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Abstract

Prior work has shown that features which appear to be biologically plausible as
well as empirically useful can be found by sparse coding with a prior such as
a laplacian (L1) that promotes sparsity. We show how smoother priors can pre-
serve the benefits of these sparse priors while adding stability to the Maximum
A-Posteriori (MAP) estimate that makes it more useful for prediction problems.
Additionally, we show how to calculate the derivative of the MAP estimate effi-
ciently with implicit differentiation. One prior that can be differentiated this way
is KL-regularization. We demonstrate its effectiveness on a wide variety of appli-
cations, and find that online optimization of the parameters of the KL-regularized
model can significantly improve prediction performance.

1 Introduction

Sparse approximation is a key technique developed in engineering and the sciences which approxi-
mates an input signal,X , in terms of a “sparse” combination of fixed basesB. Sparse approximation
relies on an optimization algorithm to infer the Maximum A-Posteriori (MAP) weights Ŵ that best
reconstruct the signal, given the model X ≈ f(BW ). In this notation, each input signal forms
a column of an input matrix X , and is generated by multiplying a set of basis vectors B, and a
column from a coefficient matrix W , while f(z) is an optional transfer function. This relationship
is only approximate, as the input data is assumed to be corrupted by random noise. Priors which
produce sparse solutions for W , especially L1 regularization, have gained attention because of their
usefulness in ill-posed engineering problems [1], their ability to elucidate certain neuro-biological
phenomena, [2, 3], and their ability to identify useful features for classification from related unla-
beled data [4].
Sparse coding [2] is closely connected to Independent Component Analysis as well as to certain
approaches to matrix factorization. It extends sparse approximation by learning a basis matrix B
which represents well a collection of related input signals–the input matrix X–in addition to per-
forming optimization to compute the best set of weights Ŵ . Unfortunately, existing sparse coding
algorithms that leverage an efficient, convex sparse approximation step to perform inference on the
latent weight vector [4] are difficult to integrate into a larger learning architecture. It has been
convincingly demonstrated that back-propagation is a crucial tool for tuning an existing generative
model’s output in order to improve supervised performance on a discriminative task. For example,
greedy layer-wise strategies for building deep generative models rely upon a back-propagation step
to achieve excellent model performance [5]. Unfortunately, existing sparse coding architectures pro-
duce a latent representation Ŵ that is an unstable, discontinuous function of the inputs and bases;
an arbitrarily small change in input can lead to the selection of a completely different set of latent
weights.
We present an advantageous new approach to coding that uses smoother priors which preserve the
sparsity benefits of L1-regularization while allowing efficient convex inference and producing stable
latent representations Ŵ . In particular we examine a prior based on minimizing KL-divergence to
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the uniform distribution which has long been used for approximation problems [6, 7]. We show this
increased stability leads to better semi-supervised classification performance across a wide variety
of applications for classifiers using the latent representation Ŵ as input. Additionally, because of
the smoothness of the KL-divergence prior, B can be optimized discriminatively for a particular
application by gradient descent, leading to outstanding empirical performance.

2 Notation

Uppercase letters, X , denote matrices and lowercase letters, x, denote vectors. For matrices, super-
scripts and subscripts denote rows and columns respectively. Xj is the jth column of X , Xi is the
ith row of X , and Xi

j is the element in the ith row and jth column. Elements of vectors are indicated
by subscripts, xj , and superscripts on vectors are used for time indexing xt. XT is the transpose of
matrix X .

3 Generative Model

Sparse coding fits a generative model (1) to unlabeled data, and the MAP estimates of the latent
variables of this model have been shown to be useful as input for prediction problems [4]. (1)
divides the latent variables into two independent groups, the coefficients W and the basis B, which
combine to form the matrix of input examples X . Different examples (columns of X) are assumed
to be independent of each other. The Maximum A Posteriori (MAP) approximation replaces the
integration over W and B in (1) with the maximum value of P (X|W,B)P (W )P (B), and the
values of the latent variables at the maximum, Ŵ and B̂, are the MAP estimates.
Finding Ŵ given B is an approximation problem, solving for Ŵ and B̂ simultaneously over a set
of independent examples is a coding problem.

P (X) =
∫
B

∫
W

P (X|W,B)P (W )P (B)dWdB =
∫
B

P (B)
∫
W

∏
i

P (Xi|Wi, B)P (Wi)dWdB (1)

GivenB, the negative log of the generative model can be optimized independently for each example,
and it is denoted for a generic example x by L in (2). L decomposes into the sum of two terms, a loss
function DL (x‖f(Bw)) between an input example and the reconstruction produced by the transfer
function f , and a regularization functionDP (w‖p) that measures a distance between the coefficients
for the example w and a parameter vector p. A regularization constant λ controls the relative weight
of these two terms. For fixed B, minimizing (2) with respect to w separately for each example is
equivalent to maximizing (1).

L = DL (x‖f(Bw)) + λDP (w‖p) (2)
ŵ = arg min

w
L (3)

In many applications, the anticipated distribution of x after being corrupted by noise can be modeled
by an exponential family distribution. Every exponential family distribution defines a Bregman di-
vergence which serves as a matching loss function for estimating the parameters of the distribution1.
One common choice for the loss/transfer functions is the squared loss function with its matching
linear transfer function, DL (x‖f(Bw)) =

∑
i(xi−Biw)2, which is the matching Bregman Diver-

gence for x drawn from a multidimensional gaussian distribution.
The regularization function DP (w‖p) is also often a Bregman divergence, but may be chosen for
other features such as the sparsity of the resulting MAP estimate ŵ. A vector is commonly called
sparse if many elements are exactly zero. The entropy [9, 10], and Lpp-norm2, p ≤ 1 regularization
functions [2, 3, 4] promote this form of sparsity, and all of them have shown the ability to learn bases

1The maximum likelihood parameter estimate for any regular exponential family distribution can be found
by minimizing the corresponding Bregman divergence for that family, and every Bregman divergence has a
matching transfer function which leads to a convex minimization problem [8]. That matching transfer function
is the gradient ∇φ of the function φ which is associated with the Bregman divergence Dφ(x‖y) = φ(x) −
φ(y)− 〈x− y,∇φ(y)〉.

2Lpp(x) =
P
i |xi|

p corresponds to the negative log of a generalized gaussian prior.
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containing interesting structure from unlabeled data. However, of these only L1 leads to an efficient,
convex procedure for inference, and even this prior does not produce differentiable MAP estimates.
We argue that if the latent weight vector ŵ is to be used as input to a classifier, a better definition of
“sparsity” is that most elements in ŵ can be replaced by elements in a constant vector p without sig-
nificantly increasing the loss. One regularization function that produces this form of pseudo-sparsity
is the KL-divergence KL(w‖p). This regularization function has long been used for approximation
problems in Geophysics, Crystallography, Astronomy, and Physics, where it is commonly referred to
as Maximum Entropy on the Mean (MEM) [7], and has been shown in the online setting to compete
with low L1-norm solutions in terms of regret [11, 12].
L1 regularization provides sparse solutions because its Fenchel dual [13] is the max function, mean-
ing only the most useful basis vectors participate in the reconstruction. A differentiable approxima-
tion to maxi xi is a sum of exponentials,

∑
i e
x
i , whose dual is the KL-divergence (4). Regularization

with KL has proven useful in online learning, where it is the implicit prior of the exponentiated gra-
dient descent (EGD) algorithm. EGD has been shown to be “sparse” in the sense that it can select a
few relevant features to use for a prediction task from many irrelevant ones.
The form of KL we use (4) is the full Bregman divergence of the negative entropy function3. Often
KL is used to compute distances between probability distributions, and for this case the KL we
use reduces to the standard form. For sparse coding however, it is inconvenient to assume that
‖ŵ‖1 = ‖p‖1 = 1, so we use the full unnormalized KL instead.

DP (w‖p) =
∑
i

[
wi log

wi
pi
− wi + pi

]
(4)

For the prior vector p we use a uniform vector whose L1 magnitude equals the expected L1 mag-
nitude of w. p has an analogous effect to the q parameter in Lq-norm regularization. p → 0
approximates L1 and p → ∞ approximates L2. Changing p affects the magnitude of the KL term,
so λ in (2) must be adjusted to balance the loss term in the sparse coding objective function (small
values of p require small values of λ).
Below we provide a) an efficient procedure for inferring ŵ in this model; b) an algorithm for itera-
tively updating the bases B, and c) show that this model leads to differentiable estimates of ŵ. We
also provide the general form of the derivative for arbitrary Bregman losses.

4 Implementation

To compute ŵ with KL-regularization, we minimize (3) using exponentiated gradient descent (EGD)
with backtracking until convergence (5). EGD automatically enforces positivity constraints on the
coefficient vector w, and is particularly efficient for optimization because it is the natural mirror
descent rule for KL-regularization [12]. The gradient of the objective function (2) with respect to
the coefficient for the jth basis vector wj is given in (6) for matching loss/transfer function pairs.

wt+1
j = wtje

−α ∂L
∂wj (5)

∂L

∂wj
= (f(Bw)− x)TBj + λ log

wj
pj

(6)

This iterative update is run until the maximum gradient element is less than a threshold, which
is estimated by periodically running a random set of examples to the limits of machine precision,
and selecting the largest gradient threshold that produces ŵ within ε of the exact solution. The
α parameter is continuously updated to balance the number of sucessful steps and the number of
backtracking steps4. Because L1-regularization produces both positive and negative weights, to
compare L1 and KL regularization on the same basis we expand the basis used for KL by adding the
negation of each basis vector, which is equivalent to allowing negative weights (see Appendix C).
During sparse coding the basis matrix B is updated by Stochastic Gradient Descent (SGD), giving
the update rule Bt+1 = Bt − η ∂L

∂Bij
. This update equation does not depend on the prior chosen

3−H(x) = x log(x)
4In our experiments, if the ratio of backtracking steps to total steps was more than 0.6, α was decreased by

10%. Similarly α was increased by 10% if the ratio fell below 0.3.
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for w and is given in (7) for matching loss/transfer function pairs. SGD implements an implicit
L2 regularizer and is suitable for online learning, however because the magnitude of w is explicitly
penalized, the columns of B were constrained to have unit L2 norm to prevent the trivial solution of
infinitely large B and infinitely small w. The step size was adjusted for the magnitude of ŵ in each
application, and was then decayed over time as η ∝ 1/

√
t. The same SGD procedure was also used

to optimize B through backpropagation, as explained in the next section.

∂L

∂Bij
= wj(f(Biw)− xi) (7)

5 Modifying a Generative Model For A Discriminative Task

Sparse Coding builds a generative model from unlabeled data that captures structure in that data by
learning a basis B. Our hope is that the MAP estimate of basis coefficients ŵ produced for each
input vector x will be useful for predicting a response y associated with x. However, the sparse
coding objective function only cares about reconstructing the input well, and does not attempt to
make ŵ useful as input for any particular task. Fortunately, since priors such as KL-divergence
regularization produce solutions that are smooth with respect to small changes in B and x, B can be
modified through back-propagation to make ŵ more useful for prediction.
The key to computing the derivatives required for backpropagation is noting that the gradient with
respect to w of the optimization (3) at its minimum ŵ can be written as a set of fixed point equations
where the gradients of the loss term equal the gradient of the regularization:

∇DP (ŵ‖p) = − 1
λ
∇DL (x‖f(Bŵ)) . (8)

Then if the regularization function is twice differentiable with respect to w, we can use implicit
differentiation on (10) to compute the gradient of ŵ with respect to B, and x [14]. For KL-
regularization and the simple case of a linear transfer function with squared loss, ∂ŵ

∂B is given in
(9), where ~ei is a unit vector whose ith element is 1. A general derivation for matched loss/transfer
function pairs as defined before is provided in appendix C. Note that the ability to compute ∂ŵ

∂x
means that multiple layers of sparse coding could be used.

∂ŵ

∂Bki
= −

(
BTB + diag(

λ

ŵ
)
)−1 (

(Bkŵi)T +~ei(f(Bkŵ)− xk)
)

(9)

6 Experiments

We verify the performance of KL-sparse coding on several benchmark tasks including the MNIST
handwritten digit recognition data-set, handwritten lowercase English characters classification,
movie review sentiment regression, and music genre classification (Appendix E). In each applica-
tion, the ŵ produced using KL-regularization were more useful for prediction than those produced
with L1 regularization due to the stability and differentiability provided by KL.

6.1 Sparsity

KL-regularization retained the desirable pseudo-sparsity characteristics of L1, namely that each
example, x, produces only a few large elements in ŵ. Figure 1 compares the mean sorted and
normalized coefficient distribution over the 10,000 digit MNIST test set for KL-divergence and
several Lpp regularization functions, and shows that although the KL regularization function is not
sparse in the traditional sense of setting many elements of ŵ to zero, it is sparse in the sense that ŵ
contains only a few large elements in each example, lending support to the idea that this sense of
sparsity is more important for classification.

6.2 Stability

Because the gradient of the KL-divergence regularization function goes to∞ with increasing w, it
produces MAP estimates ŵ that change smoothly with x and B (see Appendix A for an intuitive
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Figure 1: Left: Mean coefficient distribution over the 10,000 digit MNIST test set for various regularization
functions. Each example ŵ was sorted by magnitude and normalized by ‖ŵ‖∞ before computing the mean
over all examples. Right: test set classification performance. Regularization functions that produced few large
values in each examples (such as KL and L1) performed the best. Forcing small coefficients to be exactly 0
was not necessary for good performance. Note the log scale on the horizontal axis.

Gaussian Noise (Standard Deviation) Random Translations (pixels)
Regularization 0.01 0.1 0.1 1
L1 0.0283±0.0069 0.285±0.056 0.138±0.026 1.211±0.213
KL 0.0172±0.0016 0.164±0.015 0.070±0.011 0.671±0.080

Table 1: The 10,000 images of handwritten digits in the MNIST test set were used to show the stability
benefits of KL-regularization. Distance (in L1) between the representation for x, ŵ, and the representation
after adding noise, divided by ‖ŵ‖1. KL-regularization provides representations that are significantly more
stable with respect to both uncorrelated additive Gaussian noise (Left), and correlated noise from translating
the digit image in a random direction (Right).

explanation). Table 1 quantifies how KL regularization significantly reduces the effect on ŵ of
adding noise to the input x.
This stability improves the usefulness of ŵ for prediction. Figure 2 shows the most-discriminative
2-D subspace (as calculated by Multiple Discriminant Analysis [15]) for the input space, the L1 and
KL coefficient space, and the KL coefficient space after it has been specialized by back-propagation.
The L1 coefficients tame the disorder of the input space so that clusters for each class are apparent,
although noisy and overlapping. The switch to KL regularization makes these clusters more distinct,
and applying back-propagation further separates the clusters.

Figure 2: Shown is the distribution of the eight most confusable digit classes in the input space and in the
coefficient spaces produced by sparse approximation. Multiple Discriminant Analysis was used to compute the
most discriminative 2-D projection of each space. The PCA-whitened input space (left) contains a lot of overlap
between the classes. L1 regularization (center) discovers structure in the unlabeled data, but still produces more
overlap between classes than KL sparse approximation (right) does with the same basis trained with L1 sparse
coding. Figure best seen in color.

6.3 Improved Prediction Performance

On all applications, the stability provided by KL-regularization improved performance over L1, and
back-propagation further improved performance when the training set had residual error after an
output classifier was trained.
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6.3.1 Handwritten Digit Classification

We tested our algorithm on the benchmark MNIST handwritten digits dataset [16]. 10,000 of the
60,000 training examples were reserved for validation, and classification performance was evaluated
on the separate 10,000 example test set. Each example was first reduced to 180D from 768D by
PCA, and then sparse coding was performed using a linear transfer function and squared loss5. The
validation set was used to pick the regularization constant, λ, and the prior mean for KL, p.
Maxent classifiers6 [17] were then learned on randomly sampled subsets of the training set of vari-
ous sizes. Switching from L1-regularized to KL-regularized sparse approximation improved perfor-
mance in all cases (Table 2). When trained on all 50,000 training examples, the test set classification
error of KL coefficients, 2.21%, was 37% lower than the 3.53% error rate obtained on the L1-
regularized coefficients. As shown in Table 3, this increase in performance was consistent across
a diverse set of classification algorithms. After running back-propagation with the KL-prior, the
test set error was reduced to 1.30%, which improves on the best results reported7 for other shallow-
architecture permutation-invariant classifiers operating on the same data set without prior knowledge
about the problem8, (see Table 4).

Training Set Size 1000 2000 10000 20000 50000
L1 (Test Set) 7.72% 6.63% 4.74% 4.16% 3.53%
KL (Test set) 5.87% 5.06% 3.00% 2.51% 2.21%
KL After Backprop (Test Set) 5.66 4.46% 2.31% 1.78% 1.30%
Improvement from Backprop 3.6% 11.9% 23.0% 29.1% 43.0%
KL (Training Set) 0.00% 0.05% 1.01% 1.50% 1.65%

Table 2: The ability to optimize the generative model with back-propagation leads to significant performance
increases when the training set is not separable by the model learned on the unlabeled data. Shown is the
misclassification rate on the MNIST digit classification task. Larger training sets with higher residual error
benefit more from back-propagation.

Classifier PCA L1 KL KL+backprop
Maxent 7.49% 3.53% 2.21% 1.30%
2-layer NN 2.23% 2.13% 1.40% 1.36%
SVM (Linear) 5.55% 3.95% 2.16% 1.34%
SVM (RBF) 1.54% 1.94% 1.28% 1.31%

Table 3: The stability afforded by the KL-prior improves the performance of all classifier types over the
L1 prior. In addition back-propagation allows linear classifiers to do as well as more complicated non-linear
classifiers.

Algorithm L1 KL KL+backprop SVM 2-layer NN [18] 3-layer NN
Test Set Error 3.53% 2.21% 1.30% 1.4% 1.6% 1.53%

Table 4: Test set error of various classifiers on the MNIST handwritten digits database.

6.3.2 Transfer to Handwritten Character Classification

In [4], a basis learned by L1-regularized sparse coding on handwritten digits was shown to improve
classification performance when used for the related problem of handwritten character recognition

5This methodology was chosen to match [4]
6Also known as multi-class logistic regression
7An extensive comparison of classification algorithms for this dataset can be found on the MNIST website,

http://yann.lecun.com/exdb/mnist/
8Better results have been reported when more prior knowledge about the digit recognition problem is pro-

vided to the classifier, either through specialized preprocessing or by giving the classifier a model of how digits
are likely to be distorted by expanding the data set with random affine and elastic distortions of the training
examples or training with vicinal risk minimization. Convolutional Neural Networks produce the best results
on this problem, but they are not invariant to permutations in the input since they contain a strong prior about
how pixels are connected.
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with small training data sets (< 5000 examples). The handwritten English characters dataset9 they
used consists of 16x8 pixel images of lowercase letters. In keeping with their work, we padded
and scaled the images to match the 28x28 pixel size of the MNIST data, projected onto the same
PCA basis that was used for the MNIST digits, and learned a basis from the MNIST digits by
L1-regularized sparse coding. This basis was then used for sparse approximation of the English
characters, along with a linear transfer function and squared loss.
In this application as well, Table 5 shows that simply switching to a KL prior from L1 for sparse
approximation significantly improves the performance of a maxent classifier. Furthermore, the KL
prior allows online improvement of the sparse coding basis as more labeled data for the character-
recognition task becomes available. This improvement increases with the size of the training set, as
more information becomes available about the target character recognition task.

Training Set Size Raw PCA L1 KL KL+backprop
100 44.3 46.9 44.0 49.4 50.7
500 60.4 61.2 63.7 69.2 69.9
1000 66.3 66.7 69.5 75.0 76.4
5000 75.1 76.0 78.9 82.5 84.2
20000 79.3 79.7 83.3 86.0 89.1

Table 5: Classification Accuracy on 26-way English Character classification task.

6.3.3 Comparison to sLDA: Movie Review Sentiment Regression
KL-regularized sparse coding bears some similarities to the supervised LDA (sLDA) model intro-
duced in [19], and we provide results for the movie review sentiment classification task [20] used
in that work. To match [19] we use vectors of normalized counts for the 5000 words with the high-
est tf-idf score among the 5006 movie reviews in the data set, use 5-fold cross validation, compute
predictions with linear regression on ŵ, and report our performance in terms of predictive R2 (the
fraction of variability in the out-of-fold response values which is captured by the out-of-fold predic-
tions ŷ: pR2 := 1−(

∑
(y− ŷ)2)/(

∑
(y− ȳ)2)). Since the input is a probability distribution, we use

a normalized exponential transfer function, f(B,w) = eBw

‖eBw‖1 , to compute the reconstruction of the
input. For sparse coding we use KL-divergence for both the loss and the regularization functions,
as minimizing the KL-divergence between the empirical probability distribution of the document
given by each input vector x and f(B,w) is equivalent to maximizing the “constrained Poisson
distribution” used to model documents in [21] (details given in appendix D). Table 6 shows that the
sparse coding generative model we use is competitive with and perhaps slightly better than LDA.
After back-propagation, its performance is superior to the supervised version of LDA, sLDA10.

predictive R2 Algorithm
0.263 LDA [19]
0.264 64D unsupervised KL sparse coding
0.281 256D unsupervised KL sparse coding
0.457 L1-regularized regression [19]
0.500 sLDA [19]
0.507 L2-regularized regression
0.534 256D KL-regularized coding with backprop

Table 6: Movie review sentiment prediction task. KL-regularized sparse coding compares favorably with LDA
and sLDA.

7 Conclusion

This paper demonstrates on a diverse set of applications the advantages of using a differentiable,
smooth prior for sparse coding. In particular, a KL-divergence regularization function has significant

9Available at http://ai.stanford.edu/˜btaskar/ocr/
10Given that the word counts used as input are very sparse to begin with, classifiers whose regret bounds de-

pend on the L2 norm of the gradient of the input (such as L2-regularized least squares) do quite well, achieving
a predictive R2 value on this application of 0.507.
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advantages over other sparse priors such as L1 because it retains the important aspects of sparsity,
while adding stability and differentiability to the MAP estimate ŵ. Differentiability in particular
is shown to lead to state-of-the-art performance by allowing the generative model learned from
unlabeled data by sparse-coding to be adapted to a supervised loss function.
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Supplemental Details And Derivations

A Properties of the Unnormalized KL-divergence Prior
Many of the important properties of a regularization function can be understood by looking at the behavior
of its partial derivatives, since at ŵ the (sub)gradient of the regularization function cancels the gradient of the
loss (10). In the case where B is the identity matrix and DL(x‖f(Bw)) = 1

2
‖x − Bw‖22, each ŵi can be

computed independently as ŵi = xi − ∇iDP (ŵ‖p). Figure 1A plots ŵi against xi for various priors. The
uniform prior has no effect and produces the line ŵi = xi. An L2 (gaussian) prior changes the slope of the
line to ŵi = (1− λ)xi, but does not change the sparsity of ŵ, as all elements are scaled equally. An L1 prior
however, does change the sparsity because its gradient is discontinuous at zero which forces ŵi = 0 while
|xi| ≤ λ.

∇DP (ŵ‖p) = − 1

λ
∇DL (x‖f(Bŵ)) (10)

A B C

Figure 3: For the identity basis, the gradient of the log prior on ŵ (B) determines an offset between ŵi and xi
(A). The probability density functions obtained by exponentiating the L1, L2, and KL regularization functions
are shown in (C). Note that KL regularization is shown on an expanded basis set that adds the negation of each
basis vector to allow negative weights.

KL-divergence regularization does not allow negative weights, but expanding the basis by adding the negation
of each basis vector eB = [−B B] simulates the effects of negative weights with only positive ones. In this
case the derivative of the KL-divergence prior corresponds to the arcsinh (wi/pi) function pictured in Figure
1B (proof given in Appendix B). arcsinh grows quickly for small weights, which causes sparsity similar to
L1. Crucially though, it grows slowly for large weights while still reaching∞. This property causes ŵ to be
differentiable and stable to small changes in B and x, because it allows ŵ to contain large weights while still
ensuring that similar columns of B will have similar activations in ŵ. If B is not orthogonal, L1 allows ŵ to
be discontinuous11 with respect to X and B because its derivative is flat apart from w = 0.

B Relationship between KL-divergence and arcsinh

The MAP estimate ew obtained for KL regularization on the basis eB = [−B B] is related through the function

ŵ = ŵ+ − ŵ− to the MAP estimate ŵ produced by using the regularization function
P
i wiarcsinh

“
wi
2pi

”
−p

w2
i + 4p2

i (shown in figure A) on the basis B.

Define eB = [−B B], and compute the MAP estimate ew by minimizing (11).

ew = arg min
w

DL
“
x‖f( eBw)

”
+ λKL( ew‖p) (11)

At the minimum ew, the gradients of both terms in (11) cancel each other (12).

− 1

λ

∂

∂ ewDL “x‖f( eB ew)
”

=
∂

∂ ewKL( ew‖p) (12)

Divide the elements of ew into two groups ew =

»
ŵ−

ŵ+

–
, so that eB ew = B(ŵ+ − ŵ−) = Bŵ, where ŵ is

defined to be ŵ = ŵ+ − ŵ−. Notice that ∂(
eB ew)
∂ ew =

ˆ
− ∂Bŵ

∂w
∂Bŵ
∂w

˜
. Substituting Bŵ into (12) produces (13).

11For an extreme, but illustrative, example consider the case where B contains two identical basis vectors.
Then there is no longer even a unique ŵ.
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− 1

λ

»
− ∂
∂ŵ
DL (x‖f(Bŵ))

∂
∂ŵ
DL (x‖f(Bŵ))

–
=

"
log w−

p

log w+

p

#
(13)

Solve (13) for ŵ+
i and ŵ−i (14).

ŵ+ = pe−
1
λ
∂
∂ŵ

DL(x‖f(Bŵ))

ŵ− = pe
1
λ
∂
∂ŵ

DL(x‖f(Bŵ)) (14)

Now rewrite ŵ = ŵ+ − ŵ− using (14) and the hyperbolic sin function sinh(x) = 1/2(ex − e−x) (15).

ŵ = pe−
1
λ
∂
∂ŵ

DL(x‖f(Bŵ)) − pe
1
λ
∂
∂ŵ

DL(x‖f(Bŵ))

= 2p sinh

„
− 1

λ

∂

∂ŵ
DL (x‖f(Bŵ))

«
(15)

Rearranging (15) produces (16), which is the derivative of (17) at its MAP estimate. Hence ŵ computed by
KL-regularization is also the MAP estimate of (17).

− 1

λ

∂

∂ŵ
DL (x‖f(Bŵ)) = arcsinh

„
ŵ

2p

«
(16)

ŵ = arg min
w

DL (x‖f(Bw)) + λ
X
i

wiarcsinh
„
wi
2pi

«
−
q
w2
i + 4p2

i (17)

C Derivation of ∂ŵ
∂B

The KL-divergence prior we use does not have a closed-form solution for the MAP estimate of the coefficients,
ŵ. However, the partial derivative ∂ŵ

∂B
can still be computed using implicit differentiation because the gradient

of the reconstruction loss equals the negative gradient of the regularization at ŵ (10). This section derives ∂ŵ
∂B

for general pairs of matching reconstruction loss DL (x‖r) and reconstruction transfer functions, r = f(Bw),
whose derivatives with respect to the coefficients assume a common form (18). Examples of such pairs include
the linear output function with squared loss, and normalized exponential reconstruction with KL loss.

∂DL (x‖r)
∂w

= BT (r − x) (18)

The derivative of the gradient of the likelihood with respect to Bki is the vector equation (19), where~ei is a unit
vector whose ith element is 1.

∂

∂Bki

„
∂DL (x‖r)

∂w

«
= BT

„
∂r

∂w

∂w

∂Bki
+

∂r

∂Bki

«
+~ei(rk − xk) (19)

Similarly, the derivative of the gradient of the KL-divergence prior with respect to Bki is the product of a
diagonal matrix and the column vector ∂w

∂Bki
(20).

∂

∂Bki

„
∂DP (w‖p)

∂w

«
= diag

„
1

w

«
∂w

∂Bki
(20)

At the MAP estimate ŵ, (19) equals negative (20), and solving for ∂ŵ

∂Bki
we get (21).

diag(
−λ
ŵ

)
∂ŵ

∂Bki
= BT

„
∂r̂

∂ŵ

∂ŵ

∂Bki
+

∂r̂

∂Bki

«
+~ei(r̂k − xk)

−
„
BT

∂r̂

∂ŵ
+ diag(

λ

ŵ
)

«
∂ŵ

∂Bki
= BT

∂r̂

∂Bki
+~ei(r̂k − xk)

∂ŵ

∂Bki
= −

„
BT

∂r̂

∂ŵ
+ diag(

λ

ŵ
)

«−1„
BT

∂r̂

∂Bki
+~ei(r̂k − xk)

«
(21)

This general form can be used with many loss/transfer function pairs by substituting the appropriate partial
derivatives. The partial derivatives for the transfer transfer functions used in this paper are listed in the table
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below.
Transfer Function r = f(Bw) ∂r

∂w
∂r

∂Bki
Linear Bw B ~ekwi
Normalized Exponential eBwP

j e
Bjw

(diag(r)− rrT )B (~ek − r)wirk

D Text Application Details
Minimizing KL-divergence loss between the empirical probability distribution (type) of the document given
in the input vector x and the reconstructed type after applying the normalized exponential transfer function
r = f(B,w) = eBwP

eBw
(23) is equivalent to maximizing the “constrained poisson distribution” used to model

documents in [21] , where N is the number of words in the document (22).

P (X|Nr) =
Y
i

e−Nri(Nri)
Xi

Xi!
(22)

−log(P (X|Nr) =
X
i

Nri −Xi logNri + log (Xi!) = N
X
i

ri − x̄i log ri + C

KL(x̄‖r) =
X
i

ri − x̄i log ri + x̄i log x̄i − xi =
X
i

ri − x̄i log ri + C (23)

Since our reconstruction and transfer functions are matched, the sparse coding update equations follow from
substituting the normalized exponential transfer function into the general equations given in the implementation
section.

E Music Genre Classification
A music genre classification task was also used for L1 sparse coding in [4], and consists of 15, 60-second
musical clips from each of 17 different genres. Following their practice, each song was divided into 50ms snip-
pets, and the magnitude of the spectrogram for each snippet were used as input examples. For reconstruction,
squared loss was used with a linear transfer function, and a maxent classifier was used for classification. The
first 10 genres were used as unlabeled data to learn B via sparse coding, 10 clips from each of the other 7
genres were used as training data and 5 clips were used as testing data. As shown in Table 7, KL-regularization
improved classification performance on the same basis over L1-regularization.

Training Set Size PCA L1 KL
200 32% 31% 33%
2000 43% 43% 45%

10000 48% 49% 50%

Table 7: Classification Accuracy on a 7-way music genre classification task is increased by using the KL prior
for sparse approximation.
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