

RADAR: A Personal Assistant that Learns to Reduce Email Overload

Michael Freed1, Jaime Carbonell2, Geoff Gordon2, Jordan Hayes3, Brad Myers2,
Daniel Siewiorek2, Stephen Smith2, Aaron Steinfeld2 and Anthony Tomasic2

 1SRI International 2School of Computer Science 3Bitway Inc.
 333 Ravenswood Avenue Carnegie Mellon University 1700 Shattuck Ave., Suite. 320
 Menlo Park, CA 94025 Pittsburgh, PA 15213 Berkeley, CA 94709

Abstract
Email client software is widely used for personal task
management, a purpose for which it was not designed and is
poorly suited. Past attempts to remedy the problem have
focused on adding task management features to the client UI.
RADAR uses an alternative approach modeled on a trusted
human assistant who reads mail, identifies task-relevant
message content, and helps manage and execute tasks. This
paper describes the integration of diverse AI technologies
and presents results from human evaluation studies
comparing RADAR user performance to unaided COTS tool
users and users partnered with a human assistant. As
machine learning plays a central role in many system
components, we also compare versions of RADAR with and
without learning. Our tests show a clear advantage for
learning-enabled RADAR over all other test conditions.

Email and Task Management

Once widely hailed as the “killer app” for networked
computing, email now gets more attention as a source of
inefficiency, error, and stress. Complaints about excessive
time spent processing, storing, finding, and collating
messages are commonplace among office workers at every
level and across organization type (Balter 1998). Business
self-help books (e.g., Song et al. 2007) coach readers on
regaining control of their lives from the “tyranny of email.”
Studies of email overload show that the problem can
negatively impact work performance (Dabbish and Kraut
2006) and that it imposes substantial costs on organizations
and national economies (Spira and Goldes 2007). Early
exploration of the problem focused on the ever-increasing
volume of email that users send and receive. More recent
investigations emphasize the centrality of email in
workplace tasks of all kinds, the resulting adoption of
email for personal task management (Mackay 1988;
Whittaker and Sidner 1996), and the many inadequacies of
email client software for this purpose (Belotti et al. 2003).
 Various projects have explored ways to reduce email
overload by improving client software. Most focus on
streamlining some aspect of message handling, e.g., by
automatically filing messages into user-defined folders
(e.g., Mock 2001), helping users quickly scan and decide
what to do with unhandled messages (Cadiz et al. 2001),
and identifying dependencies between messages in a

Copyright 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

conversational thread (Rohall et al. 2001). Belotti et al.
(2003, 2005) have gone further and reconceptualized the
email client in keeping with their view that “dealing with
email and dealing with tasks and projects are
indistinguishable.” Their system, Taskmaster, combines
email client and to-do list functionality with the aim of
alleviating problems that their studies show typical users
have with task management in email.
 These efforts differ in approach, but share the assumption
that a single application can serve as both a good email
client and a good task management tool. This assumption
seems suspect since users benefit at different times from
both message-centric and task-centric interfaces, and
hybrid designs typically entail compromise. Comments
from Taskmaster prototype users (Belotti et al. 2005)
suggest just such a tradeoff – e.g., complaints that screen
real estate devoted to listing and detailing tasks left too
little available to view messages. The limitations of a
hybrid approach become more apparent when we consider
integrating email not only with task management tools, but
also with numerous application programs useful for
carrying out email-derived tasks. Prospects for making
one tool do it all seem remote.
 An alternative approach follows the model of a trusted
personal assistant who reads and processes messages on
the boss’s behalf, helping the boss to sustain focus on
critical tasks and stay organized. The assistant uses
whatever tools are appropriate – an email client to read,
organize, and respond to messages; task or project
management software to maintain a to-do list; diverse
application programs to prepare or execute tasks. The
assistant does not rely on engineered integration of these
capabilities into a single tool but instead uses knowledge of
user tasks and how the tools support those tasks to
integrate their functions dynamically.
 The RADAR project has developed a software-based
personal assistant intended to help users cope with email
overload as effectively as a human assistant. The system
analyzes message text received by the user to distill out
task-relevant information including new tasks elicited by a
message. RADAR adds newly identified tasks to a
displayed Task List and provides machine-learning-based
guidance to the user on which task to do next. When the
user indicates the intention to begin a task by clicking on it,
RADAR invokes the appropriate application program and

Figure 1. After the user selects a task to modify incorrect meeting room data from the Task List (not shown),
Radar displays the email message (a) that originated this task alongside a database record modification form
(b) used to carry out tasks of this type. Radar fills in form fields based on extracted email content (c), leaving
it to the user to either accept or correct field values.

interacts with the user to assist execution (Figure 1). This
paper describes how RADAR components are integrated to
provide intelligent assistance and overviews results from
system evaluation experiments designed to measure
progress toward human-level assistance.

System Overview
The RADAR system consists of three sets of components
(Figure 2). Message-Task Linking (METAL) components
analyze email messages to identify new tasks, distill out
other task relevant content and establish user-navigable
links between task representations and message text.
Using METAL output, Multi-task Coordination Assistance
(MCA) components provide task-management support to
the user such as maintenance of a to-do list and guidance
on which item on the list to do next. Powertools (PT) are
application programs similar to the tools people normally
use to produce work products, but are enabled by METAL
and knowledge from past interactions to provide task-
aware user assistance.

Identifying Task-relevant Message Content
RADAR Message Task Linking (METAL) components
find associations between email text and user task

representations. Especially important are mechanisms that
detect new tasks elicited by arriving email and extract
specifying task parameters from message text. For
example, a message announcing that corporate visitors will
arrive at a particular date and time might imply a task to
reserve a conference room starting just after their
scheduled arrival. Task-relevance of a given message may
vary for different recipients depending on their goals and
responsibilities (e.g., an administrative staff person
responsible for allocating meeting space might view the
above email differently from someone merely interested in
attending the meeting), so METAL mechanisms must learn
what constitutes a task separately for each user.

Figure 2. Radar System

c

b a

 The high-level process for detecting and specifying
email-derived tasks is, in order: preprocess, annotate,
classify, extract. Preprocessing includes stemming
(normalizing text terms with the same morphological root)
and removal of stop words, as is typical for reducing
dimensionality of text for classification. Numerous natural
language processing components then annotate the text.
Some of these are domain independent. For example,
RADAR’s Time Expression Annotator identifies temporal
expressions (e.g., “next week”) in text and resolves
(anchors) them to points or ranges in absolute time (Han et
al. 2006). Other annotators are tied to particular users or
task types. For example, RADAR includes an annotator
that recognizes room names to support meeting-room
scheduling tasks. In some cases, RADAR can learn to
improve these annotators by observing as users perform
tasks with appropriately instrumented application programs
(Tomasic et al. 2007).
 RADAR assumes that the types of typical user tasks are
known and treats email task detection as a text
classification problem. We used a regularized logistic
regression suite of classifiers (based on body, headers,
links) and combined their results (Yang et al. 2005). The
classifiers were designed to be incrementally adaptive to
accommodate the impact of real-world changes (e.g., new
people, changing projects).
 We obtained fairly good results on task-based
classification (Figure 3) with accuracy (proportion of
correct positive and negative classifications of an email
message by task type) ≥ .90 for all task types and F11
macro average (a stronger measure generally considered
more meaningful than accuracy) = .67. The question of

Figure 3. Task classification results

1 F1 is the harmonic mean of recall (fraction of all existing tasks of a
given type found by the classifier) and precision (fraction of correctly
identified tasks of a given type in tasks returned by the classifier).

whether this performance is good enough is best answered
in the end-to-end system evaluation (see section below)
where RADAR users, overriding METAL errors as
needed, significantly outperformed users of off-the-shelf
(COTS) office software.
 Once a message has been categorized by task type,
RADAR extracts task-specific parameters from the
annotated text. For example, given a message found to
contain a task of type schedule-meeting-room,
extractors would look for temporal expressions
corresponding to the meeting start and end times. For a
task type with known parameters, extraction can be
considered a form-filling task (Cohen et al. 2005).
RADAR’s extraction method uses lightweight parsing as
input to the trainable MinorThird system (Cohen 2004;
Carvalho and Cohen 2006) that matches text terms to task
fields.

Task Management Assistance
RADAR takes a layered approach to user-system
integration and support for task management. At its core,
the key integrative structure is an explicit representation of
user/system tasks. The representation provides a basic
accounting of all currently known tasks including their
constraints (deadlines, dependencies with other tasks),
associations to other media (email) and execution state.
Through linkage to learned models of various task types,
these representations provide a basis for anticipating
resource requirements (e.g. necessary data inputs) and for
inferring task execution profiles (expected durations, likely
follow-on tasks). The set of currently known tasks is
managed by the RADAR Task Manager (TM) and made
accessible to the user through the RADAR Console. The
TM provides basic services for defining/instantiating new
tasks, monitoring task interactions and preconditions,
managing execution status, and collecting relevant user
action data and task results.
 The current Task List is exposed to the user through the
Console along with information and advice intended to
help the user stay organized and focused. The Console also
provides controls for selecting tasks and invoking tasks.
Email-derived tasks are linked back to their originating
messages. Users can easily inspect and edit task data to
compensate for METAL detection errors, thereby
facilitating assisted task execution provided by RADAR
Powertools.
 Layered on top of this integration infrastructure is the
Multi-task Coordination Assistant (MCA). MCA tackles
the broader problem of managing a busy user’s workload.
It uses learned knowledge about the types of tasks a user
performs, accumulated user experience in performing these
tasks, and learned preferences of specific users to provide
several complementary forms of task management advice.

Attention management – One form of advice MCA
provides is to draw user attention to tasks that have been

neglected or overlooked. The Attention Manager (AM)
learns productive task sequences and workflows, tracks
real-time progress, and alerts the user after detecting
failure to progress at important, urgent tasks. Because
interruptive reminders can themselves reduce productivity
(Iqbal and Horvitz 2007) and can annoy users, the AM
attempts to issue reminders at task boundaries (after
completing one task, before starting the next) when user
tolerance for interruption is highest (Smailagic et al. 2007).

Task Prioritization – A second form of advice provided
by MCA addresses the basic question of what task to do
next. The Task Prioritizer (TP) uses a Hidden Naïve Bayes
classifier (Zhang et al. 2005) to learn a set of dynamic task
ordering preferences in a given workflow setting from
analysis of the actions of expert users. A simple voting
method is then used to prioritize pending tasks facing the
current user at any point. These priorities are conveyed as
suggestions to the user within the Console’s todo list and
are updated periodically to reflect variable urgency.

Task Shedding – A third form of advice provided by
MCA considers the question of where and how to cut
corners when all tasks cannot be done within given time
constraints. The Task Shedding (TS) Advisor
(Varakantham and Smith 2008) uses learned models of
domain structure (characterizing task types and workflow
constraints) together with task prioritization information
provided by TP to construct and maintain an overall task
schedule. The schedule is represented using a Simple
Temporal Problem with Preferences and Uncertainty
model (Rossi et al. 2006). When expected workload is
projected to exceed available time, a relaxed solution is
computed that identifies which tasks to drop and which
others to compress to minimize expected quality loss. The
TS suggests this strategy to the user.

Task Execution Assistance
In office environments, carrying out a task typically
involves using application software to create or modify
work products in the form of, e.g., documents,
spreadsheets, messages, and databases. These programs
incorporate assistive automation such as spelling checkers
and macro recorders, but are not task-aware and thus
cannot provide assistance that depends on knowing the
type, status, or interactions among user tasks. In RADAR,
output from METAL components enables task-awareness –
at least for recognized email-derived tasks; learning
capabilities within an application make it possible to
translate that awareness into task execution assistance.
The RADAR system incorporates METAL-powered
applications (“Powertools”) focused on execution
assistance for three kinds of tasks: information retrieval
and update, resource scheduling, authoring status briefings.
Assisting Information System Update Tasks. Human
assistants are often asked to look up or update data in an

information system. For instance, human resource
assistants process numerous requests to update personnel
records; executive assistants process requests to schedule
conference rooms or make travel arrangements.
Processing a request typically involves reading it and then
locating, completing, and submitting a form corresponding
to the expressed intent. For example, upon reading a
request to “Please change the phone number on John Doe’s
web page to 555-1212”, a web site administrator would (1)
select the right form to update records in the database back
end to the web site; (2) select “John Doe” in the name field
to identify the specific record to be modified, possibly
using a pull-down menu; (3) enter a modified value into
the phone number field; (4) press the “submit” button to
execute the specified modification.
 The RADAR Virtual Information Officer (VIO)
component attempts to automate this process. In the best
case, METAL mechanisms accurately identify the task
type (Change Person) and task parameters (name:
John Doe; phone: 555-1212) in the request
message; VIO then retrieves and fills out the form on the
user’s behalf and presents the results to the user for
verification. If correct, the user only needs to confirm
VIO’s top form choice (ranked highest on a displayed list)
and press “Submit” to complete the task. If not, the user
modifies the incorrect values before submitting the form.
 The first three processing steps in the phone number
modification example above exemplify key challenges
addressed by VIO machine learning algorithms (including
METAL capabilities specific to VIO). For step 1, a k-way
boosted decision tree algorithm is used to generate a
ranked list of possible forms. In experimental evaluation
on a webmaster corpus (Zimmerman et al. 2007), this
approach performed very well (mean reciprocal rank > .90)
and better than tested alternatives. For step 2, entity
instance selection, VIO uses a Naïve Bayes classifier
(mean reciprocal rank > .85). For step 3, form field
completion, VIO uses a conditional random field model
trained to generate an extraction model. Performance
varies greatly by form field (0.0 < F1 < 1.0), depending
most strongly on the number of training labels. Each
algorithm is trained by a process of “domestication”
wherein labels on source message text are generated when
the user repairs incorrect VIO form-type, entity or form-
field predictions (Tomasic et al. 2007). Note that in VIO,
high precision is favored over high recall, because the cost
to the user of approving a correct prediction is much lower
than the cost of repairing an incorrect prediction, and the
cost of handling a missed prediction is exactly the cost that
the user would incur without assistance.

Assisting Resource Scheduling Tasks. A common task
for human assistants is to manage limited organizational
resources such as conference rooms and meeting
equipment. Resource management can become especially
demanding when there are multiple resources to manage,

multiple interacting resource requests, and overall demand
is high. The RADAR Space-Time Planner (STP) and
CMRadar components provide automated assistance in
such cases. STP provides scheduling optimization
capabilities, incorporating a new optimization algorithm
(Fink et al. 2006) designed for the kinds of mixed-initiative
allocation problems and uncertainty emphasized in the
RADAR evaluation (see section below). Optimizers are
only as good as the information supplied to them. The
RADAR project has placed particular emphasis on the
problem of timely, incremental capture of relevant
scheduling information from different sources and by
different means including

- Automatic recognition of schedule-relevant data and

constraint changes in e-mail traffic
- Learning regularities in the task environment, such as

the likelihood of success in seeking new resources that
change the scheduling problem to one that is less
constrained (Oh and Smith 2004)

- Improved representation of uncertainty [Bardak et al.
2006a] to more accurately capture data and constraints

- Active learning of critical data and constraints to
reduce uncertainty and thus enable improved
optimization (Bardak et al. 2006b)

Assisted Authoring of Status Reports. Assistants are
often responsible for tracking progress and reporting status
of some larger task such as completing a project or
preparing for a meeting. This can be especially demanding
and error-prone in high workload situations when the effort
to record and report takes valuable time away from the
effort to accomplish primary tasks. The RADAR Briefing
Assistant (BA) assists users in authoring status reports that
summarize what has and has not yet been accomplished.
The creation of high-quality reports requires extensive
knowledge capture, inference and synthesis capabilities
including (i) instrumentation of the activities performed by
the user, (ii) knowledge of relevant activities for reports,
including activities that should have occurred, (iii) a
learned model of the language and the level of abstraction
best used in the summary (e.g., “most updates were done”
versus “7 of 9 updates were done”), and (iv) a learned
model of the relative importance of various parts of a status
report. System instrumentation in all RADAR components
tracks activity data and logs it in the TM that is used by the
BA. When the user begins a task to generate a status
briefing (represented on the RADAR-maintained to-do
list), the system summarizes past activity into a list of
“bullet points” ranked and abstracted in accordance with
the BA’s learning model (Kumar et al. 2006).

System Evaluation
As a 5-year project under DARPA’s Personalized Assistant
that Learns (PAL) program, RADAR is evaluated yearly to

measure machine learning research progress with particular
focus on “learning in the wild” – i.e., learning from passive
observation or natural interaction with the user. Project
members set two additional evaluation objectives: (1)
measure the utility of RADAR compared to state-of-
practice alternatives, thus providing a basis for deciding
when the technology is mature enough for practical use
and (2) obtain guidance on how best to direct component-
level research to advance this goal. Here we briefly
overview experimental design and results from tests run in
two consecutive years (year 2 and year 3 of the project).
See Steinfeld et al. (2007a) for a more detailed discussion.

Experiment Design
The experiments included four conditions varying the tools
available to human subjects. In the first condition, subjects
used a version of RADAR that had undergone a period of
simulated use, allowing learning mechanisms to train the
system and (presumably) improve performance. We refer
to this condition as RADAR + Learning (abbreviated
“+L”). In the “-L” condition, subjects used an untrained
version representing RADAR prior to any learning
opportunity. “COTS” subjects used commercial off-the-
shelf tools instead of RADAR to perform the task. Each
“COTS+A” participant was randomly paired with one of
10 human assistants, each a confederate member of the
experiment team who shared the workload and helped the
subjects manage tasks (e.g., by prompting them to do
urgent tasks). The experiments tested four hypotheses:

+L > COTS: subjects assisted by RADAR would beat
those using COTS tools
+L > COTS+A: subjects with RADAR would beat those
with a human assistant
+L > -L: RADAR would provide better assistance with
learning enabled than with learning disabled
ΔL increasing: performance attributable to learning
would increase in each yearly test (from system
improvements, not additional training)

The subjects’ overall task was to take over organizing a
fictional academic conference, substituting for a now-
incapacitated organizer (“Blake Randal”) who had made
significant progress but left some things unfinished or
incomplete. Subjects were instructed to go through Blake’s
email inbox (119 messages) to learn what else needed
doing and come as close as possible to completing
remaining tasks. Some messages had clear associated
tasks (e.g., a request to change a misspelled name on the
conference web site) or implied tasks (e.g., information
that a speaker would be arriving late in the conference,
implying a need to reschedule the session and then post the
revised schedule to the website), while others contained
irrelevant “noise” messages. In addition, an unexpected
“crisis” described in the message stream (e.g., that a block
of rooms with scheduled sessions is no longer available)

partially invalidated existing plans, requiring significant
replanning.
 Materials developed to support the test included the
email corpus and a simulated world, the latter specifying
information about the conference (e.g., sessions to be
scheduled), the physical environment (e.g., rooms where
sessions might be placed), and people (e.g., speaker names
and contact info). The conference itself was a 4-day, multi-
track meeting with more than 130 talks and posters,
complete with exhibit hall, social events, poster sessions,
tutorials, workshops, plenary talks, and a keynote address.
Speakers and other people defined in the scenario were
assigned email addresses, phone numbers and, in many
cases, fax numbers, website addresses, and organizations.
 Subjects used a web browser to access information about
the physical space (campus center, academic building, off-
site hotel) presented in university web pages accessible
from the subject’s home page. Other static web content
included Blake’s original schedule, a conference planning
manual, and manuals for tools used by the subjects.
Subjects were also given access to a realistic web-based,
“university approved” vendor portal where goods and
services such as audio-visual equipment, security, and
catering could be ordered for the conference. Email
receipts including hyperlinks to modification/cancellation
pages and computed prices were delivered to the subject’s
mail client in real time. Developing this experimental
framework required substantial time and resources. Effort
to make it available for use by other research projects is
under way (Steinfeld 2008).
 Overall score in the range [0.000 - 1.000] was a
weighted sum of sub-scores on three work products: the
conference schedule (based on constraints met, special
requests handled, correct vendor orders made, and so on);
conference web site (accuracy and completeness); and
status briefing to the conference chair. Score criteria,
weights (2/3 for the schedule, 1/6 each for the web site and
briefing), and possible score penalties (e.g., for
overspending budget) were determined by outside
evaluators. In addition, outside evaluators designed key
elements of each test including the email message stacks,
ensuring that RADAR could not be designed around
particular test elements.
 Recruited subjects had no relevant domain experience or
knowledge of RADAR, but were required to be computer
literate and fluent in English. Each was run through
approximately 4 hours of testing – 2 for subject training
and 2 for time on task. During the training period, subjects
were informed of the scenario, their responsibilities, task
scoring criteria, and payout schedule (designed to align
subject priorities with scoring criteria). They were trained
to use tools appropriate for their assigned test condition
and guided through practice examples of all core toolset
features. For subjects in the +L and –L conditions, these
tools included RADAR components described earlier in
this paper: STP and CMRadar for creating the conference

schedule; VIO for web site updates and vendor orders; BA
for authoring status updates.

Results
As shown by the table of results below, the first three
hypotheses were easily met with p-values below 0.0001.
Thus, subjects assisted by RADAR+L (with learning) out-
performed subjects using COTS tools, with and without an
assistant, and subjects using RADAR-L (without learning).
The difference in performance across years between non-
learning versions of RADAR was not statistically
significant. However, performance in the learning
condition (as measured by the delta between the learning
and non-learning condition) improved significantly (t-ratio
2.9, p<0.0034) from year 2 to year 3 with the contribution
of learning to overall performance increasing by 41%.

Condition Year 2 Year 3
 N Final_Score N Final_Score
COTS 18 0.402 31 0.409
COTS+A n/a n/a 20 0.525
Radar –L 18 0.509 42 0.534
Radar +L 18 0.630 32 0.705

More generally, our evaluation showed that task-aware
application programs and task management tools can
improve user performance and that automated detection of
tasks and task-relevant information can be particularly
helpful in reducing the impact of email information
overload. In addition, post-test surveys (Steinfeld et al.
2007b) found that RADAR users had a far more favorable
test experience than subjects using comparable COTS
tools. In particular, RADAR users were more confident
that they had done tasks well, found tasks easier to
complete, felt more immersed in the test, and assessed
themselves (correctly) as having completed more work.

Conclusion
RADAR technology is intended for use in real-world
environments. Is it ready? Results of our evaluation
studies are encouraging about its potential to speed tasks
and improve user experience under high email load.
Positive survey responses indicate that user acceptance
does not depend on AI providing near-perfect task
awareness and that good user interface and interaction
design can compensate. Perhaps the biggest unknown is
whether users will tolerate relatively low performance
early on as the system learns to detect task-relevant
message content and provide meaningful assistance.
Continued research on RADAR focuses on ways to reduce
the training interval (e.g., Donmez and Carbonell, 2008),
provide more intelligent assistance at an early stage of
training, and dynamically restructure user interaction to
reflect current system competence.

 Several efforts to incorporate RADAR capabilities into
non-research tools are under way. METAL technology has
been incorporated into the trouble report processing for the
U.S. Navy’s F/A-18 Automated Maintenance
Environment. Tests on more than 6500 such reports (2
months worth) showed good performance classifying the
kind of trouble-handling task (F1 micro-average = .84) and
determining priority on a 1-5 scale (F1 micro-average =
.72). This level of performance was seen as likely to
improve report-handling efficiency and led to rapid
integration of the technology into operational Navy
systems. Other efforts focused on integrating RADAR into
work systems and general productivity tools are ongoing.

Acknowledgments
The authors thank the more than 100 researchers and
developers who have contributed to RADAR. Special
thanks to Andrew Faulring and William Cohen for
comments and suggestions on this paper. This material is
based upon work supported by the Defense Advanced
Projects Research Agency (DARPA) under Contract No.
FA8750-07-D-0185.

References
Balter, O. 1998. Electronic Mail in Working Context. PhD Thesis. Royal
Institute of Technology, Stockholm, Sweden.
Bardak, U., Fink, E., Carbonell, J. 2006a. Scheduling with Uncertain
Resources Part 2: Representation and Utility Function. Proc. IEEE
International Conference on Systems, Man, and Cybernetics, pages 1486-
1492.
Bardak, U., Fink, E., Martens, C., Carbonell, J. 2006b. Scheduling with
Uncertain Resources Part 3: Elicitation of Additional Data. Proc. IEEE
International Conference on Systems, Man, and Cybernetics, pages 1493-
1498.
Belotti, V., Ducheneaut, M., Howard, M., Smith, I. 2003. Taking Email to
Task: The Design and Evaluation of a Task Management Centered E-Mail
Tool. Proc. 2003 Conference on Computer/Human Interaction, ACM
Press, 345-352.

Belotti, V., Ducheneaut, N., Howard, M., Smith, I. and Grinter, R. 2005.
Quality vs. Quantity: Email-centric task management and its relations
with overload. Human-Computer Interaction, 20, 2/3, 89-138.
Cadiz, J. J., Dabbish, L., Gupta, A., and Venolia, G. D. 2001. Supporting
Email Workflow. Technical Report MSR-TR-2001-88. Redmond, WA:
Microsoft Research.
Carvalho, V., Cohen, W. 2006. Improving Email Speech Act Analysis
via n-gram Selection. HLT/NAACL ACTS Workshop.
Cohen, W. 2004. Minorthird: Methods for identifying names and
ontological relations in text using heuristics for inducing regularities from
data. http://minorthird.sourceforge.net
Cohen, W., Minkov, E. and Tomasic, A. 2005. Learning to Understand
Web Site Update Requests. Proc. 1995 International Joint Conference on
Artificial Intelligence.
Dabbish, L., Kraut, R. 2006. Email Overload at Work: An Analysis of
Factors Associated with Email Strain. Proc. 2006 Conference on
Computer Supported Collaborative Work, ACM.
Donmez, P., Carbonell, J. 2008. Paired Sampling in Density-Sensitive
Active Learning. Proc. 10th International Symposium on Artificial
Intelligence and Mathematics, Florida.
Fink, E., Jennings, M., Bardak, U., Oh, J,. Smith,, S. Carbonell, J. 2006.
Scheduling with Uncertain Resources: Search for a Near-Optimal

Solution. Proc. IEEE International Conference on Systems, Man, and
Cybernetics, pages 137-144.
Han, B., Gates, D., Levin, L. 2006. From Language to Time: A Temporal
Expression Anchorer. Proc. 13th International Symposium on Temporal
Representation and Reasoning (TIME 2006).
Iqbal, S.T., Horvitz, E. 2007. Disruption and Recovery of Computing
Tasks: Field Study, Analysis and Directions. Proc. 2007 Conference on
Computer/Human Interaction.
Kumar, M., Garera, N., Rudnicky, A. 2006. A Briefing Tool that Learns
Report-writing Behavior”, IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Washington D.C., USA.
Mackay, W.E. 1988. More than Just a Communication System: diversity
in the use of electronic mail. Proc. 1988 Conference on Computer
Supported Collaboartive Work. ACM.
Mock, K. 2001. An Experimental Framework for Email Categorization
and Management. Proc. SIGIR 2001. New York: ACM.
Oh, J., Smith, S. 2004. Learning User Preferences in Distributed Calendar
Scheduling. Proc. 5th International Conference on the Practice and
Theory of Automated Timetabling, Pittsburgh PA.
Rohall, S.L., Gruen, D., Moody, P., Kellerman, S. 2001. Email
Visualizations to Aid Communications. Proc. 2001 Conference on
Information Visualization, IEEE. 12-15.
Rossi, F., Venable, K. B., Yorke-Smith, N. 2006. Uncertainty in Soft
Temporal Constraint Problems: A general framework and controllability
algorithms for the fuzzy case. JAIR 27:617–674.
Smailagic, A., Siewiorek, D., De la Torre, F., Pradhan, P., Shah, A.,
Vigar, J. 2007. Task Interruptibility Analysis. Technical Report, Institute
for Complex Engineered Systems, Carnegie Mellon University,
Pittsburgh, PA.
Song, M., Halsey, V., Burress, T. 2007. The Hamster Revolution: How to
Manage Your Email Before It Manages You, Berrett-Koehler.
Spira, J., Goldes, D. 2007. Information Overload: We Have Met the
Enemy and He is Us. Report by Basex Inc.
Steinfeld, A. 2008. Airspace web site, http://www.cs.cmu.edu/~airspace
Steinfeld, A., Bennett, S. R., Cunningham, K., Lahut, M., Quinones, P.-
A., Wexler, D., Siewiorek, D., Hayes, J., Cohen, P., Fitzgerald, J.,
Hansson, O., Pool, M., Drummond, M. 2007a. Evaluation of an Integrated
Multi-Task Machine Learning System with Humans in the Loop. Proc.
NIST Performance Metrics for Intelligent Systems Workshop.
Steinfeld, A., Quinones, P.-A., Zimmerman, J., Bennett, S. R., Siewiorek,
D. 2007b. Survey Measures for Evaluation of Cognitive Assistants, Proc.
NIST Performance Metrics for Intelligent Systems Workshop.
Tomasic, A., Simmons, I., Zimmerman, J. 2007. Learning Information
Intent via Observation. Proc. International World Wide Web Conference
(WWW).
Varakantham, P., Smith, S.F., "Advising Busy Users on How to Cut
Corners", Technical Report CMU-RI-08-17, The Robotics Institute,
Carnegie Mellon University, April 2008.
Whittaker, S., Sidner, C. 1996. Email overload: Exploring personal
information management of email. Proc. 1996 Conference on
Computer/Human Interaction. ACM.
Yang, Y., Yoo, S., Zhang, Z., Kisiel, B. 2005. Robustness of Adaptive
Filtering Methods in a Cross-benchmark Evaluation. Proc. 28th Annual
International ACM SIGIR Conference (SIGIR 2005), Brazil.
Zhang, H., Jiang, L., Su, J. 2005. Hidden Naive Bayes. Proc. AAAI, 919–
924. AAAI Press.
Zimmerman, J., Tomasic, A., Simmons, I., Hargraves, I., Mohnkern, K.,
Cornwell, J., McGuire, R. 2007. VIO: A mixed-initiative approach to
learning and automating procedural update tasks. Proc. 2007 Conference
on Computer/Human Interaction.

