Project Aim

Design and develop a prototype of a robot that can travel semi-autonomously to a given target using vision.

Use Case

- The robot is placed at a safe distance (20m) from a potential bomb threat area.
- After selecting the suspected target location from the camera’s view, the soldier instructs the robot to move to auto-mode.
- The robot moves autonomously towards the target, navigating around obstacles in its path.
- If it loses track of the target, it tries to re-identify the destination by itself.
- Notifies the operator if a timeout is reached, after being lost.
- Notifies the operator on reaching the destination for operating the onboard manipulator.

Functional Architecture

- Target Tracker - Open TLD
 - Tracking
 - Learning
 - Detection
 - Scans for object in every frame.
 - Detects pre-seen appearance. Reinitializes tracking.

- Obstacle Avoidance
 - Robot encounters obstacle.
 - Maintains bounding box to side without obstacle.
 - Tracks object maintaining the window.
 - Once clear of the obstacle, bounding box returned to the centre of frame.

- User Interface
 - User Interface State Machine Diagram
 - Tracks the object.
 - Target Reached Estimate

- CAD Modeling
- Chassis & Suspension
- Installing Sensors
- Electrical and Electronics

System Design

Performance

Main Requirements

- Remote Selection of Destination
- Robust Tracking of Target
- Manual Intervention
- Live Video Feed over 40m range
- Climb Slope of 12°
- Single Obstacle Avoidance 90%
- Multiple Obstacle Avoidance 2/4
- Weight 6.7kg
- Travel Time (Without Obstacle) 58 s
- Travel Time (With Obstacle) 2 min

Lessons learned and Future Work

Lessons learned

- Test concepts early and extensively
- Integration takes time
- Lead time consideration
- Design choices should be made with priority to testing.
- ROS – Excellent Infrastructure

Future Work

- Improve Sensor/Controller
- Further enhance obstacle avoidance ability
- Use smaller form factor PCs.
- Arm to perform EOD operations.

Acknowledgement

We would like to thank:

- Our industry partner Jeff Ferrin at Autonomous Solutions Inc.
- Prof. John Dolan, Prof. Hagen Schempf, and Prof. Marcel Bergerman for guiding us and providing valuable feedback.

This project was funded by the Robotics Institute's MRSD Program. These results represent the views of the authors and not those of Carnegie Mellon University.