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Abstract

This paper proposes a joint feature-based model indexing
and geometric constraint based alignment pipeline for effi-
cient and accurate recognition of 3D objects from a large
model database. Traditional approaches either first prune
the model database using indexing without geometric align-
ment or directly perform recognition based alignment. The
indexing based pruning methods without geometric con-
straints can miss the correct models under imperfections
such as noise, clutter and obscurations. Alignment based
verification methods have to linearly verify each model in
the database and hence do not scale up.

The proposed techniques use spin images as semi-local
shape descriptors and Locality-Sensitive Hashing (LSH) to
index into a joint spin image database for all the mod-
els. The indexed models represented in the pruned set are
further pruned using progressively complex geometric con-
straints. A simple geometric configuration of multiple spin
images, for instance a doublet, is first used to check for
geometric consistency. Subsequently, full Euclidean geo-
metric constraints are applied using RANSAC-based tech-
niques on the pruned spin images and the models to verify
specific object identity. As a result, the combined indexing
and geometric alignment based pipeline is able to focus on
matching the most promising models, and generate far less
pose hypotheses while maintaining the same level of per-
formance as the sequential alignment based recognition.
Furthermore, compared to geometric indexing techniques
like Geometric Hashing, the construction time and storage
complexity for the proposed technique remains linear in the
number of features rather than higher order polynomial.
Experiments on a 56 3D model database show promising
results.

1 Introduction

The task of object recognition involves the solution of sev-
eral complicated problems, i.e., (i) the unknown pose be-
tween the query and the model, (ii) the query-model dis-
crepancy due to occlusion and clutter in the scene, and (iii)
the computational cost of comparing each individual model
from the database to match against the query [1]. Alignment
based verification techniques (often based on RANSAC)
have been used to address the first two problems. However,
existing alignment based techniques[2, 3] apply RANSAC
sequentially to each individual model from the database,
and hence do not address the computational issues related to
the third problem when matching to a large model database.

This has led to a two pronged approach of first indexing
into the model set and estimate a viable and small collec-
tion of model hypotheses, and subsequent verification of
the correct model using geometric alignment and match-
ing. The model pruning step ensures that the computational
complexity does not grow linearly with the size of the model
database and alignment based verification ensures accuracy
at the cost of linear complexity hopefully for a small frac-
tion of the models. When scenes involve noise, clutter and
occlusions, the challenge for model pruning is to ensure that
a substantial number of models can be rejected while ensur-
ing that the correct model remains in the short list. The chal-
lenge for alignment based verification is to rapidly prune the
high dimensional space of pose hypotheses for efficient but
accurate verification of the correct model.

This paper proposes a joint feature-based model index-
ing and geometric constraint based alignment pipeline for
efficient and accurate recognition. The domain used for ap-
plication of the proposed recognition techniques is recog-
nition of 3D objects from a large model database from
3D range images. The proposed technique employs high-
dimensional semi-local distinctive features, like spin im-
ages [2], to index into a joint model database of all the
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Figure 1: Sequential RANSAC (a) vs. Batch RANSAC (b)
for object recognition. Each picks the model with the most
consensus features as the match of the query (shown in the
top row). Pictures represent 3D objects, circles represent
object features, the left rectangle represents the sequential
RANSAC, the right represents the batch RANSAC, dashed
lines represent possible matches, and solid lines represent
solved matches. Sequential RANSAC (acting like a slid-
ing window in (a)) matches query object with one model at
a time, spending almost the same amount of computational
effort on each model even it is very different from the query.
The proposed batch RANSAC is able to focus on the match-
ing of the most promising models, and generate far less
pose hypotheses while maintaining the same level of per-
formance as the sequential RANSAC. The batch RANSAC
uses an aggregated model database where a model id is
hashed with each feature (color coded in (b)). This is simi-
lar to Geometrical Hashing. The major difference is that the
model construction time and storage space of our approach
is linear with the number of features in the database.

models. Subsequently, progressively complex geometric
alignment constraints are employed using RANSAC like
methods to rapidly prune and verify the most likely model
hypotheses. Instead of matching models sequentially or
pruning the models without alignment constraints, the key
idea of this paper is to generate pose hypotheses for only
those models with high probability of being the match, and
vote for these models simultaneously with robust match
measures. By employing approximate high dimensional
nearest-neighbor search techniques like Locality-Sensitive
Hashing (LSH) and RANSAC based geometric model veri-
fication, we avoid the problem of pre-mature model pruning
while maintaining the accuracy of alignment based verifi-
cation methods. Figure 1 demonstrates the difference be-
tween the traditional sequential model verification and the
proposed simultaneous multi-model RANSAC-based veri-
fication and recognition.

2 Related work

The proposed method belongs to the class of appearance
feature and alignment based approaches to object recogni-

tion. Since our domain is 3D models and range images and
3D point clouds, “appearance” features are computed not
based on intensities or color but on semi-local 3D configu-
ration of points in the scens and models. Under the feature-
based framework, both the model and the query objects are
represented as a collection of shape features or signatures,
for instance spin images [2]. The shape features represent
appearance as a high-dimensional feature and have an asso-
ciated local coordinate system, a 3D location on the object
and a local normal. Therefore, each feature encapsulates
the local distribution of 3D points within its scope and also
is in a coordinate geometric relation with other features on
the object. Recognition algorithms typically vary according
to their treatments of the feature attributes and the feature
configurations.

Geometric hashing [4, 5] and its variants proposed ob-
ject recognition using high dimensional representations that
combined (quasi-)invariant coordinate representations with
geometric coordinate hashing to prune a model database
while employing geometric constraints. However, the time
and space complexity of creating geometric hash tables is
polynomial in the number of feature points associated with
each model. Furthermore, since the (quasi-)invariant coor-
dinate representations are relatively low-dimensional (typ-
ically 2 or 3), the hash tables can become crowded even
with small model databases and the run time complexity
can deteriorate to a linear complexity that again does not
scale with the size of the database. Variants of geometric
hashing that employ higher dimensional features have been
proposed. This paper can be considered as an improvement
over those variants.

RANSAC[6] (Random Sample Consensus) is an ef-
fective data-driven alignment and verification technique.
Instead of generating pose hypotheses exhaustively,
RANSAC generates only a limited number of hypotheses
with a sampling process guided by the matching of fea-
ture attributes. For one model, the storage complexity of
RANSAC is O(n), where n is the number of features in
the model. This is a significant gain compared with Geo-
metric Hashing, of which the complexity is O(nc+1). The
constant c is related to the degrees of freedom of the pose,
and is usually larger than 1. DARCES [7] and preemp-
tive RANSAC [8] are recent advances over the original
RANSAC technique. The former makes it more robust, and
the latter makes it faster. RANSAC has been used for align-
ment based verification for object recognition [2, 3]. The
RANSAC class of techniques iterate through all the models
in the database, and therefore are linear in the number of
models in the database.

Generation of potentially good quality pose hypothe-
ses can be aided by the use of high-dimensional appear-
ance features by employing approximate nearest neighbor
search algorithms like the recently developed algorithm
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called Locality-Sensitive Hashing (LSH) [9], LSH is a prob-
abilistic method for approximate nearest neighbor search,
and achieves sub-linear complexity in the number of fea-
tures in the database. See [10] for more theoretical and
practical details.

The proposed method uses both high-dimensional fea-
ture attributes and global geometric configurations for
recognition. In [11], 2D shape signatures called shape con-
texts are used to find a short list of candidate models. A
matching algorithm using global geometric constraints is
then applied to pick the best match. While efficient, this
approach has the risk of committing to a short list pre-
maturely and miss the correct match. Other related meth-
ods include [12],[13], and [14]. The paper [12] uses Hough
transformation to find the pose, which requires searching
peaks in a high dimensional array and the knowledge of the
ranges of the pose parameters. The paper [13] uses con-
ventional hash table to store the model database, but uses
a cluster-based approach to search for the consistent poses
in the pose parameter space. The paper [14] uses low-
distortion graph embedding to map vertex-labeled graphs to
a set of vectors in a low-dimensional space, and solves the
matching problem with the Earth Movers’ Distance (EMD).
The vertex-labeled graph encodes both the feature attribute
in the nodes and the global configuration in the edges.
Though promising, it is not clear whether the mapping is
stable in the presence of high percentage of outliers in the
query.

3 Notations

For the query object, a set of spin images {b1,b2, · · · ,bs}
and a set of normals to the surface {q1,q2, · · · ,qs} are
computed at basis points {p1,p2, · · · ,ps} uniformly sam-
pled along the surface of the object, where bk ∈ Rd,
pk,qk ∈ R3, d is the number of bins in each spin im-
age, and s is the number of spin images in the query. Let
αk = (bk,pk,qk), k = 1, · · · , s, represent an augmented
spin image that includes its local coordinate system, and Q
be the set of all augmented spin images for the query. Sim-
ilarly, let βk

i = (bk
i ,pk

i ,qk
i , i), k = 1, · · · , ti be an entry in

the model database, where ti is the number of spin images
in the ith model. Obviously, each entry is an augmented
model spin image hashed with the corresponding model ID.
We will generally refer to α and β as features in the follow-
ing discussion. Let m denote the number of models in the
database. Let Φi be the set of hypothesized poses from the
ith model to the query, and ni the number of pose hypothe-
ses in the set. Each pose is a 3D rigid motion, and hence
Φj

i ∈ R6, j = 1, · · · , ni. Suppose that the likelihood of a
pose given the query is define as p(Q |Φj

i ), the problem is
then to find the model label i∗ = 1, · · · ,m that maximizes

the likelihood among the poses of all models in the database

i∗ = arg max
i=1,···,m

max
j=1,···,ni

p(Q |Φj
i ) (1)

For 3D rigid motion, pose hypothesis Φj
i can be gener-

ate from a corresponding pair of query features and model
features whose model IDs are the same.

4 Algorithm overview

Solving (1) with pose hypotheses generated from all pos-
sible pairs of query features and model features is pro-
hibitively expensive. On the other hand, it is also im-
portant to ensure the accuracy if only a small portion of
these hypotheses are used. Our approach uses three steps,
i.e., spin image-based pruning, doublet-based pruning, and
RANSAC-base verification, to alleviate these problems.
Spin image-based feature pruning uses one query feature
at a time to prune the model features whose spin images are
not similar in the parameter space. With the help of LSH,
this step can be proceeded very efficiently without touch-
ing all the model features in the database. Doublet-based
pruning uses a pair of query features at a time to prune the
model-pose hypotheses that are inconsistent with the double
constraint. The doublet constraint is a powerful constraint
that uses both distance and surface normal to check the
consistency between the query feature pair and the model
feature pair. After the first two steps, the remaining pose
hypotheses are verified by warping all the features of the
hypothesized model to the query features with the hypoth-
esized pose. After warping, the likelihood of the hypoth-
esized model being matched with the query is computed
based on the consensus features or the inliers. The maxi-
mum likelihood is recorded for each hypothesized model,
and the model with the highest maximum likelihood is se-
lected as the match out of all the hypothesized models.

5 Spin image-based feature pruning
with LSH

Given a single query feature α, we want to find the model
features that are the nearest in spin image space. Searching
a large model database for the nearest neighbors in a high
dimensional space is extremely time consuming. Locality-
sensitive hashing (LSH) is the state-of-art technique to solve
this problem. LSH is a probabilistic solution for the ap-
proximate nearest neighbor problem. The unique property
of LSH is that it relates the probability of collision to the L1

distance between two vectors. In other words, if two vec-
tors are close in distance, they will have high probability of
landing in the same bucket of the hash table. The problem
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Figure 2: An illustration of the algorithm. Pink cones and dashed lines represent possible matches. Solid lines represent
solved matches. (a) Initially any query feature can be matched with any model features. (b) After spin image-based pruning,
there are very few possible matches remaining for the left most vehicle because other vehicles’ spin images are more similar
to the query spin images. As a result, only few pose hypotheses will be generated for this model. This stage involves only
one query feature at a time. (c) After doublet-based pruning, possible matches between the query features and the possible
models are dramatically reduced. The left most vehicle does not have any possible matches, and is no longer considered for
matching beyond this point. This stage involves a pair of query features at a time. (d) After RANSAC-based verification, the
right model is picked as the match because it has the most consensus points/inliers. This stage involves all or a percentage of
all query features at a time.

of finding the nearest neighbors then boils down to search-
ing only the vectors in the bucket that have the same hash
code as the query vector. The probability of collision as the
function of the L1 distance has the following form

Pc = 1 − (1 − (1 − d/dc)K)L , (2)

where dc is a constant related to the maximum distance be-
tween any two vectors in the set under the consideration, d
is the actual distance between two vectors, K is the number
of bits used to sample the vectors in the Hamming space,
and L is the number of hash tables. Figure 3 plots the curves
of the function in (2) with different K and L. Intuitively, in-
creasing K reduces the probability of collision, and increas-
ing L increases the probability. It can also be seen that the
probability drops down quickly as the distance increases. In
our case, this prevents the matching of features from model
objects that are not similar, and is one of the key factors con-
tributing to the efficient pruning demonstrated in Fig.2(b).
See[10] for a practical way of tuning K and L to maximize
the performance of LSH.

The downside of LSH is that some good matches may be
missed. In our approach, this can be tolerated because of
the robustness of the RANSAC-based verification stage.

6 Feature saliency

Feature saliency is another useful information to guide the
generation of pose hypotheses. In Fig.4, the x-axis of each
histogram is the model id, while the y-axis is the number
of features of a particular model that is in the top W list
Cl of a query feature αl. If a query feature is salient, the
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Figure 3: LSH probability of collision with various K and
L. Left: various K with fixed L = 20, Right: various L
with fixed K = 5. dc is set to 1000.

histogram should be peaky. One example is the red point
in the front of the vehicle, whose corresponding saliency
histogram is the displayed in the right most image. On the
contrary, the feature point on the top of the vehicle is not
salient, and its histogram looks flat. The saliency measure
is defined as the entropy of the saliency histogram. Sim-
ilar measures were proposed in [15, 16] in the context of
shape-based histogram matching. In the recognition algo-
rithm described in Sec.9, sampling of the scene features can
then be concentrated on those salient features to reduce the
number of hypotheses.

7 Doublet-based hypothesis genera-
tion and pruning

From a pair of query features (αl1 , αl2), and a correspond-
ing pair of model features (βk1

i , βk2
i ), we can generate a
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Figure 4: Feature saliency is another kind of information
that can be used to improve the performance of the proposed
method.

Figure 5: Two sets of correspondences in addition to have
similar surface signatures, are required to be geometrically
consistent: d ≈ d′, a ≈ a′, b ≈ b′, c ≈ c′. These constraints
are applied sequentially to prune pose hypotheses.

pose hypothesis Φ·
i for the ith model. A good hypothe-

sis should be geometrically consistent, that is, if we warp
(βk1

i , βk2
i ) to (αl1 , αl2) according to the hypothesized pose,

both the locations and the normal directions should be sim-
ilar between the corresponding features. Since the actual
pose computation involves SVD decomposition of a 3 × 3
matrix and some other expensive operations[17], we de-
signed a cascaded filter using the four doublet geometric
constrains defined in Fig.5. Given a pair of correspon-
dences, we apply these four constrains sequentially, and
compute the real pose only if it passes all of them. In this
way, we can throw away bad hypotheses early on without
spending time computing an actual pose.

In order to compute stable pose from corresponding
query-model pairs that pass the consistency check, we also
require that

‖pl1 −pl2‖ ≥ dmin , and arccos(ql1 � ·ql2) ≥ θmin . (3)

We call these stability constraints.

8 Likelihood computation

Once a pose hypothesis Φ·
i is generated for a hypothesized

model i, we can warp all the features of the model into the
query coordinate system. For each query feature αl, we then
search for a warped model feature βkl

i that maximizes the
likelihood

p(αl, βk
i |Φ·

i) = po(αl, βk
i |Φ·

i) pn(αl, βk
i |Φ·

i) ps(αl, βk
i ),
(4)

where ps(αl, βk
i ) measures the similarity between the spin

images bl and bk
i , po(αl, βk

i |Φ·
i) is the probability of

matching the origins given the pose

po ∝




exp
[
− (pl−pk

i )2

2σ2

]
, if ‖pl − pk

i ‖ ≤ ∆

exp
(
− ∆2

2σ2

)
, if ∆ < ‖pl − pk

i ‖ ≤ ∆max

0, otherwise

,

(5)
and pn(αl, βk

i |Φ·
i) is the probability of matching the nor-

mals given the pose

pn =
{

1, if acos(qk �
i · ql) ≤ ηmax

0, otherwise
. (6)

In (5) ∆ is a threshold suitably chosen to separate inliers
from outliers, ∆max is the maximum spread of the outliers.
We have assumed that the distribution of the inliers is Gaus-
sian, and haveing noise standard deviation σ. In (6) ηmax is
the maximum angle error.

The likelihood of the pose given the query can then be
computed assuming that the query features are independent

p(Q |Φ·
i) =

s∏
l=1

p(αl, βkl
i |Φ·

i) . (7)

Note in (7) that βkl
i is the warped model feature that maxi-

mizes the likelihood in (4). The query feature αl is inlier if
p(αl, βkl

i |Φ·
i) is large.

9 Recognition algorithm

Given a set of scene features, a model database, and an
LSH table generated from the model database, the batch
RANSAC recognition algorithm is given next.

Initialization Let γi = 0, i = 1, · · · ,m, where γi is the
maximum likelihood for the ith model.

Spin image-based pruning For each query feature αl that
is salient, find the set Cl of at most W nearest neigh-
bors in the database with LSH. Let the size of each
candidate set to be Wl ≤ W . Saliency is define in Sec.
6.

Doublet-based pruning Pick up randomly two indexes
1 ≤ k, l ≤ s, k �= l such that αk and αl satisfy the
stability constrains in (3). [a] Pick up u, v such that
1 ≤ u ≤ Wk, 1 ≤ v ≤ Wl using either importance
sampling, or by exhaustively enumerating all WkWl

possibilities. Pick up the candidate model feature βwu
iu

from Ck, and βwv
iv

from Cl. If iu �= iv , go to [a]. Oth-
erwise denote i = iu = iv , and check the geometric
consistency of (αk, αl) and (βwu

i ), βwv
i as in Fig.5. If
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it is not consistent, go to [a]. Otherwise, compute and
generate a hypothesized pose Φ·

i and move on to the
next step.

RANSAC-based verification Compute the likelihood γ =
p(Q |Φ·

i) as described in Sec.8 (7). If γ > γi, γi = γ.
If need to pick up next u and v, go to [a]. Otherwise, if
the maximum trial number is reached, go to [Output].
Otherwise, go to [Doublet-based pruning]

Output i∗ = arg maxi=1,···,m γi. i∗ is the solution of (1).

Given the above algorithm description, we can now ex-
plain why the batch RANSAC can generate far less hy-
potheses while still maintaining the accuracy. The key is
the feature competition from the features of all the models
in the database as illustrated in Fig.6.

(a) (b) (c)

Figure 6: The key to the success of the batch RANSAC
algorithm is the feature competition from all models. Sup-
pose we select the maximum number of candidates W = 5.
For a scene feature (the red circle) to be matched with fea-
tures of each individual model separately, each will have 5
nearest candidates as shown in (a) and (b). However, if the
matching is applied to the features of all models simultane-
ously, the scene feature will be matched with five candidates
on the model whose features are more similar than others.
These features usually come from the models whose shapes
are similar to the scene. In the case shown in (c), four can-
didates will be selected from the blue model (the correct
model), and only one will be from the green model. In this
way, the batch RANSAC can generate far less hypothesis
while still maintaining the same level of performance as the
sequential RANSAC.

10 Experiments

We have tested our method with a model set of 56 vehicles
on a 2GHz PC with 2GB main memory. We will present
comparative results with the sequential RANSAC-based
method. We will also show results of a spin image-based
indexing approach which is similar to the one proposed in
[11]. This method performs model indexing without using
the geometric constraint, and is usually used to provide a
short list for more sophisticated matching algorithm. The

comparison is based on the best performance of each indi-
vidual method. In the following discussion, we will denote
our approach as BRAN, the sequential RANSAC-based ap-
proach SRAN, and the spin image-based indexing approach
as SIND.

10.1 Synthesized data

Figure 7: Examples of vehicle models used for the test. To
simulate real sensor data, these facet models are converted
into point clouds. Model database is constructed based
on the features computed from the converted model point
clouds.

Fig. 7 shows the facet models of the original objects used
for the test. A laser range sensor simulator is used to con-
vert facet models into range images. View points are sam-
pled from a hemisphere centered around the object, and the
viewing direction is always targeting the center. The spher-
ical coordinate for each view point is denoted as (r, φ, θ),
where r is the radius, φ is the azimuthal angle, and θ is the
polar angle. The radius is set to be a constant such that the
object occupies the full view of the simulated laser sensor
for most of the times. It is therefore ignored in the view
point notation hereafter. Each model object is generated
by combining 8 pieces of point clouds sampled from the
view point set of {(0, 45◦), (45◦, 45◦), · · · , (360◦, 45◦)}
that covers the whole object. By constructing an octree-like
spatial structure from the combined point cloud of an ob-
ject Mi, a set of basis points is uniformly selected from the
(implicit) object surface, and the corresponding set of spin
images is computed. Query objects are generated by com-
bining only three views in order to simulate the real sensor
data.

Figure 9 compares the accuracy of the three approaches.
The x-axis of the curve is the number of models picked as
the candidates, and the y-axis is the probability that the right
model is in the short list. See figure caption for the setting
of this experiment. It can be seen that BRAN and SRAN
are on the same level of performance, while SIND is far
off. This demonstrates the power of RANSAC-based ap-
proaches, and also suggests that it may not be a good idea
to generate short list without using geometric constraints.

Figure 10 compares the speed of BRAN and SRAN with
various database sizes. It can be seen that BRAN is always
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Figure 8: Query object from different viewing angles. Each query combines three views of point clouds. Gaussian noise is added to each
view along the viewing direction before these views are combined. The noise level in this example is 10 cm.
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Figure 9: Experiments on the accuracy of three approaches
based on 56 queries. The noise level in this experiment is
10 cm. Spin images are computed with 1 meter radius, and
10 × 10 bins. For BRAN, we set the maximum number
of model feature candidates W to be 50. Our experiment
shows that increasing W to 100 does not improve the ac-
curacy. W for SRAN and SIND are 5, and 1, respectively.
Again, increasing these numbers does not lead to significant
improvement in the accuracy.

faster than SRAN. More importantly, SRAN is clearly lin-
ear to the number of models, while BRAN is sub-linear and
almost constant in the example.

10.2 Real data

The real data was collected using an airborne scanning Li-
dar sensor with fairly accurate GPS and INS systems on-
board. A variety of vehicles, including many vehicle model
types that look similar, were placed in open and partially ob-
scured situations and the vehicles were scanned from the air.
All the data consisted of vehicles that were scanned from at
most 3 sides. Typically vehicle scans consist of 2 sides with
a few hits from the top. Note that obscuration is counted not
with respect to the complete vehicle but with respect to 2-3
sides of the vehicle considered as 0% obscuration. Figure
11 shows some examples of the 88 real queries used in the
experiment. Figure 12 shows the performance of the BRAN
and SIND algorithms when matching these 88 real queries
against a 90 model database. It can be seen that SIND failed
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Figure 10: Recognition time per query with various num-
ber of models in the database. The sub-linear behavior of
BRAN is obvious.

while BRAN reached 97% with top 20 candidates. SRAN
was also applied on the same set of data and produced simi-
lar accuracy as BRAN, but with much higher computational
cost.

Figure 11: Four examples of the 88 real queries with obscu-
ration in the rang of 0 − 25%. obscuration is defined not
with respect to the complete vehicle but 2 − 3 visible sides
of the vehicle.
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Figure 12: Accuracy of the Batch RANSAC and the SIND
algorithms when matching the 88 real queries against a 90
model database.

11 Conclusion and future work

We propose a batch RANSAC algorithm for rapid and
robust object recognition. As compared with sequential
RANSAC-based recognition approaches, our method is ca-
pable of focusing pose hypothesis generation and verifica-
tion on the models that have high probabilities of being the
match. It can therefore use far less hypotheses to achieve
the same level of accuracy of the sequential RANSAC-base
approaches. Moreover, as compared with some previous
work such as Geometric Hashing, the construction time for
model hashing and the storage space for the resulting model
database required by our approach is linear to the number
of features in the database. Experiments on a 56 model
database confirms the efficacy of the proposed method.

This work does not consider the recognition of articu-
lated objects, while the proposed framework can indeed tol-
erate some degrees of articulations. An interesting future
work is to design a batch RANSAC recognition algorithm
that deals with fully articulated objects.
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