tasks of all kinds, the resulting adoption of 
email for personal task management (Mackay 1988; 
Whittaker and Sidner 1996), and the many inadequacies of 
email client software for this purpose (Belotti et al. 2003). 
    Various projects have explored ways to reduce email 
overload by improving client software.  Most focus on 
streamlining some aspect of message handling, e.g., by 
automatically filing messages into user-defined folders 
(e.g., Mock 2001), helping users quickly scan and decide 
what to do with unhandled messages (Cadiz et al. 2001), 
and identifying dependencies between messages in a 
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conversational thread (Rohall et al. 2001).  Belotti et al. 
(2003, 2005) have gone further and reconceptualized the 
email client in keeping with their view that “dealing with 
email and dealing with tasks and projects are 
indistinguishable.” Their system, Taskmaster, combines 
email client and to-do list functionality with the aim of 
alleviating problems that their studies show typical users 
have with task management in email.   
   These efforts differ in approach, but share the assumption 
that a single application can serve as both a good email 
client and a good task management tool.  This assumption 
seems suspect since users benefit at different times from 
both message-centric and task-centric interfaces, and 
hybrid designs typically entail compromise.  Comments 
from Taskmaster prototype users (Belotti et al. 2005) 
suggest just such a tradeoff – e.g., complaints that screen 
real estate devoted to listing and detailing tasks left too 
little available to view messages.  The limitations of a 
hybrid approach become more apparent when we consider 
integrating email not only with task management tools, but 
also with numerous application programs useful for 
carrying out email-derived tasks.  Prospects for making 
one tool do it all seem remote.   
   An alternative approach follows the model of a trusted 
personal assistant who reads and processes messages on 
the boss’s behalf, helping the boss to sustain focus on 
critical tasks and stay organized.  The assistant uses 
whatever tools are appropriate – an email client to read, 
organize, and respond to messages; task or project 
management software to maintain a to-do list; diverse 
application programs to prepare or execute tasks.  The 
assistant does not rely on engineered integration of these 
capabilities into a single tool but instead uses knowledge of 
user tasks and how the tools support those tasks to 
integrate their functions dynamically.   
   The RADAR project has developed a software-based 
personal assistant intended to help users cope with email 
overload as effectively as a human assistant.  The system 
analyzes message text received by the user to distill out 
task-relevant information including new tasks elicited by a 
message.  RADAR adds newly identified tasks to a 
displayed Task List and provides machine-learning-based 
guidance to the user on which task to do next.  When the 
user indicates the intention to begin a task by clicking on it, 
RADAR invokes the appropriate application program and



 
 

Figure 1.  After the user selects a task to modify incorrect meeting room data from the Task List  (not shown), 
Radar displays the email message (a) that originated this task alongside a database record modification form 
(b) used to carry out tasks of this type.  Radar fills in form fields based on extracted email content (c), leaving 
it to the user to either accept or correct field values. 

 
interacts with the user to assist execution (Figure 1). This 
paper describes how RADAR components are integrated to 
provide intelligent assistance and overviews results from 
system evaluation experiments designed to measure 
progress toward human-level assistance. 
 

System Overview 
The RADAR system consists of three sets of components 
(Figure 2).  Message-Task Linking (METAL) components 
analyze email messages to identify new tasks, distill out 
other task relevant content and establish user-navigable 
links between task representations and message text.  
Using METAL output, Multi-task Coordination Assistance 
(MCA) components provide task-management support to 
the user such as maintenance of a to-do list and guidance 
on which item on the list to do next.  Powertools (PT) are 
application programs similar to the tools people normally 
use to produce work products, but are enabled by METAL 
and knowledge from past interactions to provide task-
aware user assistance. 
 
Identifying Task-relevant Message Content 
RADAR Message Task Linking (METAL) components 
find associations between email text and user task 

representations.  Especially important are mechanisms that 
detect new tasks elicited by arriving email and extract 
specifying task parameters from message text.  For 
example, a message announcing that corporate visitors will 
arrive at a particular date and time might imply a task to 
reserve a conference room starting just after their 
scheduled arrival.  Task-relevance of a given message may 
vary for different recipients depending on their goals and 
responsibilities (e.g., an administrative staff person 
responsible for allocating meeting space might view the 
above email differently from someone merely interested in 
attending the meeting), so METAL mechanisms must learn 
what constitutes a task separately for each user.  

 
 

Figure 2.  Radar System 
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   The high-level process for detecting and specifying 
email-derived tasks is, in order: preprocess, annotate, 
classify, extract.  Preprocessing includes stemming 
(normalizing text terms with the same morphological root) 
and removal of stop words, as is typical for reducing 
dimensionality of text for classification.  Numerous natural 
language processing components then annotate the text.  
Some of these are domain independent.  For example, 
RADAR’s Time Expression Annotator identifies temporal 
expressions (e.g., “next week”) in text and resolves 
(anchors) them to points or ranges in absolute time (Han et 
al. 2006).  Other annotators are tied to particular users or 
task types.  For example, RADAR includes an annotator 
that recognizes room names to support meeting-room 
scheduling tasks.   In some cases, RADAR can learn to 
improve these annotators by observing as users perform 
tasks with appropriately instrumented application programs 
(Tomasic et al. 2007).  
    RADAR assumes that the types of typical user tasks are 
known and treats email task detection as a text 
classification problem.  We used a regularized logistic 
regression suite of classifiers (based on body, headers, 
links) and combined their results (Yang et al. 2005).  The 
classifiers were designed to be incrementally adaptive to 
accommodate the impact of real-world changes (e.g., new 
people, changing projects).   
    We obtained fairly good results on task-based 
classification (Figure 3) with accuracy (proportion of  
correct positive and negative classifications of an email 
message by task type) ≥ .90 for all task types and F11 
macro average (a stronger measure generally considered 
more meaningful than accuracy) = .67.  The question of 
 

 
Figure 3.  Task classification results 

                                                
1 F1 is the harmonic mean of recall (fraction of all existing tasks of a 
given type found by the classifier) and precision (fraction of correctly 
identified tasks of a given type in tasks returned by the classifier). 
 

whether this performance is good enough is best answered 
in the end-to-end system evaluation (see section below) 
where RADAR users, overriding METAL errors as 
needed, significantly outperformed users of off-the-shelf 
(COTS) office software. 
   Once a message has been categorized by task type, 
RADAR extracts task-specific parameters from the 
annotated text.  For example, given a message found to 
contain a task of type schedule-meeting-room, 
extractors would look for temporal expressions 
corresponding to the meeting start and end times.  For a 
task type with known parameters, extraction can be 
considered a form-filling task (Cohen et al. 2005).  
RADAR’s extraction method uses lightweight parsing as 
input to the trainable MinorThird system (Cohen 2004; 
Carvalho and Cohen 2006) that matches text terms to task 
fields. 
 
Task Management Assistance 
RADAR takes a layered approach to user-system 
integration and support for task management. At its core, 
the key integrative structure is an explicit representation of 
user/system tasks. The representation provides a basic 
accounting of all currently known tasks including their 
constraints  (deadlines, dependencies with other tasks), 
associations to other media (email) and execution state. 
Through linkage to learned models of various task types, 
these representations provide a basis for anticipating 
resource requirements (e.g. necessary data inputs) and for 
inferring task execution profiles (expected durations, likely 
follow-on tasks). The set of currently known tasks is 
managed by the RADAR Task Manager (TM) and made 
accessible to the user through the RADAR Console. The 
TM provides basic services for defining/instantiating new 
tasks, monitoring task interactions and preconditions, 
managing execution status, and collecting relevant user 
action data and task results.  
    The current Task List is exposed to the user through the 
Console along with information and advice intended to 
help the user stay organized and focused. The Console also 
provides controls for selecting tasks and invoking tasks. 
Email-derived tasks are linked back to their originating 
messages.  Users can easily inspect and edit task data to 
compensate for METAL detection errors, thereby 
facilitating assisted task execution provided by RADAR 
Powertools. 
    Layered on top of this integration infrastructure is the 
Multi-task Coordination Assistant (MCA).  MCA tackles 
the broader problem of managing a busy user’s workload. 
It uses learned knowledge about the types of tasks a user 
performs, accumulated user experience in performing these 
tasks, and learned preferences of specific users to provide 
several complementary forms of task management advice. 
 
Attention management – One form of advice MCA 
provides is to draw user attention to tasks that have been 



neglected or overlooked. The Attention Manager (AM) 
learns productive task sequences and workflows, tracks 
real-time progress, and alerts the user after detecting 
failure to progress at important, urgent tasks.  Because 
interruptive reminders can themselves reduce productivity  
(Iqbal and Horvitz 2007) and can annoy users, the AM 
attempts to issue reminders at task boundaries (after 
completing one task, before starting the next) when user 
tolerance for interruption is highest (Smailagic et al. 2007). 
 
Task Prioritization – A second form of advice provided 
by MCA addresses the basic question of what task to do 
next. The Task Prioritizer (TP) uses a Hidden Naïve Bayes 
classifier (Zhang et al. 2005) to learn a set of dynamic task 
ordering preferences in a given workflow setting from 
analysis of the actions of expert users. A simple voting 
method is then used to prioritize pending tasks facing the 
current user at any point. These priorities are conveyed as 
suggestions to the user within the Console’s todo list and 
are updated periodically to reflect variable urgency. 
 
Task Shedding – A third form of advice provided by 
MCA considers the question of where and how to cut 
corners when all tasks cannot be done within given time 
constraints. The Task Shedding (TS) Advisor 
(Varakantham and Smith 2008) uses learned models of 
domain structure (characterizing task types and workflow 
constraints) together with task prioritization information 
provided by TP to construct and maintain an overall task 
schedule. The schedule is represented using a Simple 
Temporal Problem with Preferences and Uncertainty 
model (Rossi et al. 2006).  When expected workload is 
projected to exceed available time, a relaxed solution is 
computed that identifies which tasks to drop and which 
others to compress to minimize expected quality loss. The 
TS suggests this strategy to the user. 
 
Task Execution Assistance 
In office environments, carrying out a task typically 
involves using application software to create or modify 
work products in the form of, e.g., documents, 
spreadsheets, messages, and databases.  These programs 
incorporate assistive automation such as spelling checkers 
and macro recorders, but are not task-aware and thus 
cannot provide assistance that depends on knowing the 
type, status, or interactions among user tasks.  In RADAR, 
output from METAL components enables task-awareness – 
at least for recognized email-derived tasks; learning 
capabilities within an application make it possible to 
translate that awareness into task execution assistance.  
The RADAR system incorporates METAL-powered 
applications (“Powertools”) focused on execution 
assistance for three kinds of tasks: information retrieval 
and update, resource scheduling, authoring status briefings.   
Assisting Information System Update Tasks.  Human 
assistants are often asked to look up or update data in an 

information system.  For instance, human resource 
assistants process numerous requests to update personnel 
records; executive assistants process requests to schedule 
conference rooms or make travel arrangements.  
Processing a request typically involves reading it and then 
locating, completing, and submitting a form corresponding 
to the expressed intent.  For example, upon reading a 
request to “Please change the phone number on John Doe’s 
web page to 555-1212”, a web site administrator would (1) 
select the right form to update records in the database back 
end to the web site; (2) select “John Doe” in the name field 
to identify the specific record to be modified, possibly 
using a pull-down menu; (3) enter a modified value into 
the phone number field; (4) press the “submit” button to 
execute the specified modification. 
   The RADAR Virtual Information Officer (VIO) 
component attempts to automate this process.  In the best 
case, METAL mechanisms accurately identify the task 
type (Change Person) and task parameters (name: 
John Doe; phone: 555-1212) in the request 
message; VIO then retrieves and fills out the form on the 
user’s behalf and presents the results to the user for 
verification.  If correct, the user only needs to confirm 
VIO’s top form choice (ranked highest on a displayed list) 
and press “Submit” to complete the task.  If not, the user 
modifies the incorrect values before submitting the form.  
   The first three processing steps in the phone number 
modification example above exemplify key challenges 
addressed by VIO machine learning algorithms (including 
METAL capabilities specific to VIO).  For step 1, a k-way 
boosted decision tree algorithm is used to generate a 
ranked list of possible forms.  In experimental evaluation 
on a webmaster corpus (Zimmerman et al. 2007), this 
approach performed very well (mean reciprocal rank > .90) 
and better than tested alternatives.  For step 2, entity 
instance selection, VIO uses a Naïve Bayes classifier 
(mean reciprocal rank > .85).  For step 3, form field 
completion, VIO uses a conditional random field model 
trained to generate an extraction model.  Performance 
varies greatly by form field (0.0 < F1 < 1.0), depending 
most strongly on the number of training labels.  Each 
algorithm is trained by a process of “domestication” 
wherein labels on source message text are generated when 
the user repairs incorrect VIO form-type, entity or form-
field predictions (Tomasic et al. 2007).  Note that in VIO, 
high precision is favored over high recall, because the cost 
to the user of approving a correct prediction is much lower 
than the cost of repairing an incorrect prediction, and the 
cost of handling a missed prediction is exactly the cost that 
the user would incur without assistance.  
 
Assisting Resource Scheduling Tasks.  A common task 
for human assistants is to manage limited organizational 
resources such as conference rooms and meeting 
equipment.  Resource management can become especially 
demanding when there are multiple resources to manage, 



multiple interacting resource requests, and overall demand 
is high.  The RADAR Space-Time Planner (STP) and 
CMRadar components provide automated assistance in 
such cases.  STP provides scheduling optimization 
capabilities, incorporating a new optimization algorithm 
(Fink et al. 2006) designed for the kinds of mixed-initiative 
allocation problems and uncertainty emphasized in the 
RADAR evaluation (see section below).  Optimizers are 
only as good as the information supplied to them.  The 
RADAR project has placed particular emphasis on the 
problem of timely, incremental capture of relevant 
scheduling information from different sources and by 
different means including 
 
- Automatic recognition of schedule-relevant data and 

constraint changes in e-mail traffic 
- Learning regularities in the task environment, such as 

the likelihood of success in seeking new resources that 
change the scheduling problem to one that is less 
constrained (Oh and Smith 2004) 

- Improved representation of uncertainty [Bardak et al. 
2006a] to more accurately capture data and constraints 

- Active learning of critical data and constraints to 
reduce uncertainty and thus enable improved 
optimization (Bardak et al. 2006b) 

 
Assisted Authoring of Status Reports.  Assistants are 
often responsible for tracking progress and reporting status 
of some larger task such as completing a project or 
preparing for a meeting.  This can be especially demanding 
and error-prone in high workload situations when the effort 
to record and report takes valuable time away from the 
effort to accomplish primary tasks.  The RADAR Briefing 
Assistant (BA) assists users in authoring status reports that 
summarize what has and has not yet been accomplished.  
The creation of high-quality reports requires extensive 
knowledge capture, inference and synthesis capabilities 
including (i) instrumentation of the activities performed by 
the user, (ii) knowledge of relevant activities for reports, 
including activities that should have occurred, (iii) a 
learned model of the language and the level of abstraction 
best used in the summary (e.g., “most updates were done” 
versus “7 of 9 updates were done”), and (iv) a learned 
model of the relative importance of various parts of a status 
report.  System instrumentation in all RADAR components 
tracks activity data and logs it in the TM that is used by the 
BA.  When the user begins a task to generate a status 
briefing (represented on the RADAR-maintained to-do 
list), the system summarizes past activity into a list of 
“bullet points” ranked and abstracted in accordance with 
the BA’s learning model (Kumar et al. 2006).  
 

System Evaluation 
As a 5-year project under DARPA’s Personalized Assistant 
that Learns (PAL) program, RADAR is evaluated yearly to 

measure machine learning research progress with particular 
focus on “learning in the wild” – i.e., learning from passive 
observation or natural interaction with the user.  Project 
members set two additional evaluation objectives: (1) 
measure the utility of RADAR compared to state-of-
practice alternatives, thus providing a basis for deciding 
when the technology is mature enough for practical use 
and (2) obtain guidance on how best to direct component-
level research to advance this goal. Here we briefly 
overview experimental design and results from tests run in 
two consecutive years (year 2 and year 3 of the project).  
See Steinfeld et al. (2007a) for a more detailed discussion. 

Experiment Design  
The experiments included four conditions varying the tools 
available to human subjects.  In the first condition, subjects 
used a version of RADAR that had undergone a period of 
simulated use, allowing learning mechanisms to train the 
system and (presumably) improve performance.  We refer 
to this condition as RADAR + Learning (abbreviated 
“+L”).  In the “-L” condition, subjects used an untrained 
version representing RADAR prior to any learning 
opportunity.   “COTS” subjects used commercial off-the-
shelf tools instead of RADAR to perform the task.  Each 
“COTS+A” participant was randomly paired with one of 
10 human assistants, each a confederate member of the 
experiment team who shared the workload and helped the 
subjects manage tasks (e.g., by prompting them to do 
urgent tasks).  The experiments tested four hypotheses: 

+L > COTS: subjects assisted by RADAR would beat 
those using COTS tools  
+L > COTS+A: subjects with RADAR would beat those 
with a human assistant 
+L > -L: RADAR would provide better assistance with 
learning enabled than with learning disabled 
ΔL increasing: performance attributable to learning 
would increase in each yearly test (from system 
improvements, not additional training) 

 
The subjects’ overall task was to take over organizing a 
fictional academic conference, substituting for a now-
incapacitated organizer (“Blake Randal”) who had made 
significant progress but left some things unfinished or 
incomplete. Subjects were instructed to go through Blake’s 
email inbox (119 messages) to learn what else needed 
doing and come as close as possible to completing 
remaining tasks.   Some messages had clear associated 
tasks (e.g., a request to change a misspelled name on the 
conference web site) or implied tasks (e.g., information 
that a speaker would be arriving late in the conference, 
implying a need to reschedule the session and then post the 
revised schedule to the website), while others contained 
irrelevant “noise” messages.  In addition, an unexpected 
“crisis” described in the message stream (e.g., that a block 
of rooms with scheduled sessions is no longer available) 



partially invalidated existing plans, requiring significant 
replanning. 
    Materials developed to support the test included the 
email corpus and a simulated world, the latter specifying 
information about the conference (e.g., sessions to be 
scheduled), the physical environment (e.g., rooms where 
sessions might be placed), and people (e.g., speaker names 
and contact info). The conference itself was a 4-day, multi-
track meeting with more than 130 talks and posters, 
complete with exhibit hall, social events, poster sessions, 
tutorials, workshops, plenary talks, and a keynote address.  
Speakers and other people defined in the scenario were 
assigned email addresses, phone numbers and, in many 
cases, fax numbers, website addresses, and organizations. 
    Subjects used a web browser to access information about 
the physical space (campus center, academic building, off-
site hotel) presented in university web pages accessible 
from the subject’s home page.  Other static web content 
included Blake’s original schedule, a conference planning 
manual, and manuals for tools used by the subjects. 
Subjects were also given access to a realistic web-based, 
“university approved” vendor portal where goods and 
services such as audio-visual equipment, security, and 
catering could be ordered for the conference. Email 
receipts including hyperlinks to modification/cancellation 
pages and computed prices were delivered to the subject’s 
mail client in real time.  Developing this experimental 
framework required substantial time and resources.  Effort 
to make it available for use by other research projects is 
under way (Steinfeld 2008). 
    Overall score in the range [0.000 - 1.000] was a 
weighted sum of sub-scores on three work products: the 
conference schedule (based on constraints met, special 
requests handled, correct vendor orders made, and so on); 
conference web site (accuracy and completeness); and 
status briefing to the conference chair.  Score criteria, 
weights (2/3 for the schedule, 1/6 each for the web site and 
briefing), and possible score penalties (e.g., for 
overspending budget) were determined by outside 
evaluators.   In addition, outside evaluators designed key 
elements of each test including the email message stacks, 
ensuring that RADAR could not be designed around 
particular test elements. 
    Recruited subjects had no relevant domain experience or 
knowledge of RADAR, but were required to be computer 
literate and fluent in English.  Each was run through 
approximately 4 hours of testing – 2 for subject training 
and 2 for time on task.  During the training period, subjects 
were informed of the scenario, their responsibilities, task 
scoring criteria, and payout schedule (designed to align 
subject priorities with scoring criteria).  They were trained 
to use tools appropriate for their assigned test condition 
and guided through practice examples of all core toolset 
features.  For subjects in the +L and –L conditions, these 
tools included RADAR components described earlier in 
this paper: STP and CMRadar for creating the conference 

schedule; VIO for web site updates and vendor orders; BA 
for authoring status updates. 
 
Results 
As shown by the table of results below, the first three 
hypotheses were easily met with p-values below 0.0001.  
Thus, subjects assisted by RADAR+L (with learning) out-
performed subjects using COTS tools, with and without an 
assistant, and subjects using RADAR-L (without learning).  
The difference in performance across years between non-
learning versions of RADAR was not statistically 
significant.  However, performance in the learning 
condition (as measured by the delta between the learning 
and non-learning condition) improved significantly (t-ratio 
2.9, p<0.0034) from year 2 to year 3 with the contribution 
of learning to overall performance increasing by 41%.  
 

Condition Year 2 Year 3 
 N Final_Score N Final_Score 
COTS 18 0.402 31 0.409 
COTS+A n/a n/a 20 0.525 
Radar –L 18 0.509 42 0.534 
Radar +L 18 0.630 32 0.705 

 
More generally, our evaluation showed that task-aware 
application programs and task management tools can 
improve user performance and that automated detection of 
tasks and task-relevant information can be particularly 
helpful in reducing the impact of email information 
overload.  In addition, post-test surveys (Steinfeld et al. 
2007b) found that RADAR users had a far more favorable 
test experience than subjects using comparable COTS 
tools.  In particular, RADAR users were more confident 
that they had done tasks well, found tasks easier to 
complete, felt more immersed in the test, and assessed 
themselves (correctly) as having completed more work.  
 

Conclusion 
RADAR technology is intended for use in real-world 
environments.  Is it ready?  Results of our evaluation 
studies are encouraging about its potential to speed tasks 
and improve user experience under high email load.  
Positive survey responses indicate that user acceptance 
does not depend on AI providing near-perfect task 
awareness and that good user interface and interaction 
design can compensate.  Perhaps the biggest unknown is 
whether users will tolerate relatively low performance 
early on as the system learns to detect task-relevant 
message content and provide meaningful assistance. 
Continued research on RADAR focuses on ways to reduce 
the training interval (e.g., Donmez and Carbonell, 2008), 
provide more intelligent assistance at an early stage of 
training, and dynamically restructure user interaction to 
reflect current system competence.   



   Several efforts to incorporate RADAR capabilities into 
non-research tools are under way. METAL technology has 
been incorporated into the trouble report processing for the 
U.S. Navy’s F/A-18 Automated Maintenance 
Environment.   Tests on more than 6500 such reports (2 
months worth) showed good performance classifying the 
kind of trouble-handling task (F1 micro-average = .84) and 
determining priority on a 1-5 scale (F1 micro-average = 
.72).  This level of performance was seen as likely to 
improve report-handling efficiency and led to rapid 
integration of the technology into operational Navy 
systems.  Other efforts focused on integrating RADAR into 
work systems and general productivity tools are ongoing. 
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